
What is Serilog?
Serilog is a third-party logging library that plugs into the default ILogger of our application with

its own implementations. It enables the developers to log the events into various destinations

like console, file, database, and more. Now, if you are already using a database in your ASP.NET

Core Application, logging events to a database can be a good option. Serilog supports

structured logging, which allows more details and information about the event to be logged.

With structured logging in place, you could use these logs to debug in a very logical way.

Setting up the ASP.NET Core 3.1 Project
For this demonstration, let’s implement Serilog on an ASP.NET Core 3.1 WebApplication (Razor

Pages). Since our focus is on logging and understanding various related concepts, we will keep

the project setup simple and straight-forward. I will be using Visual Studio 2019 Community as

my IDE.

Logging with the Default Logger
As I had mentioned earlier, ASP.NET Core applications ship with a default built-in logging

system which includes some basic logging functions. To understand logging, let’s see how the

basic logger works. Once you have created your WebApplication solution, navigate to Pages /

Index.cshtml / Index.cshtml.cs. You can see the contractor injection of the ILogger interface.

This is the default logger from Microsoft.

In the OnGet method of the IndexModel, let’s add a way to demonstrate loggin and also use the

try-catch block . Here I will throw a Dummy Exception so that we can understand logging better.

Also note that we will not be changing anything on the class further in this demonstration.

public void OnGet()

{

_logger.LogInformation("Requested the Index Page");

int count;

try

{

for(count = 0;count<=5;count++)

{

if(count==3)

{

https://serilog.net/
https://serilog.net/
https://serilog.net/
https://www.codewithmukesh.com/blog/install-visual-studio-2019-community/

throw new Exception("RandomException");

}

}

}

catch (Exception ex)

{

_logger.LogError(ex,"Exception Caught");

}

}

}

The OnGet method is fired every time you request for the Index Page (Home Page). So, as the

code suggests, I am logging a message that says “Requested the Index Page” every time you

request for this page. After that it runs a loop 5 times, and if the iteration count is 3, it throws a

dummy exception “RandomException” which in turn gets caught in the catch block. This is

logged as an error. This way, we have a function that mimics a practical production level

function.

Before testing the logging, let’s switch to the Kestrel web server from IIS Express on Visual

Studio.

What is Kestrel Webserver?

Kestrel is an open-source web server that ships by default with ASP.NET Core applications. We

specifically need the Kestrel server for this demonstration because it opens up a console that

contains all the logged events.

How to switch to Kestrel Webserver?

By default, you might have IIS Express as the selected server. You can switch to Kestrel Web

Server by hitting the dropdown icon beside the IIS Express and choose the option with your

application name. In our case, it is Serilog.WebAppliction. I will choose it and run the application

using Control + F5 (I am starting the application without debugging to save some time here).

When you run your application, a

console, you see certain logs from

and Exceptions (I have highlighted

page on your web browser, you

the default logging provided with

Log Levels
I also wanted you to know about

logging. When we wrote ‘_logger

a console opens up along with your web application.

from the application. In the end, we see our custom

highlighted our concerned messages with yellow). Try to

 will see another set of similar messages on the

with your application.

about the various Logging Levels. This is the fundamental

‘_logger.LogInformation(“Requested the Index Page”);’,

application. In this

custom Log Messages

to refresh the

 console. This is

fundamental concept of

 we mentioned

to the application that this is a log with the log-level set to Information. Log levels make sense

because it allows you to define the type of log. Is it a critical log ? just a debug message? a

warning message?

There are 7 log-levels included :

 Trace – Detailed messages with sensitive app data.

 Debug – Useful for the development environment.

 Information – General messages, like the way we mentioned earlier.

 Warning – For unexpected events.

 Error – For exceptions and errors.

 Critical – For failures that may need immediate attention.

Note that Serilog may or may not have the same names for each level, but you get the

idea, right? You can read more about log levels here.

Default Log Settings
The default settings for our logger is mentioned in appsettings.json. These settings allows you

to define on what level of logs you need from a particular component. For example, any log

messages that is generated by the Application (Microsoft) with levels Warning and above is

logged to the console. This is the basic idea of log settings.

"Logging": {

"LogLevel": {

"Default": "Information",

"Microsoft": "Warning",

"Microsoft.Hosting.Lifetime": "Information"

}

}

With that out the way, let’s start the actual implementation of Serilog in our ASP.NET Core

application.

Serilog Enrichers
To enable Structured Logging and to unleash the full potential of Serilog, we use enrichers.

These enrichers give you additional details like Machine Name, ProcessId, Thread Id when the

log event had occurred for better diagnostics. It makes a developer’s life quite simpler. We will

use the enrichers later in this guide.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/?view=aspnetcore-3.1

Serilog Sinks
Serilog Sinks in simpler words relate to destinations for logging the data. In the packages that

we are going to install to our ASP.NET Core application, Sinks for Console and File are included

out of the box. That means we can write logs to Console and File System without adding any

extra packages. Serilog supports various other destinations like MSSQL,SQLite, SEQ and more.

