
[S] The Single Responsibility Principle

(SRP) is the first principle of the SOLID design principles. It states that a class should
have one and only one reason to change, meaning that a class should have only one
job.

Each class, method, or function should serve a single, well-defined purpose, with all
elements within it supporting that purpose.

A class that has multiple responsibilities is often referred to as a "Blob class" and can be
difficult to understand, modify and test.

An example of a bad practice that violates the SRP is a class that is responsible for both
calculating and printing the results of a calculation.

In this example, the Calculator class is responsible for both the calculation of the sum and
the printing of the results.

 This violates the SRP because the class has two reasons to change: if the calculation
needs to be changed, or if the way the results are printed needs to be changed.

A better practice would be to separate the responsibilities of the class into two different
classes, one for calculation and one for printing.

SRP good practice

In this example, the Calculator class is responsible only for the calculation of the sum, and
the Printer class is responsible only for printing the results. This adheres to the SRP
because each class has only one reason to change, making the code more maintainable.

[O] The Open-Closed Principle

(OCP) is the second principle of the SOLID design principles It suggests that classes
should be open for extension and closed to modification.

Meaning that a class should be designed in such a way that new behavior can be added
through inheritance or composition, but existing behavior should not be modified.
Sometimes, we need to add certain functions to the existing class to perform additional
tasks. So according to the Open-Closed Principle We should add new functionality without
touching the existing code for the class. This is because whenever we modify the existing
code, we risk creating potential bugs. So we should avoid touching the tested and reliable
(mostly) production code if possible. In simple words, this principle aims to extend a
Class’s behavior without changing the existing behavior of that Class.

Suppose we have a Rectangle class with the properties Height and Width.

Our app needs to calculate the total area of a collection of Rectangles. Since we already
learned the Single Responsibility Principle (SRP), we don't need to put the total area
calculation code inside the rectangle. So here, I created another class for area calculation.

Hey, we did it. We made
our app without violating
SRP. No issues for now. But
can we extend our app so
that it can calculate the
area of not only
Rectangles but also the
area of Circles? Now we
have an issue with the area
calculation issue because
the way to calculate the
circle area is different.

Hmm. Not a big deal. We can change the TotalArea method to accept an array of objects as
an argument. We check the object type in the loop and do area calculations based on the
object type.

We are done with the change. Here we successfully introduced Circle into our app. We can
add a Triangle and calculate its area by adding one more "if" block in the TotalArea method
of AreaCalculator. But every time we introduce a new shape, we must alter the TotalArea
method. So the AreaCalculator class is not closed for modification. How can we make our
design to avoid this situation?

Generally, we can do this by referring to abstractions for dependencies, such as interfaces
or abstract classes,
rather than using
concrete classes. Such
interfaces can be fixed
once developed so the
classes that depend
upon them can rely
upon unchanging
abstractions.
Functionality can be
added by creating new
classes that implement
the interfaces. So let's
refract our code using
an interface.

Inheriting from Shape,
the Rectangle and Circle
classes now look like
this:

Every shape contains its
area with its way of
calculation
functionality, and our
AreaCalculator class
will become simpler
than before

Now our code is
following SRP and OCP

both. Whenever you introduce a new shape by deriving from the "Shape" abstract class,
you need not change the "AreaCalculator" class.

[L] The Liskov Substitution Principle

(LSP) is the third principle of the SOLID design principles. It states that subtypes should be
substitutable for their base types, meaning that objects of a superclass should be able to
be replaced with objects of a subclass without altering the correctness of the program. This
principle helps to ensure that objects of a subclass can be used interchangeably with
objects of the superclass, without introducing any unexpected behavior.

An example of a bad practice that violates the LSP is a class hierarchy where a subclass
overrides a method in a way that changes the method's contract.

Let us first understand one example without using the Liskov Substitution Principle in C#.
We will see the problem if we are not following the Liskov Substitution Principle, and then
we will see how we can overcome such problems using the Liskov Substitution Principle. In
the following example, first, we create the Apple class with the method GetColor. Then, we
create the Orange class, which inherits the Apple class and overrides the GetColor method
of the Apple class. The point is that an Orange cannot be replaced by an Apple, which
results in printing the color of the apple as Orange, as shown in the example below.

