Angular Directives

Structural Attribute:

Component

Change Appearance of Change Appearnce Directives with its own

DOM By Adding or or Behavior of the

Removing Elements DOM by modifying the ' Pate
attribute of DOM
Elements

Directives that use microtemplates are known as structural directives.

Attribute directives are classes that are able to modify the behavior or appearance of the
element they are applied to.

Structural directives change the layout of the HTML document by adding and removing
elements.
There are three built-in structural directives, NgIf, NgFor and NgSwitch.

*nglf ="expression"

The nglf directive is used to include an element and its content in the HTML document if the expression
evaluates as true. The asterisk before the directive name indicates that this is a micro-template directive
<div *nglf="true">This div will show if the expression evaluates to true</div>

*ngFor ="let item of items; let i = index; let odd = odd;
let first = first; let last = last"

The ngFor directive is used to generate the same set of elements for each object in an array. The asterisk
before the directive name indicates that this is a micro-template directive

<div *ngFor="#item of expr"></div>

For the expression itself, there are two distinct parts, joined with the of keyword. The right-hand part of
the expression provides the data source that will be enumerated

The left-hand side of the ngFor expression defines a template variable, denoted by the let keyword,
which is how data is passed between elements within an Angular template.

Using Other Template Variables

The most important template variable is the one that refers to the data object being processed, which is
itemin the previous example. But the ngFor directive supports a range of other values that can also be
assigned to variables and then referred to within the nested HTML elements, as described in Table 13-4 and
demonstrated in the sections that follow.

Table 13-4. The ngFor Local Template Values

Name Description

index This number value is assigned to the position of the current object.

odd This boolean value returns true if the current object has an odd-numbered position in the
data source.

even This boolean value returns true if the current object has an even-numbered position in the
data source.

first This boolean value returns true if the current object is the first one in the data source.

last This boolean value returns true if the current object is the last one in the data source.

IngSwitch] ="expression"

The ngSwitch directive is used to choose between multiple elements to include in the HTML document
based on the result of an expression, which is then compared to the result of the individual expressions
defined using ngSwitchCase directives. If none of the ngSwitchCase values matches, then the element to
which the ngSwitchDefault directive has been applied will be used. The asterisks before the ngSwitchCase
and ngSwitchDefault directives indicate they are micro-template directives.

<div [ngSwitch]="expr">

</div>

IngTemplateOutlet] ="titleTemplate"

The ngTemplateOutlet directive is used to repeat a block of content at a specified location, which can be

useful
when you need to generate the same content in different places and want to avoid duplication

<ng-template #titleTemplate>

<hg class="p-2 bg-success text-white">Repeated Content</h4>
</ng-template>

<ng-template [ngTemplateOutlet]="titleTemplate"></ng-template>
some elements

<ng-template [ngTemplateOutlet]="titleTemplate"></ng-template>

[(ngModel)] ="selectedProduct"

a two-way binding with [()] syntax (also known as 'banana-in-a-box syntax'), the value in the UI always
syncs back to the domain model in your class. Behind the scenes, an event binding is applied to the input
event, and a property binding is
applied to the value property

An attribute directive that updates styles for the containing HTML element.

[ngClass] =" 'someclass "

[ngStyle] ="{'font-style': styleExp}"

Property Binding

Binding to a property <

To bind to an element's property, enclose it in square brackets, [], which identifies the property as a target

property. A target property is the DOM property to which you want to assign a value. For example, the target

property in the following code is the image element's src property.

src/app/app.component.html

 with brackets get the value from this property —

In most cases, the target name is the name of a property, even when it appears to be the name of an attribute. In

this example, src is the name of the element property.

The brackets, [], cause Angular to evaluate the right-hand side of the assignment as a dynamic expression.
Without the brackets, Angular treats the right-hand side as a string literal and sets the property to that static

value.

src/app.component.html

<app-item-detail ChildItEm="parentItem"></app-item-detail> without brackets property becomes
string literal

Omitting the brackets renders the string parentItem, notthe value of parentItem.

Events Binding

https://angular.io/api/common/NgClass
https://angular.io/api/common/NgStyle

Host Element Expression

Event

.

