
Felipe Gavilán

Software Engineering

APRIL 14, 2019
GAVILANCH

Entity Framework Core: Foreign key linked with a
non-primary key

How can we establish a one-to-one relationship between two models, if we do not want to use the
primary key to link the foreign key?

That is, suppose we have the following models:

We want to establish the one-to-one relationship between them, however, we want the foreign key of
Route “MenuCode” to be linked to the “MenuCode” field of the Menu class.

If we try to do the following using the Fluent API in the data context:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

public class Menu
{
  [Key]
  public int Id { get; set; }
  public string MenuCode { get; set; }
  public Route Route { get; set; }
}
 
public class Route
{
  [Key]
  public int Id { get; set; }
  public string MenuCode { get; set; }
  public string Name { get; set; }
  public Menu Menu { get; set; }
}

https://gavilan.blog/
https://gavilan.blog/
https://gavilan.blog/2019/04/14/entity-framework-core-foreign-key-linked-with-a-non-primary-key/
https://gavilan.blog/2019/04/14/entity-framework-core-foreign-key-linked-with-a-non-primary-key/
https://gavilan.blog/2019/04/14/entity-framework-core-foreign-key-linked-with-a-non-primary-key/
https://gavilan.blog/author/gavilanch/


We’ll get the following error:

The relationship from ‘Menu.Route’ to ‘Route.Menu’ with foreign key properties {‘MenuCode’ : string} cannot
target the primary key {‘Id’ : int} because it is not compatible. Configure a principal key or a set of compatible
foreign key properties for this relationship.

This error occurs because you are trying to link MenuCode of the class Route with Id of the class Menu.
The problem is that MenuCode is a string and Id is an integer, therefore, they are not compatible. What
we want is to link MenuCode of Route with MenuCode of Menu.

The solution is to configure the PrincipalKey. The PrincipalKey will allow us to define the reference key
with a unique restriction which will be the destination of the relationship. That is to say, with the
PrincipalKey we can say that we want to link our foreign key MenuCode of the class Route, with the
field MenuCode of the class Menu.

We emphasize that the reference column of the other table must have unique values, that is, it must have
a unique constraint. The unique constraint means that values cannot be repeated in different entries in a
column. Once we configure a field as PrincipalKey, the unique constraint will automatically be applied.

We can configure the PrincipalKey in the following manner:

Now with this, we are marking MenuCode of the Menu class as the principal key, which means that it
will be the destiny of the one-to-one relationship, in other words, the link will be made between the
Route’s MenuCode and the Menu’s MenuCode. From here we can add our migrations and proceed with
the development of our application.

Summary

With Entity Framework Core we can define relationships between our models
We can use HasPrincipalKey to define with which field we want to link our foreign key

1
2
3
4

modelBuilder.Entity<Menu>()
.HasOne(x => x.Route)
.WithOne(x => x.Menu)
.HasForeignKey<Route>(x => x.MenuCode);

1
2
3
4
5

modelBuilder.Entity<Menu>()
.HasOne(x => x.Route)
.WithOne(x => x.Menu)
.HasPrincipalKey<Menu>(x => x.MenuCode)
.HasForeignKey<Route>(x => x.MenuCode);


