

An IEnumerable is a list or a container which can hold some items. You can iterate through each

element in the IEnumerable. You can not edit the items like adding, deleting, updating, etc.

instead you just use a container to contain a list of items. It is the most basic type of list

container.

All you get in an IEnumerable is an enumerator that helps in iterating over the elements. An

IEnumerable does not hold even the count of the items in the list, instead, you have to iterate

over the elements to get the count of items.

ICollection is another type of collection, which derives from IEnumerable and extends it’s

functionality to add, remove, update element in the list. ICollection also holds the count of

elements in it and we does not need to iterate over all elements to get total number of elements.

IList extends ICollection. An IList can perform all operations combined from IEnumerable and

ICollection, and some more operations like inserting or removing an element in the middle of a

list.

The following method just returns null:

IEnumerable<object> Incorrect()

{

 return null;

}

IEnumerable vs IQueryable

IEnumerable

IEnumerable is suitable for querying data from in-memory collections like List, Array and so on.

 While querying data from the database, IEnumerable executes "select query" on the server-side,

loads data in-memory on the client-side and then filters the data.

IQueryable

IQueryable is suitable for querying data from out-memory (like remote database, service)

collections.

While querying data from a database, IQueryable executes a "select query" on server-side with

all filters.

to execute

smarter to get result first than

iteretaing

Dispose and Finalize

Method dispose() is used to free unmanaged resources whenever it is invoked.

Method finalize() is used to free unmanaged resources before the object is destroyed.

the method dispose() has to be explicitly invoked by the user whereas, the method finalize() is

invoked by the garbage collector, just before the object is destroyed.

As you have seen, finalizers can be used to release unmanaged resources when the garbage

collector kicks in.

IDisposable provide a

way for the object user to clean up the object as soon as it is finished. However, if the caller

forgets to call Dispose(), the unmanaged resources may be held in memory indefinitely.

As keyword

The operator as also is used for type conversion but invalid conversion returns null, not an

exception.

Is keyword

The is operator is used to check if the run-time type of an object is compatible with the given

type or not. It returns true if the given object is of the same type otherwise, return false. It also

returns false for null objects for derived objects it will return true

Elvis operator – ?.

 The operator lets you access members and elements only when the receiver is not-null, returning null

result otherwise.

int? length = people?.Length; // null if people is null

?? Operator

it is placed between two operands and returns the left operand only if its value is not null,

otherwise it returns the right operand.

Casting base to extend vs extend to base

It is possible to cast an instance of the extended class to the base class. It is

however not possible to cast an instance of the base class to the extended.

//Posible

BaseClass baseObj = new ExtendedClass(); // Creating instance of extended and implicit up-cast

it to base

ExtendedClass extendedObj = (ExtendedClass)baseObj; // Down-cast of the reference stored in

"baseObj" to the extended obj.

//InvalidCastException

BaseClass baseObj1 = new BaseClass();

ExtendedClass extendedObj1 = (ExtendedClass)baseObj1;

//Posible

ExtendedClass ExtendedClass3 = new ExtendedClass();

BaseClass base123 = (BaseClass)ExtendedClass3;

foreach loop

The foreach-loop statement is used, when we do not need to change the elements, but just to

read them.

always through all elements – from the start to the end(different from for-loop)

The loop variable in foreach-loops is read-only so we cannot modify the current loop item from

the loop body.

must implement IEnumerable and provide

public IEnumerator GetEnumerator()

{

// Return the array object's IEnumerator.

return carArray.GetEnumerator();

}

the foreach construct will obtain the interface in the background when necessary.

object initializer syntax

// Make a Point by setting each property manually.

Point firstPoint = new Point();

firstPoint.X = 10;

firstPoint.Y = 10;

firstPoint.DisplayStats();

// Or make a Point via a custom constructor.

Point anotherPoint = new Point(20, 20);

anotherPoint.DisplayStats();

// Or make a Point using object init syntax. the default constructor is called implicitly.

Point finalPoint = new Point { X = 30, Y = 30 };

The final Point variable is not making use of a custom constructor (as one might do traditionally)

but

is rather setting values to the public X and Y properties. Behind the scenes, the type’s default

constructor is invoked, followed by setting the values to the specified properties. To this end,

object initialization syntax is just shorthand notation for the syntax used to create a class

variable using a default constructor and to set the state data property by property

// Here, the default constructor is called explicitly.

Point finalPoint = new Point() { X = 30, Y = 30 };

/ Calling a custom constructor

Point pt = new Point(10, 16) { X = 100, Y = 100 };

the following Point declaration results in an X value of 100 and a Y value of 100,

regardless of the fact that the constructor arguments specified the values 10 and 16

// Calling a more interesting custom constructor with init syntax.

Point goldPoint = new Point(PointColor.Gold){ X = 90, Y = 20 };

// Create and initialize a Rectangle.

Rectangle myRect = new Rectangle

{

TopLeft = new Point { X = 10, Y = 10 },

BottomRight = new Point { X = 200, Y = 200}

}

Properties

traditional get and set methods

Although you can encapsulate a piece of field data using traditional get and set methods, .NET

Core languages prefer to enforce data encapsulation state data using properties. First,

understand that properties are just a container for “real” accessor(get) and mutator(set)

methods, named get and set, respectively. Therefore, as a class designer, you are still able to

perform any internal logic necessary before making the value assignment

// Accessor (get method).

 public string GetName() => _empName;

 // Mutator (set method).

 public void SetName(string name)

 {

 // Do a check on incoming value

 // before making assignment.

 if (name.Length > 15)

 {

 Console.WriteLine("Error! Name length exceeds 15 characters!");

 }

 else

 {

 _empName = name;

 }

 }

Properties

// Field data.

 private string _empName;

 private int _empId;

private float _currPay;

 // Properties!

 public string Name

 {

 get { return _empName; }

 set

 {

 if (value.Length > 15)

 {

 Console.WriteLine("Error! Name length exceeds 15 characters!");

 }

 else

 {

 _empName = value;

 }

 }

 }

 // We could add additional business rules to the sets of these properties;

 // however, there is no need to do so for this example.

 public int Id

 {

 get { return _empId; }

 set { _empId = value; }

 }

 public float Pay

 {

 get { return _currPay; }

 set { _currPay = value; }

 }

Automatic Properties

When defining automatic properties, you simply specify the access modifier, underlying data

type, property name, and empty get/set scopes. At compile time, your type will be provided with

an autogenerated private backing field and a fitting implementation of the get/set logic. The

name of the autogenerated private backing field is not visible within your C# codebase. The only

way to see it is to make use of a tool such as ildasm.exe.

the compiler implicitly declares a readonly backing field.

