
Directives that use microtemplates are known as structural directives.

Attribute directives are classes that are able to modify the behavior or appearance of the

element they are applied to.

Structural directives change the layout of the HTML document by adding and removing

elements.

There are three built-in structural directives, NgIf, NgFor and NgSwitch.

*ngIf ="expression"
The ngIf directive is used to include an element and its content in the HTML document if the expression

evaluates as true. The asterisk before the directive name indicates that this is a micro-template directive

<div *ngIf="true">This div will show if the expression evaluates to true</div>

*ngFor ="let item of items; let i = index; let odd = odd;

let first = first; let last = last"

The ngFor directive is used to generate the same set of elements for each object in an array. The asterisk

before the directive name indicates that this is a micro-template directive

<div *ngFor="#item of expr"></div>

For the expression itself, there are two distinct parts, joined with the of keyword. The right-hand part of

the expression provides the data source that will be enumerated

The left-hand side of the ngFor expression defines a template variable, denoted by the let keyword,

which is how data is passed between elements within an Angular template.

[ngSwitch] ="expression "

The ngSwitch directive is used to choose between multiple elements to include in the HTML document

based on the result of an expression, which is then compared to the result of the individual expressions

defined using ngSwitchCase directives. If none of the ngSwitchCase values matches, then the element to

which the ngSwitchDefault directive has been applied will be used. The asterisks before the ngSwitchCase

and ngSwitchDefault directives indicate they are micro-template directives.

<div [ngSwitch]="expr">

</div>

[ngTemplateOutlet] ="titleTemplate"

The ngTemplateOutlet directive is used to repeat a block of content at a specified location, which can be

useful

when you need to generate the same content in different places and want to avoid duplication

<ng-template #titleTemplate>

<h4 class="p-2 bg-success text-white">Repeated Content</h4>

</ng-template>

<ng-template [ngTemplateOutlet]="titleTemplate"></ng-template>

some elements

<ng-template [ngTemplateOutlet]="titleTemplate"></ng-template>

[(ngModel)] ="selectedProduct"

 a two-way binding with [()] syntax (also known as 'banana-in-a-box syntax'), the value in the UI always

syncs back to the domain model in your class. Behind the scenes, an event binding is applied to the input

event, and a property binding is

applied to the value property

An attribute directive that updates styles for the containing HTML element.

[ngClass] =" 'someclass "

[ngStyle] ="{'font-style': styleExp}"

Property Binding

Events Binding

https://angular.io/api/common/NgClass
https://angular.io/api/common/NgStyle

Event bindings evaluate an expression when an event is triggered

Enabling forms support Add the @angular/forms module to

the application

Responding to an event Use an event binding

Getting details of an event Use the $event object

Events:

(mouseover)

(change)

(ngSubmit)

(click)

(input)

the input event is triggered every time the content in the input element is changed

(keyup)

the keyup event is a standard dom event, and the result is that application is updated as the user

releases each key while typing in the input element

<div *ngIf="hero" class="name">{{hero.name}}</div>

<table class="table table-striped table-bordered table-sm">

 <thead>

 <tr>

 <th>#</th>

 <th>Description</th>

 <th>Done</th>

 </tr>

 </thead>

 <tbody>

 <tr *ngFor="let item of items; let i = index">

 <td>{{ i + 1 }}</td>

 <td>{{ item.task }}</td>

 <td><input type="checkbox" [(ngModel)]="item.complete" /></td>

 Before using the ngModel directive in a two-

way data binding, you must import the FormsModule and add it to the NgModule's im

ports list.

 <td [ngSwitch]="item.complete">

 Yes

 No

 </td>

 </tr>

 </tbody>

</table>

<input class="form-control" placeholder="Enter task here" #todoText />

//template reference variable

<button class="btn btn-primary mt-1" (click)="addItem(todoText.value)"></button>

//get the value with help of /template reference variable

ili

<button class="btn btn-primary mt-

1" [value]="'some value'" (click)="addItem($event.target.value)"></button>

addItem(value)

value ke bide some value

ili

<tr *ngFor="let item of items; let i = index" (click)="addItem(item)>

 <select class="form-control" [value]="productsPerPage"

(change)="changePageSize($event.target.value)">

<option value="3">3 per Page</option>

<option value="4">4 per Page</option>

<option value="6">6 per Page</option>

<option value="8">8 per Page</option>

</select>

 <input type="number" class="form-control-sm"

 style="width:5em"

 [value]="line.quantity"

 (change)="cart.updateQuantity(line.product,

 $event.target.value)" />

<input class="form-control" [value]="model.getProduct(1)?.name || 'None'" />

...