<td (mouseover)="selectedProduct=item.name">

Round Brackets

Figure 14-3. The anatomy of an event binding

An event binding has these four parts:
o The host element is the source of events for the binding.

o The round brackets tell Angular that this is an event binding, which is a form of one-
way binding where data flows from the element to the rest of the application.

» The event specifies which event the binding is for.

o The expression is evaluated when the event is triggered.

Event bindings evaluate an expression when an event is triggered
Enabling forms support Add the @angular/forms module to

the application

Responding to an event Use an event binding

Getting details of an event Use the $event object

Events:

(mouseover)

(change)

(ngSubmit)

(click)

(input)

the input event is triggered every time the content in the input element is changed

(keyup)
the keyup event is a standard dom event, and the result is that application is updated as the user

releases each key while typing in the input element
Table 14-3. The Properties Common to All DOM Event Objects

Name Description
type This property returns a string that identifies the type of event that has been triggered.

target This property returns the object that triggered the event, which will generally be the object
that represents the HTML element in the DOM.

timeStamp This property returns a number that contains the time that the event was triggered, expressed
as milliseconds since January 1, 1970.

div *ngIf="hero" class="name">{{hero.name}}</div

table class="table table-striped table-bordered table-sm"
thead
tr
th>#</th
th>Description</th
th>Done</th
tr
thead
tbody
tr *ngFor="let item of items; let i = index"
td>{{ i + 1 }}</td
td>{{ item.task }}</td
td><input type="checkbox" [(ngModel)]="item.complete" td
Before using the ngModel directive in a two-
way data binding, you must import the FormsModule and add it to the NgModule's im
ports list.
td [ngSwitch]="item.complete"
span *ngSwitchCase="true">YesNo</span
td
tr
tbody
table

input class="form-control"” placeholder="Enter task here" #todoText
//template reference variable

button class="btn btn-primary mt-1" (click)="addItem(todoText.value)" button
//get the value with help of /template reference variable
ili

button class="btn btn-primary mt-
1" [value]=""'some value'" (click)="addItem($event.target.value)" button

addItem(value)
value ke bide some value

ili

tr *ngFor="let item of items; let i = index" (click)="addItem(item)>

select class="form-control" [value]="productsPerPage"
(change)="changePageSize($event.target.value)"
option value="3">3 per Page</option
option value="4">4 per Page</option
option value="6">6 per Page</option
option value="8">8 per Page</option
select

input type="number" class="form-control-sm"
style="width:5em"

[value]="1line.quantity"
(change)="cart.updateQuantity(line.product,
$event.target.value)"

input class="form-control" [value]="model.getProduct(1)?.name || 'None'"

If the result from the getProduct method isn’t null, then the expression will rea
d the value of the name

property and use it as the result. But if the result from the method is null, the
n the name property won’t be

read, and the null coalescing operator (the || characters) will set the result to
None instead.

Boostrap and Jquery
1.
npm install --save bootstrap jquery

2. in angular.json add
"styles": [
"src/styles.css",

"node_modules/bootstrap/dist/css/bootstrap.min.css”
],

"scripts": [

"node modules/jquery/dist/jquery.min.js",

"node_modules/bootstrap/dist/js/bootstrap.min.js”

ili
npm install bootstrap@4.4.1
vo style

"node_modules/bootstrap/dist/css/bootstrap.min.css" /vo style vo angular.json

Font Awsome

npm install font-awesome --save
"node_modules/font-awesome/css/font-awesome.css” ///vo style vo angular.json

npm install -g @angular/cli

npm is the package manager for the Node JavaScript platform. It puts modules in place so that node can
find them, and manages dependency conflicts intelligently. It is extremely configurable to support a wide
variety of use cases. Most commonly, it is used to publish, discover, install, and develop node programs

ng v //check angular cli version angular node
Create a workspace and initial application
ng new my-app

The Angular CLI includes a server, so that you can build and serve your app locally.
cd my-app ng serve --open

ng g ¢ componentName

ng g c componentName -it -is //for inline template it and inline style is

Bindings are worth understanding because their expressions are re-evaluated when
the data they depend on changes

Host Element Expression

Target

.

