

C# 8.0 and .NET Core 3.0 –
Modern Cross-Platform
Development
Fourth Edition

Build applications with C#, .NET Core, Entity
Framework Core, ASP.NET Core, and ML.NET
using Visual Studio Code

Mark J. Price

BIRMINGHAM - MUMBAI

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform
Development
Fourth Edition

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Acquisition Editor: Ben Renow-Clarke
Acquisition Editor – Peer Reviews: Suresh Jain
Content Development Editor: Ian Hough
Project Editor: Radhika Atitkar
Technical Editor: Aniket Shetty
Proofreader: Safis Editing
Indexer: Rekha Nair
Presentation Designer: Sandip Tadge

First published: March 2016
Second edition: March 2017
Third edition: November 2017
Fourth edition: October 2019

Production reference: 1311019

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78847-812-0

www.packt.com

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.Packt.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt
books and eBooks.

https://subscribe.packtpub.com/
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.packtpub.com/

Contributors

About the author

Mark J. Price is a Microsoft Specialist: Programming in C# and Architecting
Microsoft Azure Solutions, with more than 20 years of educational and
programming experience.

Since 1993, Mark has passed more than 80 Microsoft programming exams
and specializes in preparing others to pass them too. His students range from
professionals with decades of experience to 16-year-old apprentices with none.
He successfully guides all of them by combining educational skills with real-world
experience in consulting and developing systems for enterprises worldwide.

Between 2001 and 2003, Mark was employed full-time to write official courseware for
Microsoft in Redmond, USA. His team wrote the first training courses for C# while
it was still an early alpha version. While with Microsoft, he taught "train-the-trainer"
classes to get Microsoft Certified Trainers up to speed on C# and .NET.

Currently, Mark creates and delivers training courses for Episerver's Digital
Experience Platform, the best .NET CMS for Digital Marketing and E-commerce.

In 2010, Mark studied for a Postgraduate Certificate in Education (PGCE). He
taught GCSE and A-Level mathematics in two London secondary schools. He
holds a Computer Science BSc. Hons. degree from the University of Bristol, UK.

Thank you to my parents, Pamela and Ian, for raising me to be
polite, hardworking, and curious about the world. Thank you to my
sisters, Emily and Juliet, for loving me despite being their awkward
older brother. Thank you to my friends and colleagues who inspire
me technically and creatively. Lastly, thanks to all the students I
have taught over the years for motivating me to be the best teacher
that I can be.

About the reviewer
Damir Arh has many years of experience with software development and
maintenance; from complex enterprise software projects to modern consumer
oriented mobile applications. Although he has worked with a wide spectrum of
different languages, his favorite language remains C#. In his drive towards better
development processes, he is a proponent of test-driven development, continuous
integration, and continuous deployment. He shares his knowledge by speaking at
local user groups and conferences, blogging, and writing articles. He has received
the prestigious Microsoft MVP award for developer technologies 7 times in a row.
In his spare time, he's always on the move: hiking, geocaching, running, and
rock climbing.

I'd like to thank my family and friends for their patience and
understanding during the weekends and evenings I spent on my
computer to help make this book better for everyone.

[i]

Table of Contents
Preface xxi
Chapter 1: Hello, C#! Welcome, .NET! 1

Setting up your development environment 2
Using Visual Studio Code for cross-platform development 2
Using Visual Studio 2019 for Windows app development 3
Using Visual Studio for Mac for mobile development 3
Recommended tools for chapters 3
Deploying cross-platform 4
Understanding Microsoft Visual Studio Code versions 4
Downloading and installing Visual Studio Code 6
Installing other extensions 7

Understanding .NET 7
Understanding the .NET Framework 7
Understanding the Mono and Xamarin projects 8
Understanding .NET Core 8
Understanding future versions of .NET 9
Understanding .NET Core support 10
What is different about .NET Core? 11
Understanding .NET Standard 12
.NET platforms and tools used by the book editions 13
Understanding intermediate language 13
Understanding .NET Native 14
Comparing .NET technologies 14

Building console apps using Visual Studio Code 15
Writing code using Visual Studio Code 15
Compiling and running code using dotnet CLI 17

Downloading solution code from a GitHub repository 17
Using Git with Visual Studio Code 18
Cloning the book solution code repository 18