Implementing Serilog in ASP.NET Core 3.1
Let’s start implementing Serilog in our ASP.NET Core 3.1 Application and make it the default

logger application-wide. Here is a quick step-by-step guide on How to use Serilog in ASP.NET

Core Applications.

Installing the Required Packages

For now, these are the packages that you require. Install them via the NuGet Package Manager

or Console.

Install-Package Serilog.AspNetCore

Install-Package Serilog.Settings.Configuration

Install-Package Serilog.Enrichers.Environment

Install-Package Serilog.Enrichers.Process

Install-Package Serilog.Enrichers.Thread

Package #1 contains the core components of Serilog. This is an ASP.NET Core version of the

package which comes along with additional features for our application.

Package #2 allows Serilog to read the settings from our configuration file, ie appsettings.json.

Package #3,4,5 are the enrichers that get details of the environment, process, thread, etc.

Now that we have installed all the necessary Serilog packages, let’s go ahead and configure

Serilog.

Configuring Serilog in ASP.NET Core Applications

Our intention is to use Serilog instead of the default logger. For this, we will need to configure

Serilog at the entry point of our ASP.NET Core Application, ie, the Program.cs file. Navigate to

Program.cs and make the following changes.

public static void Main(string[] args)

{

//Read Configuration from appSettings

var config = new ConfigurationBuilder()

.AddJsonFile("appsettings.json")

.Build();

//Initialize Logger

Log.Logger = new LoggerConfiguration()

.ReadFrom.Configuration(config)

.CreateLogger();

try

{

Log.Information("Application Starting.");

CreateHostBuilder(args).Build().Run();

}

catch (Exception ex)

{

Log.Fatal(ex, "The Application failed to start.");

}

finally

{

Log.CloseAndFlush();

}

}

Explanation.

Line #4,5,6 reads a config file (appsettings.json) and get the Configuration object for later use.

Line #9,10,11 Initiliazlies the Serilog using the settings from appsettings.json

Line #23 allows the logger to log any pending messages while the application closes down.

public static IHostBuilder CreateHostBuilder(string[] args) =>

Host.CreateDefaultBuilder(args)

.UseSerilog() //Uses Serilog instead of default .NET Logger

.ConfigureWebHostDefaults(webBuilder =>

{

webBuilder.UseStartup<Startup>();

});

Line #3 makes the application use Serilog instead of the default Logger.

NOTE – It is important to note that, in this tutorial I am showing you a cleaner way to

implement Serilog. There are possibilities to define the Serilog Configuration in Code (C#). But

the issue is, you can not modify these settings at runtime. Hence it is a better practice to define

these settings in appsettings.json.

Now that our Application is configured to support Serilog as the default logger, let’s define

Serilog Settings in our appsettings.json.

Setting up Serilog
Navigate to appsettings.json and remove the default logging settings and replace it with the

following.

{

"AllowedHosts": "*",

"Serilog":

{

"Using": [],

"MinimumLevel": {

"Default": "Information",

"Override":

{

"Microsoft": "Warning",

"System": "Warning"

}

},

"WriteTo": [

{

"Name": "Console"

},

{

"Name": "File",

"Args": {

"path": "D:\\Logs\\log.txt",

"outputTemplate": "{Timestamp} {Message}{NewLine:1}{Exception:1}"

}

}

],

"Enrich": [

"FromLogContext",

"WithMachineName",

"WithProcessId",

"WithThreadId"

],

"Properties": {

"ApplicationName": "Serilog.WebApplication"

}

}

}

Explanation.

This is the Settings for Serilog defined in appsettings.Json. As I had mentioned earlier, from now

on, we will be only changing the settings here and wont touch C# code.

Line #3 marks the beginning of the Serilog Settings.

Line #6 to #13 defined the minimum level of logging for various and default components. You

can see that by default, we log all

components like Microsoft, we need

don’t have a trillion lines of log in

Line #14 to 25 marks the Serilog

and Console Sinks only. We will extend

Line #22 is where you can define

Line #26 to 31 defines the enrichers

Line #32 to 34 is where we can define

data.

Hope this part is clear. Let’s move

default webserver.

Logging to Console
We do not need any extra changes

cleaner and to the point.

Logging to File with

all the levels above Information Log Level. But for

need to log only for the Warning and above levels,

in our sinks.

Serilog Sink Settings. For now, we have written the settings

extend it further in this guide.

define the template of the log output.

enrichers for Serilog to provide more details.

define custom properties that will appear in our

move forward and run the application. Make sure Kestrel

Console with Serilog.
changes to log to the console. You can see that our log

with Serilog.

for specific

levels, so that we

settings for File

our structured log

Kestrel is your

log is now much

Now, let’s check the folder that we

Serilog.