As a result, these properties can only be assigned a value in the constructor or inline

Be aware of course that if you are

building a property that requires additional code beyond getting and setting the underlying

private field

(such as data validation logic, writing to an event log, communicating with a database, etc.), you

will be

required to define a “normal” .NET property type by hand. C# automatic properties never do

more than

provide simple encapsulation for an underlying piece of (compiler-generated) private data.

Since C# version 6, it is possible to define a “read-only automatic property” by omitting the set

scope. Read-only autoproperties can only be set in the constructor. However, it is not possible

to define a write-only property. To solidify, consider the following: // Read-only property? This is

OK! public int MyReadOnlyProp { get; } // Write only property? Error! public int

MyWriteOnlyProp { set; }

Sealed methods

class X {

 protected virtual void F() { Console.WriteLine("X.F"); }

 protected virtual void F2() { Console.WriteLine("X.F2"); }

}

class Y : X {

 sealed protected override void F() {

Console.WriteLine("Y.F"); }

 protected override void F2() { Console.WriteLine("X.F3"); }

}

class Z : Y {

 // Attempting to override F causes compiler error CS0239.

 // protected override void F() { Console.WriteLine("C.F"); }

 // Overriding F2 is allowed.

 protected override void F2() { Console.WriteLine("Z.F2"); }

}

Passing by reference

Hence, whenever an argument of a reference type is passed to a method, the method’s

parameter receives the reference itself

passing arguments of reference type, only the value of the variable that keeps the address to the

object is copied. Note that this does not copy the object itself.

By passing the argument that are of reference type, the only thing that is copied is the variable

that keeps the reference to the object, but not the object data.

primitive types are passed by their values, the objects, however, are passed by reference.

class Program

{

 static void Main(string[] args)

 {

 int arg;

 // Passing by value.

 // The value of arg in Main is not changed.

 arg = 4;

 squareVal(arg);

 Console.WriteLine(arg);

 // Output: 4

 // Passing by reference.

 // The value of arg in Main is changed.

 arg = 4;

 squareRef(ref arg);

 Console.WriteLine(arg);

 // Output: 16

 }

 static void squareVal(int valParameter)

 {

 valParameter *= valParameter;

 }

 // Passing by reference

 static void squareRef(ref int refParameter)

 {

 refParameter *= refParameter;

 }

}

Coupling

Most of the classes from .NET Common Type System (CTS) and .NET Framework define methods

that depend only on the data within their class and the passed arguments. In standard libraries,

the methods dependencies from external classes are minimal and that is why they are easy to

reuse. The .NET Framework class library strongly follows the idea of loose coupling. Whenever a

method reads or modifies global data and depends on 10 additional objects, which must be

initialized within the instance of its own class, it is considered a coupled to its environment

Sealed methods
Sealing of methods is done when we rely on a piece of functionality and we don’t want it to be altered.
We already know that methods are sealed by default. But if we want a base class virtual method to
become sealed in a derived class, we use override sealed.

Polymorphism

Polymorphism allows treating objects of a derived class as objects of its base class

it is mostly related to overriding methods in derived classes, in order to change their original

behavior

Lion lion = new AfricanLion(false, 60);

 lion.CatchPrey(null); // Will print "AfricanLion.CatchPrey", because // the variable lion has a

value of type AfricanLion

the overwritten method is called and not the base method. This happens, because it is validated

what the actual class behind the variable is and whether it implements (overwrites) that method.

Rewriting of methods is also called overriding of virtual methods. Virtual methods as well as

abstract methods can be overridden. Abstract methods are actually virtual methods without a

specific implementation. All methods defined in an interface are abstract and therefore virtual,

although this is not explicitly defined.

When Should We Use Polymorphism? The answer to this question is simple: whenever we want

to enable changing a method’s implementation in a derived class.

method hiding
 class A
 {
 public virtual void show()
 {
 Console.WriteLine("Hello: Base Class!");
 Console.ReadLine();
 }
 }

 class B : A
 {
 public override void show()
 {
 Console.WriteLine("Hello: Derived Class!");
 Console.ReadLine();
 }
 }

 class C : B
 {
 public new void show()
 {
 Console.WriteLine("Am Here!");
 Console.ReadLine();
 }
 }

 class Polymorphism
 {
 public static void Main()
 {
 A a1 = new A();
 a1.show();
 B b1 = new B();
 b1.show();
 C c1 = new C();
 c1.show();
 A a2 = new B();
 a2.show();

 A a3 = new C();
 a3.show();
 B b3 = new C();
 b3.show();
 }
 }
}

hello base
hello derivered
am here
hello derivered
hello derivered
helllo derivered

za new ako napravis inatanca od svojata klasa ke bide toj metod ako ne go krie i bara drug
 C c1 = new C();
bez polimorfizam ke bide toj metod
so polimorfizam drug metod
ke odi gore i ke bara duri ako e new ke go zeme

Нема Полиморфизам

class Program

 {

 class A {

 public void F() {

 Console.WriteLine("A.F");

 }

 }

 class B : A

 {

 public void F()

 {

 Console.WriteLine("B.F");

 }

 }

 static void Main(string[] args)

 {

 A a = new B();

 a.F();

 //print AF

 Console.ReadLine();

 }

 }

class Program

 {

 class A {

 public virtual void F() {

 Console.WriteLine("A.F");

 }

 }

 class B : A

 {

 public void F()

 {

 Console.WriteLine("B.F");

 }

 }

 static void Main(string[] args)

 {

 A a = new A();

 A b1 = new B();

 B b = new B();

 a.F();

 b1.F();

 b.F();

 Console.ReadLine();

//Output

 A.f

 A.f

 B.f

 }

 }

Метод со virtual може да се препокрие но не мора

class Program

 {

 class A {

 public virtual void F() {

 Console.WriteLine("A.F");

 }

 }

 class B : A

 {

 }

 static void Main(string[] args)

 {

 A a = new B();

 a.F();

 //print AF

 Console.ReadLine();

 }

 }

Чист Полиморфизам

class Program

 {

 class A {

 public virtual void F() {

 Console.WriteLine("A.F");

 }

 }

 class B : A

 {

 public override void F()

 {

 Console.WriteLine("B.F");

 }

 }

 static void Main(string[] args)

 {

 A a = new B();

 a.F();

 //print bf

 Console.ReadLine();

 }

 }

Метод со abstract мора да се препокрие

abstract class A {

 public abstract void F();

 }

 class B : A //compile-error program B does not impement inherited memeber

 {

 }

Encapsulation

private Paw frontLeft;

private Paw frontRight;

private Paw bottomLeft;

private Paw bottomRight;

private void MovePaw(Paw paw)

 { // …

 }

public override void Walk()

{ this.MovePaw(frontLeft);

this.MovePaw(frontRight);

this.MovePaw(bottomLeft);

this.MovePaw(bottomRight);

 }

}

The public method Walk() calls some other private method 4 times. That way the base class is

short – it consists of a single method. The implementation, however, calls another of its

methods, which is hidden from the users of the class.