<div [ngClass]="getClasses()">
+ 4
|

Square Brackets
Figure 12-3. The anatomy of a data binding

A data binding has these four parts:

o The host element is the HTML element that the binding will affect, by changing its
appearance, content, or behavior.

o The square brackets tell Angular that this is a one-way data binding. When Angular
sees square brackets in a data binding, it will evaluate the expression and pass the
result to the binding’s target so that it can modify the host element.

o The target specifies what the binding will do. There are two different types of target: a
directive or a property binding.

e The expression is a fragment of JavaScript that is evaluated using the template’s
component to provide context, meaning that the component’s property and methods
can be included in the expression, like the getClasses method in the example
binding.

Types of data binding

Angular provides three categories of data binding according to the direction of data flow:

« From the source to view
« From view to source

« In atwo way sequence of view to source to view

Type Syntax Category

Interpolation One-way

Property t{expresaton}} !’D from data source

Attribute [target]="expression” to view target

Class bind-target="expression"

Style

Event One-way
(target)="statement" ‘0 from view target
on-target="statement"” To datir sourcy

Two-way Two-way

[(target)]="expression” ‘0
bindon-target="expression"

Binding types other than interpolation have a target name to the left of the equal sign. The target of a binding is a

property or event, which you surround with square brackets, [], parentheses, (), or both, [()].

The binding punctuation of [], (), [()], and the prefix specify the direction of data flow.

« Use [] to bind from source to view.
* Use () to bind from view to source.

« Use [()] tobind in a two way seguence of view to source to view.

Place the expression or statement to the right of the equal sign within double quotes, " . For more information

see Interpolation and Template statements.

Binding types and targets

The target of a data binding can be a property, an event, or an attribute name. Every public member of a source

directive is automatically available for binding in a template expression or statement. The following table

summarizes the targets for the different binding types.

Type

Property

Event

Two-way

Attribute

Class

Style

Target

Element property

Component property

Directive property

Element event
Component event
Directive event

Event and property

Attribute

(the exception)

class property

style property

Examples

src, hero, and ngClass in the following:

<app-hero-detail [herc]="currentHero"></app-
hero-detail>

<div [ngClass]="{'special': isSpecial}"s</div>

click, deleteRequest, and myClick in the following:

<button (click)="onSave()">Save</button>

<app-hero-detail (deleteRequest)="deleteHero()">

</app-hero-detail>

<div (myClick)="clicked=Sevent” clickable>click

me</div>

<input [(ngModel)]="name">

<button [attr.aria-label]="help">help</button=>

<div [class.special]="isSpecial”>Special</div>

<button [style.color]="isSpecial ? 'red’
‘green’ ">

0

0

When Angular

sees square brackets in a data binding, it will evaluate the expression and pass the
result to the binding's target so that it can modify the host element.

If the binding target doesn’t correspond to a directive, then Angular checks to see whether
the target can be used to create a property binding.

The target specifies what the binding will do. There are two different types of target: a
directive or a property binding.

Table 12-3. The Basic Built-in Angular Directives

Name Description

ngClass This directive is used to assign host elements to classes, as described in the
“Setting Classes and Styles” section.

ngStyle This directive is used to set individual styles, as described in the “Setting
Classes and Styles” section.

ngIf This directive is used to insert content in the HTML document when its
expression evaluates as true, as described in Chapter 13.

ngFor This directive inserts the same content into the HTML document for each
item in a data source, as described in Chapter 13.

ngSwitchngSwitchCaseng These directives are used to choose between blocks of content to insert into

SwitchDefault the HTML document based on the value of the expression, as described in
Chapter 13.
ngTemplateOQutlet This directive is used to repeat a block of content, as described in Chapter 13.

Table 12-4. The Angular Property Bindings

Name Description

[property] This is the standard property binding, which is used to set a property on the JavaScript
object that represents the host element in the Document Object Model (DOM), as
described in the “Using the Standard Property and Attribute Bindings” section.