If the result from the getProduct method isn’t null, then the expression will rea

d the value of the name

property and use it as the result. But if the result from the method is null, the

n the name property won’t be

read, and the null coalescing operator (the || characters) will set the result to

 None instead.

Boostrap and Jquery

1.

npm install --save bootstrap jquery

2. in angular.json add

 "styles": [

 "src/styles.css",

 "node_modules/bootstrap/dist/css/bootstrap.min.css"

],

 "scripts": [

 "node_modules/jquery/dist/jquery.min.js",

 "node_modules/bootstrap/dist/js/bootstrap.min.js"

]

ili

npm install bootstrap@4.4.1

vo style

"node_modules/bootstrap/dist/css/bootstrap.min.css" /vo style vo angular.json

Font Awsome

npm install font-awesome --save
"node_modules/font-awesome/css/font-awesome.css" ///vo style vo angular.json

npm install -g @angular/cli

npm is the package manager for the Node JavaScript platform. It puts modules in place so that node can

find them, and manages dependency conflicts intelligently. It is extremely configurable to support a wide

variety of use cases. Most commonly, it is used to publish, discover, install, and develop node programs

ng v //check angular cli version angular node

Create a workspace and initial application
ng new my-app

The Angular CLI includes a server, so that you can build and serve your app locally.

cd my-app ng serve --open

ng g c componentName

ng g c componentName -it -is //for inline template it and inline style is

Bindings are worth understanding because their expressions are re-evaluated when

the data they depend on changes

When Angular

sees square brackets in a data binding, it will evaluate the expression and pass the

result to the binding’s target so that it can modify the host element.

If the binding target doesn’t correspond to a directive, then Angular checks to see whether

 the target can be used to create a property binding.

The target specifies what the binding will do. There are two different types of target: a

directive or a property binding.

The expression has access to the properties and methods defined by the component

Expressions are not restricted to calling methods or reading properties from the component; th

ey can also perform most standard JavaScript operation

The expression is enclosed in double quotes, which means that the string literal has to be define

d using single quotes

The square brackets (the [and] characters) tell Angular that this is a one-way data binding that has an

expression that should be evaluated if you omit the brackets and the

target is a directive, the expression won’t be evaluated, and the content between the quote characters will

be passed to the directive as a literal value

Class Binding

[class.bg -success]="model.getProduct(2).price < 50"

The special class binding will add the host element to the specified class if the result

of the expression is truthy

ngClass

string

<some-element [ngClass]=" 'first second' " >...</some -element>

array

<some-element [ngClass]="['first', 'second']">...</some -element>

object

<some-element [ngClass]="{'first': true, 'second': true, 'third': false}">...</some -

element>

combination

<some-element [ngClass]="stringExp|arrayExp|objExp">...</some -element>

object

<some-element [ngClass]="{'class1 class2 class3' : true}">...</some -element>

Object

getClassMap(key: number): Object {

let product = this.model.getProduct(key);

return {

"text-center bg-danger": product.name == "Kayak",

"bg-info": product.price < 50 }; }

will evaluate to

{

"text-center bg-danger":true,

"bg-info":false

}

or

[ngClass]="{'bg-success': model.getProduct(3).price < 50,

'bg-info': model.getProduct(3).price >= 50}"

String

 [ngClass]="getClasses()"

 getClasses(): string {

 retur n this.model.getProducts().length == 5 ? "bg-success" : "bg-warning";

 }

Style Binding

Do not try to use the standard property binding to target the style property to set multiple style

values

if you want to set multiple style properties, then create a binding for

each of them or use the ngStyle directive.

[style.fontSize]="fontSizeWithUnits"

You can specify style properties using the Javascript property name format ([style.fontSize]) or

using the Css property name format ([style.font-size]).