Interfaces

interface IFile

{

 void ReadFile();

 void WriteFile(string text);

}

class FileInfo : IFile

{

 public void ReadFile()

 {

 Console.WriteLine("Reading File");

 }

 public void WriteFile(string text)

 {

 Console.WriteLine("Writing to file");

 }

}

public class Program

{

 public static void Main()

 {

 IFile file1 = new FileInfo();

 FileInfo file2 = new FileInfo();

 file1.ReadFile();

 file1.WriteFile("content");

 file2.ReadFile();

 file2.WriteFile("content");

 }

}
Reading File

Writing to file

Reading File

Writing to file

Above, we created objects of the FileInfo class and assign it to IFile type variable and FileInfo type

variable. When interface implemented implicitly, you can access IFile members with the IFile type

variables as well as FileInfo type variable.

Explicit Implementation

An interface can be implemented explicitly using <InterfaceName>.<MemberName>. Explicit

implementation is useful when class is implementing multiple interfaces; thereby, it is more readable

and eliminates the confusion. It is also useful if interfaces have the same method name coincidently.

interface IFile

{

 void ReadFile();

 void WriteFile(string text);

}

class FileInfo : IFile

{

 void IFile.ReadFile()

 {

 Console.WriteLine("Reading File");

 }

 void IFile.WriteFile(string text)

 {

 Console.WriteLine("Writing to file");

 }

 public void Search(string text)

 {

 Console.WriteLine("Searching in file");

 }

}

public class Program

{

 public static void Main()

 {

 IFile file1 = new FileInfo();

 FileInfo file2 = new FileInfo();

 file1.ReadFile();

 file1.WriteFile("content");

 //file1.Search("text to be searched")//compile-time error

 file2.Search("text to be searched");

 //file2.ReadFile(); //compile-time error

 //file2.WriteFile("content"); //compile-time error

 }

}

When you implement an interface explicitly, you can access interface members only through the

instance of an interface type

In the above example, file1 object can only access members of IFile, and file2 can only access

members of FileInfo class. This is the limitation of explicit implementation.

Implementing Multiple Interfaces

A class or struct can implement multiple interfaces. It must provide the implementation of all the

members of all interfaces.

Example: Implement Multiple Interfaces

interface IFile

{

 void ReadFile();

}

interface IBinaryFile

{

 void OpenBinaryFile();

 void ReadFile();

}

class FileInfo : IFile, IBinaryFile

{

 void IFile.ReadFile()

 {

 Console.WriteLine("Reading Text File");

 }

 void IBinaryFile.OpenBinaryFile()

 {

 Console.WriteLine("Opening Binary File");

 }

 void IBinaryFile.ReadFile()

 {

 Console.WriteLine("Reading Binary File");

 }

 public void Search(string text)

 {

 Console.WriteLine("Searching in File");

 }

}

public class Program

{

 public static void Main()

 {

 IFile file1 = new FileInfo();

 IBinaryFile file2 = new FileInfo();

 FileInfo file3 = new FileInfo();

 file1.ReadFile();

 //file1.OpenBinaryFile(); //compile-time error

 //file1.SearchFile("text to be searched"); //compile-time error

 file2.OpenBinaryFile();

 file2.ReadFile();

 //file2.SearchFile("text to be searched"); //compile-time error

 file3.Search("text to be searched");

 //file3.ReadFile(); //compile-time error

 //file3.OpenBinaryFile(); //compile-time error

 }

}

Try it

Above, the FileInfo implements two interfaces IFile and IBinaryFile explicitly. It is recommended to

implement interfaces explicitly when implementing multiple interfaces to avoid confusion and more

readability.

An interface can only declare methods and constants

The members of an interface never specify an access modifier (as all interface members are

implicitly public and abstract

https://www.tutorialsteacher.com/codeeditor?cid=cs-nxCU4v

public interface IDrawToForm

 {

 void Draw();

 }

 // Draw to buffer in memory.

 public interface IDrawToMemory

 {

 void Draw();

 }

 // Render to the printer.

 public interface IDrawToPrinter

 {

 void Draw();

 }

 class Octagon : IDrawToForm, IDrawToMemory, IDrawToPrinter

 {

 void IDrawToForm.Draw()

 {

 Debug.WriteLine("Drawing the IDrawToForm...");

 }

 public void Draw()

 {

 // Shared drawing logic.

 Debug.WriteLine("Drawing the Octagon...");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Octagon oct = new Octagon();

 oct.Draw();//ke se povika Drawing the Octagon

 IDrawToForm oct1 = (IDrawToForm)oct;

 oct1.Draw();//ke se povika Drawing the IDrawToForm

 }

 }

explicitly implemented members are always implicitly private

implicit are public

Explicit can not be called outside the class cz they are private

and must be casted to be used

IDrawToForm oct1 = (IDrawToForm)oct

or

public class SampleClass : IControl, ISurface

{

 void IControl.Paint()

 {

 System.Console.WriteLine("IControl.Paint");

 }

 void ISurface.Paint()

 {

 System.Console.WriteLine("ISurface.Paint");

 }

}

The class member IControl.Paint is only available through the IControl interface, and ISurface.Paint is only

available through ISurface. Both method implementations are separate, and neither are available directly

on the class. For example:

// Call the Paint methods from Main.

SampleClass obj = new SampleClass();

//obj.Paint(); // Compiler error.

IControl c = obj;

c.Paint(); // Calls IControl.Paint on SampleClass.

ISurface s = obj;

s.Paint(); // Calls ISurface.Paint on SampleClass.