[attr.name] This is the attribute binding, which is used to set the value of attributes on the host
HTML element for which there are no DOM properties, as described in the “Using the
Attribute Binding” section.

[class.name] This is the special class property binding, which is used to configure class membership
of the host element, as described in the “Using the Class Bindings” section.

[style.name] This is the special style property binding, which is used to configure style settings of
the host element, as described in the “Using the Style Bindings” section.

The expression has access to the properties and methods defined by the component
Expressions are not restricted to calling methods or reading properties from the component; th
ey can also perform most standard JavaScript operation

The expression is enclosed in double quotes, which means that the string literal has to be define

d using single quotes

The square brackets (the [and] characters) tell Angular that this is a one-way data binding that has an
expression that should be evaluated if you omit the brackets and the

target is a directive, the expression won’t be evaluated, and the content between the quote characters will
be passed to the directive as a literal value

Table 12-5. The Angular Brackets

Name

Description

[target]="expr"

{{expression}}

(target) ="expr"

[(target)] ="expr"

The square brackets indicate a one-way data binding where data flows from the
expression to the target. The different forms of this type of binding are the topic of
this chapter.

This is the string interpolation binding, which is described in the “Using the
String Interpolation Binding” section.

The round brackets indicate a one-way binding where the data flows from the
target to the destination specified by the expression. This is the binding used to
handle events, as described in Chapter 14.

This combination of brackets—known as the banana-in-a-box—indicates a
two-way binding, where data flows in both directions between the target and the
destination specified by the expression, as described in Chapter 14.

Class Binding

Table 12-6. The Angular Class Bindings

Example Description

<div [class]="expr"></div> This binding evaluates the expression and uses the result to
replace any existing class memberships.

<div [class.myClass]="expr"></div> This binding evaluates the expression and uses the result to
set the element’s membership of myClass.

<div [ngClass]="map"></div> This binding sets class membership of multiple classes using

the data in a map object.

Binding Type Syntax Input Type Example Input Values

Single class binding [class.sale]="onSale" boolean | undefined | null true, false

Multi-class binding [class]="classExpression" string "my-class-1 my-class-2 my-class-3"
{[key: string]: boolean undefined null} {foo: true, bar: false}
Array<string> ['foo', 'bar']

Binding Type Syntax Input Type Example Input Values

Single class binding [class.sale]="onSale" boolean | undefined | null true, false

Multi-class binding [class]="classExpression” string "my-class-1 my-class-2 my-class-3"
{[key: string]: boolean | undefined null} {foo: true, bar: false}
Array<string> ['foo', 'bar']

[class.bg -success]="model.getProduct(2).price < 50"

The special class binding will add the host element to the specified class if the result
of the expression is truthy

UNDERSTANDING TRUTHY AND FALSY

JavaScript has an odd feature, where the result of an expression can be truthy or falsy, providing a
pitfall for the unwary. The following results are always falsy:

— The false (boolean) value
— The 0 (number) value

— The empty string (")

— null

— undefined

— NaN (a special number value)

All other values are truthy, which can be confusing. For example, "false" (a string whose content is the
word false) is truthy. The best way to avoid confusion is to only use expressions that evaluate to the
boolean values true and false.

ngClass

Table 12-7. The Expression Result Types Supported by the ngClass Directive

Name Description
String The host element is added to the classes specified by the string. Multiple classes are
separated by spaces.
Array Each object in the array is the name of a class that the host element will be added to.
Object Each property on the object is the name of one or more classes, separated by spaces.
The host element will be added to the class if the value of the property is truthy.
string

<some-element [ngClass]=" 'first second' " >...</some -element>

array

<some-element [ngClass]="[first', 'second']">...</some -element>

object

<some-element [ngClass]="{first". true, 'second". true, 'third" false}">...</som
element>

combination

<some-element [ngClass]="stringExp |arrayExp |objExp">...</some -element>
object

<some-element [ngClass]="{'class1 class2 class3' : true}">...</some -element>

Object

getClassMap(key: number): Object {

let product = this.model.getProduct(key);

return {

"text-center bg-danger": product.name == "Kayak",
"bg-info": product.price <50 }; }

will evaluate to

{

"text-center bg-danger":true,

"bg-info":false

}

or

[ngClass]="{'bg-success': model.getProduct(3).price < 50,
'bg-info": model.getProduct(3).price >= 50}"

String
[ngClass]="getClasses()"

getClasses(): string {

retur n this.model.getProducts().length ==57? "bg-success" : "bg-warning";

e -

7

Style Binding
Table 12-8. The Angular Style Bindings

Example Description

<div [style.myStyle]="expr"></div> This is the standard property binding, which is used to set a
single style property to the result of the expression.