As you can see in the above example, Apple is the base class, and Orange is the child class,
i.e., there is a Parent-Child relationship. So, we can store the child class object in the
Parent class Reference variable, i.e., Apple apple = new Orange(); and when we call the
GetColor, i.e., apple.GetColor(), then we are getting the color Orange, not the color of an
Apple. That means the behavior changes once the child object is replaced, i.e., Apple
stores the Orange object. This is against the LSP Principle.

The Liskov Substitution Principle states that even if the child object is replaced with the
parent, the behavior should not be changed. So, in this case, if we are getting the color
Apple instead of Orange, it follows the Liskov Substitution Principle. That means there is
some issue with our software design. Let us see how to overcome the design issue and
make the application follow the Liskov Substitution Principle using C# Langauge.

Example Using the Liskov Substitution Principle in C#

Let’s modify the previous example to follow the Liskov Substitution Principle using C#
Language. First, we need a generic base Interface, i.e., IFruit, which will be the base class

for both Apple and Orange. Now, you can replace the IFruit variable can be replaced with its
subtypes, either Apple or Orage, and it will behave correctly. In the code below, we created
the super IFruit as an interface with the GetColor method. Then, the Apple and Orange
classes were inherited from the Fruit class and implemented the GetColor method.

Now, run the application, and it should give the expected output, as shown in the image
below. Here, we follow the LSP as we can change the object with its subtype without
affecting the behavior.

So, now Fruit can be any type and any color, but orange cannot be the color red. An apple
cannot be of the color orange, meaning we cannot replace an orange with an apple, but
fruit can be replaced with an orange or an apple because they are both Fruits; an apple is
not an orange, and an orange is not an apple.

[I] The Interface Segregation Principle

(ISP) is the fourth principle of the SOLID design principles. It states that a class should not
be forced to implement interfaces it does not use, meaning that a class should not be
forced to implement methods it does not need. This principle encourages creating small,
specific interfaces that are tailored to the needs of specific classes, rather than creating
large, general interfaces that require classes to implement many methods they do not
need.

An example of a bad practice that violates the ISP is a class that implements a large,
general interface that contains many methods that the class does not need.

Let’s consider an example to illustrate the ISP in C#. Suppose we have an IWorker interface
that defines methods for various types of work, such as Work, Eat, and Sleep.

Now, imagine we have two classes, HumanWorker and RobotWorker, that implement this
interface:

In this example, the IWorker interface violates the ISP, as it forces the RobotWorker class to
implement the Eat and Sleep methods, which are irrelevant for robots. To adhere to the ISP,
we can break down the IWorker interface into smaller, more specific interfaces:

Now, the HumanWorker class can implement all three interfaces, while
the RobotWorker class only needs to implement the IWorkable interface:

By segregating the interfaces, we have ensured that clients only implement the methods
they actually need, adhering to the ISP.

[D] The Dependency Inversion Principle

(DIP) is the fifth principle of the SOLID design principles. It states that high-level modules
should not depend on low-level modules, but both should depend on abstractions,
meaning that a class should depend on abstractions rather than concretions. This principle
promotes a design where the high-level modules (such as the business logic) are not tightly
coupled to the low-level modules (such as the data access layer), making the code more
flexible and maintainable.

An example of a bad practice that violates the DIP is a class that depends on a specific
implementation of a low-level module.

Dip bad practice

In this example, the Order class depends on a specific implementation of a low-level
module, the MySQLDatabase class. This violates the DIP principle because the Order
class is tightly coupled to the specific implementation of the MySQLDatabase class. If we
want to change the database to PostgreSQL or any other database, we need to change the
Order class as well.

A better practice would be to create an abstraction for the low-level module and have the
high-level module depend on the abstraction.

Dip good practice

In this example, the Order class depends on an abstraction, the Database interface, rather
than a specific implementation of a low-level module. This adheres to the DIP principle,
making the code more flexible and maintainable. Now we can change the database to any
other database by just creating a new implementation of the Database interface and
injecting it into the Order class.