// Output:

// IControl.Paint

// ISurface.Paint

abstarct vs interface
od abstrakna klasa ne moze da se napravi objekt

dodeka od interface moze da se napravi objekt kakde toj objekt ke bide od klasata sto go implementira

toj interface(toj objekt ke gi ima samo metodite bez data fileds)

Var keyword
 var cannot be used as field data!
var cannot be used as a return value or parameter type!
Must assign value at exact time of declaration
Can't assign null as initial value!
static int GetAnInt()//it is allowed if is same type var and int
{var retVal = 9; return retVal;}

Virtual
If a base class wants to define a method that may be (but does not have to be) overridden by a subclass,
it must mark the method with the virtual keyword.
A method, which can be overridden, is called virtual. In .NET, methods are not virtual by default.
In Java, you don't have to write @Override in order to override a method with the same
signature. It is like that by default. That is not the case in C#, as you have to prefix virtual
A method, which can be overridden in a derived class, is called a virtual method. Methods in .NET by
default aren’t virtual. If we want to make a method virtual, we mark it with the keyword virtual. Then
the derived class can declare and define a method with the same signature.
Virtual methods as well as abstract methods can be overridden. Abstract methods are actually virtual
methods without a specific implementation. All methods defined in an interface are abstract and
therefore virtual, although this is not explicitly defined
public class Object // zatoa MOZE DA SE MENUVA ToString
public Object();
[…] public virtual bool Equals(object obj);
 […] public static bool Equals(object objA, object objB);
[…] public virtual int GetHashCode();
[…] public Type GetType();
[…] protected object MemberwiseClone();
 […] public virtual string ToString();

A test = new B();
• at compile time: the compiler only knows that the variable test is of the type A. He does not

know that we are actually giving him an instance of B. Therefore the compile-type of test is A.

• at run time: the type of test is known to be B and therefore has the run time type of B

Consider the following code statement:

((A)new B()).Test();
We are creating an instance of B casting it into the type A and invoking the Test() method
on that object. The compiler type is A and the runtime type is B.
When the compiler wants to resolve the .Test() call he has a problem.
Because A.Test() is virtual the compiler can not simply call A.Test because the instance
stored might have overridden the method.
The compile itself can not determine which of the methods to call A.Test() or B.Test(). The
method which is getting invoked is determined by the runtime and not "hardcoded" by the
compiler

https://docs.oracle.com/javase/tutorial/java/IandI/override.html
https://msdn.microsoft.com/en-us/library/aa645767(v=vs.71).aspx

Virtual -the most derievered

but the latest override(of that method (same signature)) is taken into consideration.

abstract method

Clearly, this is not an intelligent design for the current hierarchy. To force each child class to override the
Draw() method, you can define Draw() as an abstract method of the Shape class, which by definition
means you provide no default implementation whatsoever. To mark a method as abstract in C#, you use
the abstract keyword. Notice that abstract members do not provide any implementation whatsoever.
abstract class Shape {
 // Force all child classes to define how to be rendered.
 public abstract void Draw(); ...
}
 ■ Note Abstract methods can be defined only in abstract classes. If you attempt to do otherwise, you
will be issued a compiler error.

Base

:base(some params)

The idea is that the fields of the base class should be initialized before we start initializing fields

of the inheriting class, because they might depend on a base class field.

Static

In C#, unlike VB.NET and Java, you can't access static members with instance syntax.

use of static methods and constants, which do not belong to any particular object.

All objects, created by the description of a given class (that is, instances of a given class), share

the static fields of the class.

This initialization will complete during the first invocation to the static field.

od staticen context moze samo staticni raboti(metod,variabli)

The problem with the access to non-static elements of the class of static method has a single

solution – these non-static elements are accessed by reference to an object

Like static methods, the keyword this cannot be used in the static properties, as the static

property is associated only with the class and does not “recognize” objects of a class.

Static properties can be accessed only through dot notation, applied to the name of the class in

which they are declared.

When a class is declared as static, it is an indication that this class contains only static members

(i.e. static fields, methods, properties) and cannot be instantiated.

Static constructors can be declared both in static and in non-static classes. They are executed

only once when the first of the following two events occurs for the first time:

1. An object of class is created.

2. A static element of the class is accessed (field, method, property).

Most often static constructors are used for initialization of static fields. A static constructor

cannot be called directly and is only meant to be called by the common language runtime (CLR).

It is invoked automatically.The user has no control on when the static constructor is executed in

the program.

A static constructor does not take access modifiers or have parameters.

The static constructor executes before any instance-level constructors

Constructor

If we declare at least one constructor in a given class, the compiler will not create a default

constructor for us.

When we do not declare any constructor in a given class, the compiler will create one, known as

a default implicit constructor.

If a class has private constructors only, then it cannot be inherited

If a class has private constructors only, then this could indicate many other things. For example,

no-one (other than that class itself) can create instances of such a class. Actually, that’s how one

of the most popular design patterns (Singleton) is implemented.

A class that has only private constructors cannot be instantiated. Such class usually has only

static members and is called "utility class"

if we did not specify public the constructor is private and can not be instantiated

Singleton

public class Singleton {

// The single instance private static Singleton instance;

// Initialize the single instance

 static Singleton() { instance = new Singleton(); }

// The property for retrieving the single instance

 public static Singleton Instance { get { return instance; } }

// Private constructor: protects against direct instantiation

private Singleton() { }

}

We have a hidden (private) constructor in order to limit external instantiations. We have a static

variable, which holds the only instance. We initialize it only once in the static constructor of the

class. The property for retrieving the single instance is usually called Instance.

Constatnts

constants always have the same value

the readonly fields are called run-time constants – constants, because their values cannot be

changed after assignment and run-time, Fields, declared as readonly, allow one-time

initialization either in the moment of the declaration or in the class constructors.

const

compile-time constants, because they are replaced with the value during the compilation

process.

They can be accessed without to create an instance (an object) of the class

Although the constants declared with a modifier const are static fields, they must not and

cannot use the static modifier in their declaration.

Constants declared with modifier const must be of primitive, enumeration or reference type, and

if they are of reference type, this type must be either a string or the value, that we assign to the

constant, must be null.

When we want to declare reference type constants, which cannot be calculated during

compilation of the program, we must use a combination of static readonly modifiers, instead of

const modifier.

The compiletime constants (const) must be initialized at the moment of declaration, while the

run-time constants (static readonly) can be initialized at a later stage, for example in one of the

constructors of the class in which they are defined.

readonly mora? static ako treba da bide pristapena od druga klasa

Class

Without specifying public the class is implicitly internal . This means that the class is only

visible inside the same assembly(project). When you specify public , the class is visible outside

the assembly

Just to know, if we want to use a class with access level public from other namespace, different

from the current, we should use the reserved word for including different namespaces using or

every time we should write the full name of the class

class can be:

1. Static class

2. Abstract class

3. Partial class

4. Sealed class

5.private class only nested

It is also possible to apply the static keyword directly on the class level. When a class has been

defined as static, it is not creatable using the new keyword, and it can contain only members or

data fields marked with the static keyword. If this is not the case, you receive compiler errors.