Looking for help 18
Reading Microsoft documentation 19
Getting help for the dotnet tool 19
Getting definitions of types and their members 19
Looking for answers on Stack Overflow 21
Searching for answers using Google 22
Subscribing to the official .NET blog 23

Table of Contents

[ii]

Practicing and exploring 23
Exercise 1.1 – Test your knowledge 23
Exercise 1.2 – Practice C# anywhere 24
Exercise 1.3 – Explore topics 24

Summary 24
Chapter 2: Speaking C# 25

Introducing C# 25
Understanding language versions and features 25

C# 1.0 26
C# 2.0 26
C# 3.0 26
C# 4.0 26
C# 5.0 27
C# 6.0 27
C# 7.0 27
C# 7.1 28
C# 7.2 28
C# 7.3 28
C# 8.0 28

Discovering your C# compiler versions 29
Enabling a specific language version compiler 30

Understanding C# basics 31
Understanding C# grammar 32

Statements 32
Comments 32
Blocks 33

Understanding C# vocabulary 33
Help for writing correct code 34
Verbs are methods 35
Nouns are types, fields, and variables 36
Revealing the extent of the C# vocabulary 36

Working with variables 38
Naming things and assigning values 39

Literal values 39
Storing text 40

Understanding verbatim strings 40
Storing numbers 41

Storing whole numbers 42
Storing real numbers 43
Writing code to explore number sizes 44
Comparing double and decimal types 45

Storing Booleans 47
Using Visual Studio Code workspaces 47
Storing any type of object 48
Storing dynamic types 49

Table of Contents

[iii]

Declaring local variables 50
Specifying and inferring the type of a local variable 50

Getting default values for types 51
Storing multiple values 52

Working with null values 53
Making a value type nullable 53

Understanding nullable reference types 54
Enabling nullable and non-nullable reference types 55
Declaring non-nullable variables and parameters 55
Checking for null 57

Exploring console applications further 58
Displaying output to the user 59

Formatting using numbered positional arguments 59
Formatting using interpolated strings 59

Understanding format strings 60
Getting text input from the user 61
Importing a namespace 62
Simplifying the usage of the console 62
Getting key input from the user 63
Getting arguments 63
Setting options with arguments 65
Handling platforms that do not support an API 66

Practicing and exploring 67
Exercise 2.1 – Test your knowledge 67
Exercise 2.2 – Practice number sizes and ranges 68
Exercise 2.3 – Explore topics 69

Summary 69
Chapter 3: Controlling Flow and Converting Types 71

Operating on variables 71
Unary operators 72
Binary arithmetic operators 73
Assignment operators 74
Logical operators 75
Conditional logical operators 76
Bitwise and binary shift operators 77
Miscellaneous operators 79

Understanding selection statements 79
Branching with the if statement 79
Why you should always use braces with if statements 81
Pattern matching with the if statement 81
Branching with the switch statement 82

Table of Contents

[iv]

Pattern matching with the switch statement 84
Simplifying switch statements with switch expressions 85

Understanding iteration statements 86
Looping with the while statement 86
Looping with the do statement 87
Looping with the for statement 88
Looping with the foreach statement 88

Understanding how foreach works internally 89
Casting and converting between types 89

Casting numbers implicitly and explicitly 90
Converting with the System.Convert type 92
Rounding numbers 92

Understanding the default rounding rules 93
Taking control of rounding rules 94

Converting from any type to a string 94
Converting from a binary object to a string 95
Parsing from strings to numbers or dates and times 96

Avoiding exceptions using the TryParse method 97
Handling exceptions when converting types 98

Wrapping error-prone code in a try block 99
Catching all exceptions 100
Catching specific exceptions 100

Checking for overflow 102
Throwing overflow exceptions with the checked statement 102
Disabling compiler overflow checks with the unchecked statement 104

Practicing and exploring 105
Exercise 3.1 – Test your knowledge 105
Exercise 3.2 – Explore loops and overflow 105
Exercise 3.3 – Practice loops and operators 106
Exercise 3.4 – Practice exception handling 107
Exercise 3.5 – Test your knowledge of operators 107
Exercise 3.6 – Explore topics 108