<div [style.myStyle.units]="expr"> Thisis the special style binding, which allows the units for the

</div> style value to be specified as part of the target.
<div [ngStyle]="map"></div> This binding sets multiple style properties using the data in a
map object.

Do not try to use the standard property binding to target the style property to set multiple style
values

if you want to set multiple style properties, then create a binding for

each of them or use the ngStyle directive.

[style.fontSize]="fontSizeWithUnits"

You can specify style properties using the Javascript property name format ([style.fontSize]) or
using the Css property name format ([style.font-size]).

The ngSter directive allows multiple style properties to be set using a map object, similar to the way that
the ngClass directive works

getStyles(key: number) {

let product = this.model.getProduct(key);

return {

fontSize: "30px",

"margin.px": 100,

color: product.price >50 ? "red" : "green"

2

}

Forms and Validation
the Angular validation features work only when there is a form element present, and Angular
will report an error if you add the ngControl directive to an element that is not contained in a form.
the novalidate attribute to the form element, which tells the browser not to use its native
validation features, which are inconsistently implemented by different browsers and generally get in the
way. Since Angular will be providing the validation, the browser's own implementation of these features is
not required
the build in validation attribute show only colors

Table 14-4. The Built-in Angular Validation Attributes

Attribute Description

required This attribute is used to specify a value that must be provided.

minlength This attribute is used to specify a minimum number of characters.

maxlength This attribute is used to specify a maximum number of characters. This type of validation
cannot be applied directly to form elements because it conflicts with the HTMLS5 attribute
of the same name. It can be used with model-based forms, which are described later in the
chapter.

pattern This attribute is used to specify a regular expression that the value provided by the user

if we want text

must match.

for each input we create FormControl class

First Name
FormControl EYSEpEp e >

value
touched

untouched

dirty
pristine
valid
errors

for each form FormGroup object

First Name
--------- ’ ‘

value
touched

untouched

dirty
pristine
valid
errors

Comment

the formControl and FormGroup object can be created with templete driven or reactive way

Creating Controls

Code

Template-driven Reactive

the FormsModule gives us template driven directives such as:

* ngModel and

e NgForm

Whereas ReactiveFormsModule gives us reactive driven directives like
e formControl and

* ngFormGroup ... and several more

Templete Driven

if you import FormsModule, NgForm will get automatically attached to any
tags you have in your view. This is really useful but potentially confusing because it happens

behind the scenes. There are two important pieces of functionality that NgForm gives us:
1. FormGroup named ngForm
2. (ngSubmit) output

form = —

form #f="ngForm" 4 (ngSubmit)="onSubmit(f.value)" First we have #f="ngForm". The #v="thing" syntax
says that we want to create a local variable for this view. Here we’re creating an alias to ngForm, for this
view, bound to the variable #f. Where did ngForm come from in the first place? It came from the
NgForm directive. And what type of object is ngForm? It is a FormGroup. That means we can use f as a
FormGroup in our view. And that’s exactly what we do in the (ngSubmit) output.