Ok, We have talked so much about

Console and File(text files) Sinks

schema to achieve structured logging.

Structured Logging
To enable structured logging with

Parameter to the Settings. Let’s add

code as the sink.

{

"Name": "File",

"Args": {

"path": "D:\\Logs\\structuredLog.json"

"formatter": "Serilog.Formatting.Json.JsonFormatter, Serilog"

}

}

we had defined earlier. We can see a new log.txt

about Structured Logging and Enrichers. But where

 don’t support Structured Logging. Let’s move to

logging.

Logging with Serilog.
with the File Sink, we need to add a JSON formatter

add new Sink to our appSettings.json/Serilog. Add

structuredLog.json",

"Serilog.Formatting.Json.JsonFormatter, Serilog"

log.txt file created by

where are they?

to the next

formatter as a

Add the below

Line #2, this is File Sink.

Line #4 defines the path of the JSON

Line #5 seats the JSON Formatter

Now, just run the application again.

Open this file with a Code Editor

data. I used Visual Studio Code to

This is the Structured Log of a single

given to us by Serilog. Also note

that can help debug the application

also appears in our Log File. Pretty

Logging to Database
Now, this is what you would probably

It makes much more sense to log

you could use some queries to inteligently

etc.

JSON File.

Formatter of Serilog to enable structured logging.

again. Navigate to the defined path, you will see a

Editor that can format JSONs, so that it is easier to read

to open the log file. Here is a screenshot of the log.

single log Event, the Error event. You can see the

 that we have the Machine Name, ProcessId, and

application in the longer run. Our Custom Property, ApplicationName

Pretty cool, yeah?

Database with Serilog.
probably want to use for applications at production

log into a relational database, so that , at a later point

inteligently fetch the log details by AppliationName,LogLevel,

a new JSON file.

read through the

log.

 amount of data

and many details

ApplicationName

production environment.

point of time,

AppliationName,LogLevel,

In this tutorial, I will show you the way to log to Microsoft SQL Server Database. For this, we

need to install an additional package (a new Sink!). It is possible to log to multiple databases as

well (you will have to install the specific Serilog Sink package).

Install-Package Serilog.Sinks.MSSqlServer

{

"Name": "MSSqlServer",

"Args": {

"connectionString": "<your connection string / named connection Here>",

"sinkOptionsSection": {

"tableName": "Logs",

"schemaName": "EventLogging",

"autoCreateSqlTable": true

},

"restrictedToMinimumLevel": "Warning"

}

}

Line #2 defined the sink as MSSQLServer Sink.

Line #4 is where you would want to put in the connection string / named connection string for

the logs to be inserted.

Line #6 the table name.

Line #7 the name of the schema.

Line #8 is a cool feature where Serilog creates the table for you if it does not exist.

Line #10 restricts the level of minimum log level. We do not want to log everything on to the

database during production. Just the Errors and Fatal Logs are Enough.

Let me fire up the application. It may take a few more seconds than usual because Serilog is

setting up your database in the background. After the application executes. Open up SQL

Management Studio and check the database mentioned in your connection string. You will find

a new Table “Eventlogging.Logs”. This is the one created by Serilog. Run a Select * Command on

this table.

Note that our MSSqlServer sink only

Exceptions / Fatals. This can be set

Great! Now we have learnt a clean

application.

Summary
In this article, we have gone through

various concepts of logging, Serilog

What is your favorite Logging Framework?

you can find the link to the source code that I demonstrated in this article.

queries , suggestions in the comment

something new from this article,

Happy Coding!

only logs the events which are high priority, ie, Errors

set for any sink as well depending on your requirement.

clean way to implement Serilog / Logging in your ASP.NET

through with basics of logging, the behavior of default

Serilog library, and it’s implementation, and different

Framework? Is it not Serilog ? Well, mine is. In the next section

you can find the link to the source code that I demonstrated in this article. Leave

comment section below. Also, if you think that you learnt

article, do not forget to share this within your developer

Errors /

requirement.

ASP.NET Core

default .NET logger,

different Serilog Sinks.

In the next section

Leave behind your

learnt

developer community.

	What is Serilog?
	Setting up the ASP.NET Core 3.1 Project
	Logging with the Default Logger
	What is Kestrel Webserver?
	How to switch to Kestrel Webserver?
	Log Levels
	Default Log Settings
	Serilog Enrichers
	Serilog Sinks
	Implementing Serilog in ASP.NET Core 3.1
	Installing the Required Packages
	Configuring Serilog in ASP.NET Core Applications
	Setting up Serilog
	Logging to Console with Serilog.
	Logging to File with Serilog.
	Logging to Database with Serilog.
	Summary