Summary 108
Chapter 4: Writing, Debugging, and Testing Functions 109

Writing functions 109
Writing a times table function 110
Writing a function that returns a value 112
Writing mathematical functions 114

Converting numbers from ordinal to cardinal 114
Calculating factorials with recursion 116

Documenting functions with XML comments 118
Debugging during development 120

Table of Contents

[v]

Creating code with a deliberate bug 120
Setting a breakpoint 121
Navigating with the debugging toolbar 122
Debugging windows 123
Stepping through code 123
Customizing breakpoints 125

Logging during development and runtime 128
Instrumenting with Debug and Trace 129
Writing to the default trace listener 130
Configuring trace listeners 130
Switching trace levels 132

Unit testing functions 135
Creating a class library that needs testing 136
Writing unit tests 137
Running unit tests 139

Practicing and exploring 139
Exercise 4.1 – Test your knowledge 139
Exercise 4.2 – Practice writing functions with
debugging and unit testing 140
Exercise 4.3 – Explore topics 140

Summary 141
Chapter 5: Building Your Own Types
with Object-Oriented Programming 143

Talking about object-oriented programming 143
Building class libraries 144

Creating a class library 145
Defining a class 145
Understanding members 146

Instantiating a class 147
Referencing an assembly 147
Importing a namespace to use a type 147

Managing multiple files 148
Understanding objects 148

Inheriting from System.Object 149
Storing data within fields 150

Defining fields 150
Understanding access modifiers 150
Setting and outputting field values 151
Storing a value using an enum type 152
Storing multiple values using an enum type 154
Storing multiple values using collections 155

Table of Contents

[vi]

Making a field static 156
Making a field constant 158
Making a field read-only 159
Initializing fields with constructors 159
Setting fields with default literals 161

Writing and calling methods 162
Returning values from methods 162
Combining multiple returned values using tuples 163

Naming the fields of a tuple 165
Inferring tuple names 165
Deconstructing tuples 166

Defining and passing parameters to methods 166
Overloading methods 167
Passing optional parameters and naming arguments 168
Controlling how parameters are passed 170
Splitting classes using partial 171

Controlling access with properties and indexers 172
Defining readonly properties 172
Defining settable properties 174
Defining indexers 175

Practicing and exploring 177
Exercise 5.1 – Test your knowledge 177
Exercise 5.2 – Explore topics 177

Summary 178
Chapter 6: Implementing Interfaces and Inheriting Classes 179

Setting up a class library and console application 179
Simplifying methods 181

Implementing functionality using methods 182
Implementing functionality using operators 184
Implementing functionality using local functions 185

Raising and handling events 186
Calling methods using delegates 186
Defining and handling delegates 188
Defining and handling events 190

Implementing interfaces 191
Common interfaces 191
Comparing objects when sorting 192
Comparing objects using a separate class 194
Defining interfaces with default implementations 195

Making types safely reusable with generics 198
Working with generic types 199

Table of Contents

[vii]

Working with generic methods 201
Managing memory with reference and value types 202

Working with struct types 203
Releasing unmanaged resources 205
Ensuring that Dispose is called 207

Inheriting from classes 207
Extending classes 208
Hiding members 209
Overriding members 210
Preventing inheritance and overriding 211
Understanding polymorphism 212

Casting within inheritance hierarchies 213
Implicit casting 214
Explicit casting 214
Avoiding casting exceptions 214

Inheriting and extending .NET types 215
Inheriting exceptions 216
Extending types when you can't inherit 217

Using static methods to reuse functionality 217
Using extension methods to reuse functionality 219

Practicing and exploring 220
Exercise 6.1 – Test your knowledge 220
Exercise 6.2 – Practice creating an inheritance hierarchy 220
Exercise 6.3 – Explore topics 221

Summary 222
Chapter 7: Understanding and Packaging .NET Types 223

Introducing .NET Core 3.0 223
.NET Core 1.0 224
.NET Core 1.1 224
.NET Core 2.0 225
.NET Core 2.1 225
.NET Core 2.2 226
.NET Core 3.0 226

Understanding .NET Core components 227
Understanding assemblies, packages, and namespaces 227

Understanding dependent assemblies 228
Understanding the Microsoft .NET Core App platform 228
Understanding NuGet packages 230
Understanding frameworks 230