Abstarct class can not be instantiated.

A class that has only private constructors cannot be instantiated((other than that class itself))

When a class is declared as static, it is an indication that this class contains only static members

(i.e. static fields, methods, properties) and cannot be instantiated.

Inner Classe

 Consider an example. Let’s have a class for car – Car. Each car has an engine and doors. Unlike

the car’s door, however, the engine makes no sense regarded as being outside the car, because

without it, the car cannot run, i.e. we have composition

When the connection between the two classes is a composition, the class, which consequently is

a part of another class, is convenient to be declared as inner class. Therefore, if you declare the

class for a car: Car would be appropriate to create an inner class Engine, which will reflect the

appropriate concept for the car engine:

Sealed Class

The string class has no virtual methods. In fact, inheriting string is entirely forbidden for

inheritance through the keyword sealed in its declaration.

public sealed class String //zatoa NE MOZE DA SE NASLEDUVA OD STRING I DA SE MENUVAAT

FUNKCIITE

 […] public String(char* value);

[…] public int IndexOf(string value);

[…] public string Normalize();

[…] public string[] Split(params char[] separator);

 […] public string Substring(int startIndex);

[…] public string ToLower(CultureInfo culture);

Partial Class

we created a partial class called User in User1.cs class we created a partial class called User in

User2.cs class.When you execute the above code, the compiler will combine these two partial

classes into one User class the compiler will combine all the partial classes into single class while

executingthe application in c# programming langauge.

Utility Class

a class (or structure) that exposes only static functionality is often termed a utility class.

When designing a utility class, it is good practice to apply the static keyword to the class

definition.

Abstract Class

Each class with at least one abstract method must be abstract. Makes sense, right? However, the

opposite is not true. It is possible to define a class as an abstract one, even when there are no

abstract methods in it.

it is perfectly fine (and common) for abstract classes to define any number of constructors

that are called indirectly when derived classes are allocated.

Namespaces

the namespaces in C# are named group of classes

String

to change the value, it will be saved to a new location in the dynamic memory and the variable

will point to it.Access to the character of a certain position in a string is done with the operator []

(indexer), but it is allowed only to read characters (and not to write to them)

The change of either variable will affect only itself because of the immutability of the type string,

as when a change occurs, a copy of the changed string will be created. This is not true for the

rest of the reference types (the normal, mutable types) because with them the changes are

made directly in the address in memory and all references point to this changed address

Memory Optimization for Strings (Interning)
When not initializing the strings with literals, no interning is used. However, if we want to use interning
specifically, we can make it through the use of the method Intern(…):

Override
It is used to modify a virtual or abstract method

Exception

Exceptions in .NET are two types – system and application. System exceptions are defined in

.NET libraries and are used by the framework, while application exceptions are defined by

application developers and are used by the application software. When we, as developers,

design our own exception classes, it is a good practice to inherit from ApplicationException and

not directly from SystemException (or even worse – directly from Exception). SystemException

should only be inherited internally within the .NET Framework.

Stack and Heap
Stack is used for static memory allocation and Heap for dynamic memory allocation, both
stored in the computer's RAM . Variables allocated on the stack are stored directly to
the memory and access to this memory is very fast, and it's allocation is dealt with when the
program is compiled

ArrayList

Represents a dynamically sized collection of objects listed in sequential order

 is Non-Generic

It is an Object Type, so you can store any data type into it.

Boxing and Unboxing will happen.

array list i list imaat kapacitet 4 koga ke se stavi barem edno

koga ke se napravi insert vo arraylist se pretvara vo object

vo C# moze primitivni tipovi da se cuvaat vo List i vo ArrayList i vo staticarray

List

list e genericka

array list i list imaat kapacitet 4 koga ke se stavi barem edno

vo C# moze primitivni tipovi da se cuvaat vo List i vo ArrayList i vo staticarray

The Remove method always removes the first instance it encounters.

true if item is successfully removed; otherwise, false. This method also returns false if item was

not found in the List<T>.

The value can be null for reference types.

If type T implements the IEquatable<T> generic interface, the equality comparer is

the Equals method of that interface; otherwise, the default equality comparer is Object.Equals.

This method performs a linear search; therefore, this method is an O(n) operation,

where n is Count.

Except

The set difference of two sets is defined as the members of the first set that don't appear in the

second set.

This method returns those elements in first that don't appear in second. It doesn't return those

elements in second that don't appear in first. Only unique elements are returned.

double[] numbers1 = { 2.0, 2.0, 2.1, 2.2, 2.3, 2.3, 2.4, 2.5 };

double[] numbers2 = { 2.2 };

IEnumerable<double> onlyInFirstSet = numbers1.Except(numbers2);

foreach (double number in onlyInFirstSet)

 Console.WriteLine(number);

/*

 This code produces the following output:

 2

 2.1

 2.3

 2.4

 2.5

*/

If you want to compare sequences of objects of some custom data type, you have to implement

the IEquatable<T> generic interface in a helper class. The following code example shows how to

implement this interface in a custom data type and override GetHashCode and Equals methods.

public class ProductA: IEquatable<ProductA>

{

 public string Name { get; set; }

 public int Code { get; set; }

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1.remove?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.iequatable-1?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.iequatable-1.equals?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.object.equals?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1.count?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.iequatable-1?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.object.gethashcode?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.object.equals?view=netcore-3.1

 public bool Equals(ProductA other)

 {

 if (other is null)

 return false;

 return this.Name == other.Name && this.Code == other.Code;

 }

 public override bool Equals(object obj) => Equals(obj as ProductA);//go koristi Equals gore

 public override int GetHashCode() => (Name, Code).GetHashCode();//mislam ne mora

GetHashCode

}

Task

A Task can be seen as a convenient and easy way to execute something asynchronously and in

parallel. In other programming languages and frameworks this may be known as a promise -

"I promise will return to you at some point". A task will by default use the Threadpool, which

saves resources as creating threads can be expensive. A threadpool is.. a pool of threads, which

are ready to carry out instructions (if they are no occupied of course). You can see a Task as a

higher level abstraction upon threads. Which could be a reason why they are under the

System.Threading namespace.