[géModel name=”firstNameJ]

with this on an input angular creates formControl obj

1i =
You must enter a product name

1i

form

label SKU</label

input

NgModel creates a new FormControl that is automatically added to the parent FormGroup (in this case,
on the form) and then binds a DOM element to that new FormControl. That is, it sets up an association
between the input tag in our view and the FormControl and the association is matched by a name, in

this case "sku"

v NghModel
vcontrol: FormControl
asyncValidator: null

verrors:
» minlength: {requiredlLen
» __protc__: Object

pristine: false
status: "INVALID"

» statusChanges: EventEmitt
touched: true

» validator: £ (control)
value: "Matt"

» valueChanges: EventEmitte

» _onChange: [£]

» _onCollectionChange: () =

» _onDisabledChange: [£]
_pendingChange: false
_pendingDirty: true
_pendingTouched: true
_pendingValue: "Matt"

Table 14-6. The Validation Object Properties

Name Description

path This property returns the name of the element.

valid This property returns true if the element’s contents are valid and false otherwise.
invalid This property returns true if the element’s contents are invalid and false otherwise.
pristine This property returns true if the element’s contents have not been changed.

dirty This property returns true if the element’s contents have been changed.

touched This property returns true if the user has visited the element.

untouched This property returns true if the user has not visited the element.

errors This property returns an object whose properties correspond to each attribute for which
there is a validation error.

value This property returns the value of the element, which is used when defining custom
validation rules, as described in the “Creating Custom Form Validators” section.

Table 14-7. The Angular Form Validation Error Description Properties

Name Description

required This property returns true if the required attribute has been applied to the
input element. This is not especially useful because this can be deduced from
the fact that the required property exists.

minlength. This property returns the number of characters required to satisfy the
requiredLength minlength attribute.

minlength.actuallength This property returns the number of characters entered by the user.

pattern.requiredPattern This property returns the regular expression that has been specified using the
pattern attribute.

pattern.actualValue This property returns the contents of the element.

import { NgForm } from "@angular/forms";

<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)">

angular create FormGroup obj

submitForm(form: NgForm) {
this.formSubmitted = true;

if (form.valid) {
this.addProduct(this.newProduct);
this.newProduct = new Product();
form.reset();

this.formSubmitted = false;

!
}

NgForm provides the reset method, which resets the validation status of the form and
returns it to its original and pristine state.

Reactive or Model-Based Forms

Using myForm in the view We want to change our <form>

to use myForm. If you recall, in the last section we said that ngForm is applied for us
automatically when we use FormsModule. We also mentioned that ngForm creates its own
FormGroup. Well, in this case, we don’t want to use an outside FormGroup. Instead we want to
use our instance variable myForm, which we created with our FormBuilder. How can we do
that? Angular provides another directive that we use when we have an existing Form-Group: it’s
called formGroup and we use it like this:

form =

Here we’re telling Angular that we want to use myForm as the FormGroup for this form.
Remember how earlier we said that when using FormsModule that NgForm will be
automatically applied to a

element? There is an exception: NgForm won’t be applied to a

that has formGroup.

import {, ReactiveFormsModule } from "@angular/forms";
import { FormControl, FormGroup, Validators } from "@angular/forms";

1. create formControl

nekojFormControl:FormControl= FormControl("value of the input field",Validators.required

2.Add it to inoput element
<input class="form-control* name="name" [formControl]="nekojFormControl" />

{{nekojFormControl.value}} this is the FormControl object

you can create custom class instead of FormControl that extend FormControl
you can create custom class instead of that extend FormGroup

1.create formGroup obj

nekojaFormGroup:FormGroup= FormGroup({

nekojFormControl: FormControl("sssdAAAAAAAAAAAaasx",Validators.required)

2.Add it to form element

<form [formGroup]="nekojaFormGroup">

<input class="form-control" hame="name" formControIName="nekojFormControl" />

</form>
formControlName must be used with a parent formGroup directive

Example:
<div [formGroup]="myGroup">

<input formControlIName="firstName">
</div>

Nested Form Group
s
nekojaFormGroup: FormGroup= FormGroup ({
nekojFormControl: FormControl("sssdAAAAAAAAAAAaasx™,Validators.required),

nestedformgroup: FormGroup ({

nestedFormControl: FormControl ("BBBBBBBBBBBBBBBBBBB",Validators.required

.html
[formGroup]="nekojaFormGroup"

class="form-control” name="name" formControlName="nekojFormControl"

formGroupName="nestedformgroup"

class="form-
control"” name="name" formControlName="nestedFormControl"

Validating

Angular defines a class called Validators in the @angular/forms
module that has properties for each of the built-in validation checks, as described in Table 14-8.