The ngStyle directive allows multiple style properties to be set using a map object, similar to the way that

the ngClass directive works

getStyles(key: number) {

let product = this.model.getProduct(key);

return {

fontSize: "30px",

"margin.px": 100,

color: product.price > 50 ? "red" : "green"

};

}

Forms and Validation

the Angular validation features work only when there is a form element present, and Angular

will report an error if you add the ngControl directive to an element that is not contained in a form.

the novalidate attribute to the form element, which tells the browser not to use its native

validation features, which are inconsistently implemented by different browsers and generally get in the

way. Since Angular will be providing the validation, the browser’s own implementation of these features is

not required

the build in validation attribute show only colors

if we want text

for each input we create FormControl class

for each form FormGroup object

the formControl and FormGroup object can be created with templete driven or reactive way

the FormsModule gives us template driven directives such as:

 • ngModel and

• NgForm

Whereas ReactiveFormsModule gives us reactive driven directives like

 • formControl and

• ngFormGroup … and several more

Templete Driven

if you import FormsModule, NgForm will get automatically attached to any

tags you have in your view. This is really useful but potentially confusing because it happens

behind the scenes. There are two important pieces of functionality that NgForm gives us:

1. FormGroup named ngForm

2. (ngSubmit) output

<form #f="ngForm" (ngSubmit)="onSubmit(f.value)">

form #f="ngForm" 4 (ngSubmit)="onSubmit(f.value)" First we have #f="ngForm". The #v="thing" syntax

says that we want to create a local variable for this view. Here we’re creating an alias to ngForm, for this

view, bound to the variable #f. Where did ngForm come from in the first place? It came from the

NgForm directive. And what type of object is ngForm? It is a FormGroup. That means we can use f as a

FormGroup in our view. And that’s exactly what we do in the (ngSubmit) output.

 with this on an input angular creates formControl obj

<div>

<input class="form-control"

name="name"

[(ngModel)]="somename"

ngModel

#name="ngModel"

required

minlength="5"

pattern="^[A-Za-z]+$"

(change)="ShowNgModel(name)" if we want to print the FormControl object

/>

<ul class="text-danger list-unstyled" *ngIf="name.dirty && name.invalid">

 <li *ngIf="name.errors.required">

 You must enter a product name

</div>

<form #f="ngForm"

4 (ngSubmit)="onSubmit(f.value)"

5 class="ui form">

6

8 <label for="skuInput">SKU</label>

9 <input type="text"

10 id="skuInput"

11 placeholder="SKU"

12 name="sku" ngModel>

NgModel creates a new FormControl that is automatically added to the parent FormGroup (in this case,

on the form) and then binds a DOM element to that new FormControl. That is, it sets up an association

between the input tag in our view and the FormControl and the association is matched by a name, in

this case "sku"

import { NgForm } from "@angular/forms";

<form novalidate #form="ngForm" (ngSubmit)="submitForm(form)">

angular create FormGroup obj

submitForm(form: NgForm) {

this.formSubmitted = true;

if (form.valid) {

this.addProduct(this.newProduct);

this.newProduct = new Product();

form.reset();

this.formSubmitted = false;

}

}

NgForm provides the reset method, which resets the validation status of the form and

returns it to its original and pristine state.

Reactive or Model-Based Forms

Using myForm in the view We want to change our <form>

to use myForm. If you recall, in the last section we said that ngForm is applied for us

automatically when we use FormsModule. We also mentioned that ngForm creates its own

FormGroup. Well, in this case, we don’t want to use an outside FormGroup. Instead we want to

use our instance variable myForm, which we created with our FormBuilder. How can we do

that? Angular provides another directive that we use when we have an existing Form-Group: it’s

called formGroup and we use it like this:

 <form [formGroup]="myForm"

Here we’re telling Angular that we want to use myForm as the FormGroup for this form.

Remember how earlier we said that when using FormsModule that NgForm will be

automatically applied to a

element? There is an exception: NgForm won’t be applied to a

that has formGroup.

import {, ReactiveFormsModule } from "@angular/forms";

import { FormControl, FormGroup, Validators } from "@angular/forms";

1. create formControl

nekojFormControl:FormControl=new FormControl("value of the input field",Validators.required)

2.Add it to inoput element

<input class="form-control" name="name" [formControl]="nekojFormControl" />

 {{nekojFormControl.value}} this is the FormControl object

you can create custom class instead of FormControl that extend FormControl

you can create custom class instead of FormGroup that extend FormGroup

1.create formGroup obj

nekojaFormGroup:FormGroup=new FormGroup({

 nekojFormControl:new FormControl("sssdAAAAAAAAAAAaasx",Validators.required)

 });
2.Add it to form element

<form [formGroup]="nekojaFormGroup">

<input class="form-control" name="name" formControlName="nekojFormControl" />

</form>
formControlName must be used with a parent formGroup directive

 Example:

 <div [formGroup]="myGroup">

 <input formControlName="firstName">

 </div>

Nested Form Group

.ts

 nekojaFormGroup:FormGroup=new FormGroup({

 nekojFormControl:new FormControl("sssdAAAAAAAAAAAaasx",Validators.required),

 nestedformgroup:new FormGroup({

 nestedFormControl:new FormControl("BBBBBBBBBBBBBBBBBBB",Validators.required

)

 })

 });

.html

<form [formGroup]="nekojaFormGroup">

 <input class="form-control" name="name" formControlName="nekojFormControl" />

 <section formGroupName="nestedformgroup">

 <input class="form-

control" name="name" formControlName="nestedFormControl" />

 </section>

 </form>

Validating

Angular defines a class called Validators in the @angular/forms

module that has properties for each of the built-in validation checks, as described in Table 14-8.