Inheretance properties

In addition to Yacoub's answer, in this case, Enemy would not contain the properties, and methods

that Ogre has.

public class Enemy

{

 public int Property1 { get; set; }

 public int Property2 { get; set; }

}

public class Ogre : Enemy

{

 public int Property3 { get; set; }

}

Let's say you inherit Enemy in your Ogre class. This mean that your Ogre will effectively contain 3

properties: 1,2 and 3.

In your example you're assigning an Ogre to an Enemy type. The Enemy type doesn't contain a

"Property3" and therefor you won't be able to work with the extended class "Ogre" in an Enemy cast

object.

//This will work

Ogre newOgre = new Ogre();

int newInt = newOgre.Property3;

//This wont.

Enemy newOgre = new Ogre();

int newInt = newOgre.Property3;

LINQ

LINQ comes in two syntactical flavors: The Query and the Method syntax. They can do almost

the same, but while the query syntax is almost a new language within C#, the method syntax

looks just like regular C# method calls.

In LINQ, Method Syntax is used to call the extension methods of the Enumerable or Queryable

static classes. It is also known as Method Extension Syntax or Fluent. However, the compiler

always converts the query syntax in method syntax at compile time

LINQ can interact with any type implementing the IEnumerable interface, including simple arrays as well

as generic and nongeneric collections of data.

Later Execution

Another important point regarding LINQ query expressions is that they are not actually evaluated until

you iterate over the sequence. Formally speaking, this is termed deferred execution

Immediate Execution

When you need to evaluate a LINQ expression from outside the confines of foreach logic, you are able to

call any number of extension methods defined by the Enumerable type such as ToArray(), ToDictionary(),

and ToList(). These methods will cause a LINQ query to execute at the exact moment you call them to

obtain a snapshot of the data.

Recall that the query operators of LINQ are designed to work with any type implementing IEnumerable

(either directly or via extension methods)

Thankfully, it is still possible to iterate over data contained within nongeneric collections using the

generic Enumerable.OfType() extension method.

When calling OfType() from a nongeneric collection object (such as the ArrayList), simply specify the

type of item within the container to extract a compatible IEnumerable object

// Here is a nongeneric collection of cars.

 ArrayList myCars = new ArrayList() {

 new Car{ PetName = "Henry", Color = "Silver", Speed = 100, Make = "BMW"},

 new Car{ PetName = "Daisy", Color = "Tan", Speed = 90, Make = "BMW"},

 new Car{ PetName = "Mary", Color = "Black", Speed = 55, Make = "VW"},

 new Car{ PetName = "Clunker", Color = "Rust", Speed = 5, Make = "Yugo"},

 new Car{ PetName = "Melvin", Color = "White", Speed = 43, Make = "Ford"}

 };

 // Transform ArrayList into an IEnumerable<T>-compatible type.

 var myCarsEnum = myCars.OfType<Car>();

 // Create a query expression targeting the compatible type.

 var fastCars = from c in myCarsEnum where c.Speed > 55 select c;

As you know, nongeneric types are capable of containing any combination of items, as the members of
these containers (again, such as the ArrayList) are prototyped to receive System.Objects. For example,
assume an ArrayList contains a variety of items, only a subset of which are numerical. If you want to
obtain a subset that contains only numerical data, you can do so using OfType() since it filters out each
element whose type is different from the given type during the iterations

// Extract the ints from the ArrayList.

 ArrayList myStuff = new ArrayList();

 myStuff.AddRange(new object[] { 10, 400, 8, false, new Car(), "string data" });

 var myInts = myStuff.OfType<int>();

 // Prints out 10, 400, and 8.

 foreach (int i in myInts)

 {

 Console.WriteLine("Int value: {0}", i);

 }

String

•Literal string: Characters enclosed in double-quote characters. They can use escape characters like \t

for tab.

• Verbatim string: A literal string prefixed with @ to disable escape characters so that a backslash is a

backslash.

 • Interpolated string: A literal string prefixed with $ to enable embedded formatted variables. You will

learn more about this later in this chapter.

Data Types

value types and reference types.

 C# provides a simple mechanism, termed boxing, to store the data in a value type within a reference

variable

static void SimpleBoxUnboxOperation() {

// Make a ValueType (int) variable.

int myInt = 25;

// Box the int into an object reference.

 object boxedInt = myInt;

}

The opposite operation is also permitted through unboxing. Unboxing is the process of converting the

value held in the object reference back into a corresponding value type on the stack

static void SimpleBoxUnboxOperation()

{

 // Make a ValueType (int) variable.

 int myInt = 25;

 // Box the int into an object reference.

 object boxedInt = myInt;

 // Unbox the reference back into a corresponding int.

 int unboxedInt = (int)boxedInt;

}

Extension Methods

When you define extension methods, the first restriction is that they must be defined within a static

class therefore, each extension method must be declared with the static keyword. The second point is

that all extension methods are marked as such by using the this keyword as a modifier on the first (and

only the first) parameter of the method in question. The “this qualified” parameter represents the item

being extended.

Given that DisplayDefiningAssembly() has been prototyped to extend System.Object, every type now

has this new member, as Object is the parent to all types in the .NET Core platform. However,

ReverseDigits() has been prototyped to extend only integer types; therefore, if anything other than an

integer attempts to invoke this method, you will receive a compile-time error.

public static int ReverseDigits(this int i)

public static void DisplayDefiningAssembly(this object obj)

Delegate

using System;

delegate int NumberChanger(int n);

namespace DelegateAppl {

 class TestDelegate {

 static int num = 10;

 public static int AddNum(int p) {

 num += p;

 return num;

 }

 public static int MultNum(int q) {

 num *= q;

 return num;

 }

 public static int getNum() {

 return num;

 }

 static void Main(string[] args) {

 //create delegate instances

 NumberChanger nc1 = new NumberChanger(AddNum);

 NumberChanger nc2 = new NumberChanger(MultNum);

 //calling the methods using the delegate objects

 nc1(25);

 Console.WriteLine("Value of Num: {0}", getNum());

 nc2(5);

 Console.WriteLine("Value of Num: {0}", getNum());

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result −

Value of Num: 35

Value of Num: 175

Hello must be of type void

The difference between Func and Action is simply whether you want the delegate to return a
value (use Func) or not (use Action).

Func is probably most commonly used in LINQ - for example in projections:

 list.Select(x => x.SomeProperty)

Action is more commonly used for things like List<T>.ForEach: execute the given action for
each item in the list. I use this less often than Func, although I do sometimes use the
parameterless version for things like Control.BeginInvoke and Dispatcher.BeginInvoke.