Table 14-8. The Validator Properties

Name Description

Validators.required This property corresponds to the required attribute and ensures that a value is
entered.

Validators.minLength This property corresponds to the minlength attribute and ensures a minimum
number of characters.

Validators.maxLength This property corresponds to the maxlength attribute and ensures a maximum

number of characters.
Validators.pattern This property corresponds to the pattern attribute and matches a regular
expression.
Validators.compose
The Validators.compose method accepts an array of validators

nestedFormControl: FormControl ("BBBBBBBBBBBBBBBBBBB" ,Validators.compose([Val

idators.required,Validators.minLength(5)]))

Validated
FormControl i FormGroup objects have error property

Custom Validator
1.Create Validator logic
limit.validator.ts

import { FormControl } from "@angular/forms";

export LimitValidator {
Limit(limit: number) {
return (control: FormControl)

val = Number(control.value);

if (val !'= NaN && val > limit) {
return { "limit": { "limit": limit, "actualValue": val } };

} else {
return

}

} The limit property returns an object that has a limit property that is set to the validation limit and an

actualValue property that is set to the value entered by the user

2. adding validator to form control
nekojFormControl: FormControl ("sssdAAAAAAAAAAAaasx”,LimitValidator.Limit(10))

input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }
input.ng-dirty.ng-valid { border: 2px solid #6bc502 }

Remember: To create a new FormGroup and FormControls implicitly use: ¢ ngForm and ¢ ngModel But
to bind to an existing FormGroup and FormControls use: ® formGroup and ¢ formControl

Custom Directive

import { Directive, ElementRef,Attribute,Input } from "@angular/core";

@Directive({
selector: "[pa]",

PaAttrDirective {

(element: ElementRef) {

element.nativeElement.classList.add("btn-danger");

import {PaAttrDirective} from './mydirectiv.directive’
and add it to declarations

in @NgModule

pa >2222222222222222

Configure Custom Directive with Attribute
import {PaAttrDirective} from './mydirectiv.directive’
and add it to declarations

in @NgModule

import { Directive, ElementRef,Attribute,Input } from "@angular/core";

@Directive({
selector: "[pa]",

PaAttrDirective {

(element: ElementRef,@Attribute("paattr") bgClass: string) {

element.nativeElement.classlList.add(bgClass || "btn-danger");

must be both the directive and attribute

pa paattr="btn-primary" >1111111111111111

Configure Custom Directive with Input

import {PaAttrDirective} from './mydirectiv.directive’
and add it to declarations

in @NgModule

import { Directive, ElementRef ,Input } from "@angular/core";

@Directive({
selector: "[pa]l”,

PaAttrDirective {

@Input(“pa")
bgClass: string;

element: ElementRef) {
}

ngOnInit()

.element.nativeElement.classList.add(.bgClass || "btn-danger");

[pa] expect expression

[pa]=""btn-primary"" >1111111111111111

Structural Directive

import {PaStructureDirective} from './myStructDirective.sdirective'

and add it to declarations

in @NgModule

import { Directive, SimpleChange, ViewContainerRef, TemplateRef, Input} from "@a
ngular/core";

@Directive({
selector: "[paIf]"

PaStructureDirective {

¢ container: ViewContainerRef,
template: TemplateRef<Object>) { }

@Input("palf")
expressionResult: boolean;

ngOnChanges(changes: { [property: string]: SimpleChange }) {
change = changes["expressionResult"];
if (!change.isFirstChange() && !change.currentValue) {
.container.clear();
} else if (change.currentValue) {

.container.createEmbeddedView(.template);

use the directive

*palf="false">Pa if applied on this div

Component interaction child to parent

export

@Input('parentData’) public
@Output() public childEvent

@1 8

ngOnInit() {
}

fireEvent(){
.childEvent.emit(

Services

all the components in the application that have declared a dependency

on DiscountService have received the same object.

each component obtaining the share objects it needs through the dependency
injection feature, rather than relying on its parent component to provide it.

	Create a workspace and initial application