Validators.compose
The Validators.compose method accepts an array of validators

 nestedFormControl:new FormControl("BBBBBBBBBBBBBBBBBBB",Validators.compose([Val

idators.required,Validators.minLength(5)]))

Validated

FormControl i FormGroup objects have error property

Custom Validator

1.Create Validator logic

limit.validator.ts

import { FormControl } from "@angular/forms";

export class LimitValidator {

 static Limit(limit: number) {

 return (control: FormControl) => {

 let val = Number(control.value);

 if (val != NaN && val > limit) {

 return { "limit": { "limit": limit, "actualValue": val } };

 } else {

 return null;

 }

 }

 }

} The limit property returns an object that has a limit property that is set to the validation limit and an

actualValue property that is set to the value entered by the user

2. adding validator to form control

 nekojFormControl:new FormControl("sssdAAAAAAAAAAAaasx",LimitValidator.Limit(10))

input.ng-dirty.ng-invalid { border: 2px solid #ff0000 }

input.ng-dirty.ng-valid { border: 2px solid #6bc502 }

Remember: To create a new FormGroup and FormControls implicitly use: • ngForm and • ngModel But

to bind to an existing FormGroup and FormControls use: • formGroup and • formControl

Custom Directive

import { Directive, ElementRef,Attribute,Input } from "@angular/core";

@Directive({

 selector: "[pa]",

})

export class PaAttrDirective {

 constructor(element: ElementRef) {

 element.nativeElement.classList.add("btn-danger");

 }

}

import {PaAttrDirective} from './mydirectiv.directive'

and add it to declarations

in @NgModule

<button pa >2222222222222222</button>

Configure Custom Directive with Attribute

import {PaAttrDirective} from './mydirectiv.directive'

and add it to declarations

in @NgModule

import { Directive, ElementRef,Attribute,Input } from "@angular/core";

@Directive({

 selector: "[pa]",

})

export class PaAttrDirective {

 constructor(element: ElementRef,@Attribute("paattr") bgClass: string) {

 element.nativeElement.classList.add(bgClass || "btn-danger");

 }

}

must be both the directive and attribute

<button pa paattr="btn-primary" >1111111111111111</button>

Configure Custom Directive with Input

import {PaAttrDirective} from './mydirectiv.directive'

and add it to declarations

in @NgModule

import { Directive, ElementRef ,Input } from "@angular/core";

@Directive({

 selector: "[pa]",

})

export class PaAttrDirective {

 @Input("pa")

 bgClass: string;//The input name needs to match the selector to be able to a

ssign this way

 constructor(private element: ElementRef) {

 }

 ngOnInit() //This method is called after Angular has set the initial value fo

r all the input properties that the directive has declared

 {

 this.element.nativeElement.classList.add(this.bgClass || "btn-danger");

 }

}

[pa] expect expression

<button [pa]="'btn-primary'" >1111111111111111</button>

Structural Directive

import {PaStructureDirective} from './myStructDirective.sdirective'

 and add it to declarations

in @NgModule

import { Directive, SimpleChange, ViewContainerRef, TemplateRef, Input} from "@a

ngular/core";

@Directive({

 selector: "[paIf]"

})

export class PaStructureDirective {

 constructor(private container: ViewContainerRef,

 private template: TemplateRef<Object>) { }

 @Input("paIf")

 expressionResult: boolean;

 ngOnChanges(changes: { [property: string]: SimpleChange }) {

 let change = changes["expressionResult"];

 if (!change.isFirstChange() && !change.currentValue) {

 this.container.clear();

 } else if (change.currentValue) {

 this.container.createEmbeddedView(this.template);

 }

 }

}

use the directive

<div *paIf="false">Pa if applied on this div</div>

Component interaction child to parent

Services

all the components in the application that have declared a dependency

on DiscountService have received the same object.

each component obtaining the share objects it needs through the dependency

injection feature, rather than relying on its parent component to provide it.

	Create a workspace and initial application