Predicate is just a special cased Func<T, bool> really, introduced before all of the Func and
most of the Action delegates came along. I suspect that if we'd already
had Func and Action in their various guises, Predicate wouldn't have been introduced...

although it does impart a certain meaning to the use of the delegate,
whereas Func and Action are used for widely disparate purposes.

Predicate is mostly used in List<T> for methods like FindAll and RemoveAll.

Anonymous Types

Anonymous Method

 Lambda

=> is the C# lambda operator

a lambda expression is little more than an anonymous method

A lambda expression is written by first defining a parameter list, followed by the => token (C#’s token for

the lambda operator found in the lambda calculus), followed by a set of statements (or a single

statement) that will process these arguments. From a high level, a lambda expression can be understood

as follows:

 ArgumentsToProcess => StatementsToProcessThem

Within the LambdaExpressionSyntax() method, things break down like so:

List evenNumbers = list.FindAll(i => (i % 2) == 0);

 // "i" is our parameter list.

// "(i % 2) == 0" is our statement set to process "i".

The parameters of a lambda expression can be explicitly or implicitly typed. Currently, the underlying

data type representing the i parameter (an integer) is determined implicitly. The compiler is able to

figure out that i is an integer based on the context of the overall lambda expression and the underlying

delegate. However, it is also possible to explicitly define the type of each parameter in the expression by

wrapping the data type and variable name in a pair of parentheses, as follows:

// Now, explicitly state the parameter type.

 List evenNumbers = list.FindAll((int i) => (i % 2) == 0);

As you have seen, if a lambda expression has a single, implicitly typed parameter, the parentheses may

be omitted from the parameter list. If you want to be consistent regarding your use of lambda

parameters, you can always wrap the parameter list within parentheses, leaving you with this

expression: List evenNumbers = list.FindAll((i) => (i % 2) == 0);

Finally, notice that currently the expression has not been wrapped in parentheses (you have of course

wrapped the modulo statement to ensure it is executed first before the test for equality). Lambda

expressions(meaning the body) do allow for the statement to be wrapped as follows:

 // Now, wrap the expression as well.

List evenNumbers = list.FindAll((i) => ((i % 2) == 0));

The first lambda expression was a single statement that ultimately evaluated to a Boolean. However, as

you know, many delegate targets must perform a number of code statements. For this reason, C# allows

you to build lambda expressions using multiple statement blocks. When your expression must process

the parameters using multiple lines of code, you can do so by denoting a scope for these statements

using the expected curly brackets. Consider the following example update to the

LambdaExpressionSyntax() method:

// Now process each argument within a group of

 // code statements.

 List<int> evenNumbers = list.FindAll((i) =>

 {

 Console.WriteLine("value of i is currently: {0}", i);

 bool isEven = ((i % 2) == 0);

 return isEven;

 });

The lambda expressions you have seen in this chapter so far processed a single parameter. This is not a
requirement, however, as a lambda expression may process multiple arguments (or none). To illustrate
the first scenario of multiple arguments, add the following incarnation of the SimpleMath type:

Finally, if you are using a lambda expression to interact with a delegate taking no parameters at all, you
may do so by supplying a pair of empty parentheses as the parameter. Thus, assuming you have defined
the following delegate type: public delegate string VerySimpleDelegate();

VerySimpleDelegate d = new VerySimpleDelegate(() => {return "Enjoy your string!";});
Using the new expression syntax, the previous line can be written like this:

VerySimpleDelegate d2 = new VerySimpleDelegate(() => "Enjoy your string!");

which can also be shortened to VerySimpleDelegate d3 = () => "Enjoy your string!";

as of C# 6, it is permissible to use the => operator to simplify member implementations. Specifically, if

you have a method or property

that consists of exactly a single line of code in the implementation, you are not required to define a

scope via curly bracket. You can instead leverage the lambda operator and write an expression-bodied

member

In C# 7, you can also use this syntax for class constructors, finalizers, and get and set accessors on

property members. Be aware, however, this new shortened syntax can be used anywhere at all, even

when your code has nothing to do with delegates or events. So, for example, if you were to build a trivial

class to add two numbers, you might write the following:

class SimpleMath

{

 public int Add(int x, int y)

 {

 return x + y;

 }

 public void PrintSum(int x, int y)

 {

 Console.WriteLine(x + y);

 }

}

Alternatively, you could now write code like the following:

class SimpleMath

{

 public int Add(int x, int y) => x + y;

 public void PrintSum(int x, int y) => Console.WriteLine(x + y);

}

It is worth pointing out that the LINQ programming model also makes substantial use of lambda

expressions to help simplify your coding efforts

Given that the whole reason for lambda expressions is to provide a clean, concise manner

to define an anonymous method (and therefore indirectly a manner to simplify working

with delegates)

Delegate VS Aanonymous Method Vs Lambda Expressions

that lambda expressions can be used anywhere you would have used an anonymous method or a

strongly typed delegate (typically with far fewer keystrokes)

anonimnen metod moze da zameni delegat

lamnda moze da zameni anonimed metod

To begin, consider the FindAll() method of the generic List class. This method can be called when you

need to extract a subset of items from the collection and is prototyped like so:

 // Method of the System.Collections.Generic.List<T>

 class.public List<T> FindAll(Predicate match)

As you can see, this method returns a new List that represents the subset of data. Also notice that the sole

parameter to FindAll() is a generic delegate of type System.Predicate. This delegate type can point to any

method returning a bool and takes a single type parameter as the only input parameter.

// This delegate is used by FindAll() method to extract out the subset.

public delegate bool Predicate(T obj);

When you call FindAll(), each item in the List is passed to the method pointed to by the Predicate object.

The implementation of said method will perform some calculations to see whether the incoming data

matches the necessary criteria and will return true or false. If this method returns true, the item will be

added to the new List that represents the subset (got all that?).

 Before you see how lambda expressions can simplify working with FindAll(), let’s work the problem out in

longhand notation, using the delegate objects directly. Add a method (named

TraditionalDelegateSyntax()) within your Program type that interacts with the System.Predicate type to

discover the even numbers in a List of integers.

using System;

using System.Collections.Generic;

class Program

{

 static void Main(string[] args)

 {

 Console.WriteLine("***** Fun with Lambdas *****\n");

 TraditionalDelegateSyntax();

 Console.ReadLine();

 }

 static void TraditionalDelegateSyntax()

 {

 // Make a list of integers.

 List<int> list = new List<int>();

 list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

// Call FindAll() using traditional delegate syntax.

 Predicate<int> callback = IsEvenNumber;

 List<int> evenNumbers = list.FindAll(callback);

 Console.WriteLine("Here are your even numbers:");

 foreach (int evenNumber in evenNumbers)

 {

 Console.Write("{0}\t", evenNumber);

 }

 Console.WriteLine();

 }

 // Target for the Predicate<> delegate.

 static bool IsEvenNumber(int i)

 {

 // Is it an even number?

 return (i % 2) == 0;

 }

}

Here, you have a method (IsEvenNumber()) that is in charge of testing the incoming integer parameter to

see whether it is even or odd via the C# modulo operator, %. If you execute your application, you will find

the numbers 20, 4, 8, and 44 print to the console. While this traditional approach to working with

delegates behaves as expected, the IsEvenNumber() method is invoked only in limited circumstances –

specifically when you call FindAll(), which leaves you with the baggage of a full method definition. While

you could make this a local function, if you were to instead use an anonymous method, your code would

clean up considerably. Consider the following new method of the Program class:

static void AnonymousMethodSyntax()

{

 // Make a list of integers.

 List<int> list = new List<int>();

 list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

 // Now, use an anonymous method.

 List<int> evenNumbers =

 list.FindAll(delegate(int i) { return (i % 2) == 0; });

 Console.WriteLine("Here are your even numbers:");

 foreach (int evenNumber in evenNumbers)

 {

 Console.Write("{0}\t", evenNumber);

 }

 Console.WriteLine();

}

In this case, rather than directly creating a Predicate delegate object and then authoring a standalone

method, you are able to inline a method anonymously. While this is a step in the right direction, you are

still required to use the delegate keyword (or a strongly typed Predicate), and you must ensure that the

parameter list is a dead-on match.

Lambda expressions can be used to simplify the call to FindAll() even more. When you use lambda

syntax, there is no trace of the underlying delegate object whatsoever. Consider the following new

method to the Program class:

static void LambdaExpressionSyntax()

{

 // Make a list of integers.

 List<int> list = new List<int>();

 list.AddRange(new int[] { 20, 1, 4, 8, 9, 44 });

 // Now, use a C# lambda expression.

 List<int> evenNumbers = list.FindAll(i => (i % 2) == 0);

 Console.WriteLine("Here are your even numbers:");

 foreach (int evenNumber in evenNumbers)

 {

 Console.Write("{0}\t", evenNumber);

 }

 Console.WriteLine();

}

In this case, notice the rather strange statement of code passed into the FindAll() method, which is in

fact a lambda expression. In this iteration of the example, there is no trace whatsoever of the Predicate

delegate (or the delegate keyword, for that matter). All you have specified is the lambda expression.

i => (i % 2) == 0

 Before I break this syntax down, first understand that lambda expressions can be used anywhere you

would have used an anonymous method or a strongly typed delegate (typically with far fewer

keystrokes). Under the hood, the C# compiler translates the expression into a standard anonymous

method making use of the Predicate delegate type (which can be verified using ildasm.exe or

reflector.exe). Specifically, the following code statement:

// This lambda expression...

List<int> evenNumbers = list.FindAll(i => (i % 2) == 0);

is compiled into the following approximate C# code:

// ...becomes this anonymous method.

List<int> evenNumbers = list.FindAll(delegate (int i)

{

 return (i % 2) == 0;

});

Base vs This

Use base when there is inheritance, and a parent class already provides the functionality that

you're trying to achieve.

Use this when you want to reference the current entity (or self), use it in the constructor's

header/signature when you don't want to duplicate functionality that is already defined in

another constructor.

Basically, using base and this in a constructor's header is to keep your code DRY,

making it more maintainable and less verbose

Here's an absolutely meaningless example, but I think it illustrates the idea of showing how

the two can be used.

class Person

{

 public Person(string name)

 {

 Debug.WriteLine("My name is " + name);

 }

}

class Employee : Person

{

 public Employee(string name, string job)

 : base(name)

 {

 Debug.WriteLine("I " + job + " for money.");

 }

 public Employee() : this("Jeff", "write code")

 {

 Debug.WriteLine("I like cake.");

 }

}

Usage:

var foo = new Person("ANaimi");

// output:

// My name is ANaimi

var bar = new Employee("ANaimi", "cook food");

// output:

// My name is ANaimi

// I cook food for money.

var baz = new Employee();

http://en.wikipedia.org/wiki/Don't_repeat_yourself

// output:

// My name is Jeff

// I write code for money.

// I like cake.

FirstOrDefault returns a first item of potentially multiple (or default if none

exists). SingleOrDefault assumes that there is a single item and returns it (or default if none

exists). Multiple items are a violation of contract, an exception is thrown

First()

• Returns first element of a sequence.

• It throw an error when There is no element in the result or source is null.

• you should use it,If more than one element is expected and you want
only first element.

.First will throw an exception when there are no results. .FirstOrDefault won't, it will

simply return either null (reference types) or the default value of the value type. (e.g

like 0 for an int.) The question here is not when you want the default type, but more: Are you

willing to handle an exception or handle a default value? Since exceptions should be

exceptional, FirstOrDefault is preferred when you're not sure if you're going to get results

out of your query. When logically the data should be there, exception handling can be

considered.

I would use First() when I know or expect the sequence to have at least one element. In
other words, when it is an exceptional occurrence that the sequence is empty.

Use FirstOrDefault() when you know that you will need to check whether there was an
element or not. In other words, when it is legal for the sequence to be empty. You should
not rely on exception handling for the check. (It is bad practice and might hurt performance).

Single<TSource>(IEnumerable<TSource>)

Returns the only element of a sequence, and throws an exception if there is not exactly

one element in the sequence.

The Single<TSource>(IEnumerable<TSource>) method throws an exception if the input

sequence is empty. To instead return null when the input sequence is empty,

use SingleOrDefault.

https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.single?view=net-5.0#System_Linq_Enumerable_Single__1_System_Collections_Generic_IEnumerable___0__
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable.singleordefault?view=net-5.0

	Explicit Implementation
	An interface can be implemented explicitly using <InterfaceName>.<MemberName>. Explicit implementation is useful when class is implementing multiple interfaces; thereby, it is more readable and eliminates the confusion. It is also useful if interfaces...
	Implementing Multiple Interfaces
	Delegate
	Single<TSource>(IEnumerable<TSource>)