Importing a namespace to use a type 231
Relating C# keywords to .NET types 231
Sharing code cross-platform with .NET Standard class libraries 233

Table of Contents

[viii]

Publishing your applications for deployment 235
Creating a console application to publish 235
Understanding dotnet commands 236

Creating new projects 236
Managing projects 237

Publishing a self-contained app 238
Decompiling assemblies 238
Packaging your libraries for NuGet distribution 242

Referencing a NuGet package 242
Fixing dependencies 243

Packaging a library for NuGet 243
Testing your package 246

Porting from .NET Framework to .NET Core 247
Could you port? 248
Should you port? 248
Differences between .NET Framework and .NET Core 249
Understanding the .NET Portability Analyzer 249
Using non-.NET Standard libraries 250

Practicing and exploring 251
Exercise 7.1 – Test your knowledge 251
Exercise 7.2 – Explore topics 252

Summary 252
Chapter 8: Working with Common .NET Types 253

Working with numbers 253
Working with big integers 254
Working with complex numbers 255

Working with text 255
Getting the length of a string 256
Getting the characters of a string 256
Splitting a string 257
Getting part of a string 257
Checking a string for content 258
Joining, formatting, and other string members 259
Building strings efficiently 260

Pattern matching with regular expressions 260
Checking for digits entered as text 261
Understanding the syntax of a regular expression 262
Examples of regular expressions 263
Splitting a complex comma-separated string 264

Storing multiple objects in collections 265
Common features of all collections 266

Table of Contents

[ix]

Understanding collection choices 267
Lists 268
Dictionaries 268
Stacks 269
Queues 269
Sets 269

Working with lists 270
Working with dictionaries 271
Sorting collections 271
Using specialized collections 272
Using immutable collections 273

Working with spans, indexes, and ranges 273
Using memory efficiently using spans 274
Identifying positions with the Index type 274
Identifying ranges with the Range type 275
Using indexes and ranges 275

Working with network resources 276
Working with URIs, DNS, and IP addresses 277
Pinging a server 278

Working with types and attributes 279
Versioning of assemblies 280
Reading assembly metadata 280
Creating custom attributes 283
Doing more with reflection 285

Internationalizing your code 286
Practicing and exploring 288

Exercise 8.1 – Test your knowledge 288
Exercise 8.2 – Practice regular expressions 289
Exercise 8.3 – Practice writing extension methods 289
Exercise 8.4 – Explore topics 290

Summary 290
Chapter 9: Working with Files, Streams, and Serialization 291

Managing the filesystem 291
Handling cross-platform environments and filesystems 291
Managing drives 293
Managing directories 294
Managing files 297
Managing paths 299
Getting file information 299
Controlling how you work with files 301

Reading and writing with streams 301

Table of Contents

[x]

Writing to text streams 303
Writing to XML streams 305
Disposing of file resources 306
Compressing streams 309
Compressing with the Brotli algorithm 310
High-performance streams using pipelines 312
Asynchronous streams 313

Encoding and decoding text 313
Encoding strings as byte arrays 314
Encoding and decoding text in files 316

Serializing object graphs 317
Serializing as XML 317
Generating compact XML 320
Deserializing XML files 321
Serializing with JSON 322
High-performance JSON processing 323

Practicing and exploring 325
Exercise 9.1 – Test your knowledge 325
Exercise 9.2 – Practice serializing as XML 326
Exercise 9.3 – Explore topics 326

Summary 327
Chapter 10: Protecting Your Data and Applications 329

Understanding the vocabulary of protection 329
Keys and key sizes 330
IVs and block sizes 331
Salts 331
Generating keys and IVs 332

Encrypting and decrypting data 332
Encrypting symmetrically with AES 333

Hashing data 337
Hashing with the commonly used SHA256 338

Signing data 342
Signing with SHA256 and RSA 342

Generating random numbers 346
Generating random numbers for games 346
Generating random numbers for cryptography 347

What's new in cryptography 348
Authenticating and authorizing users 349

Implementing authentication and authorization 351
Protecting application functionality 354

Practicing and exploring 355

Table of Contents

[xi]

Exercise 10.1 – Test your knowledge 355
Exercise 10.2 – Practice protecting data with encryption and hashing 356
Exercise 10.3 – Practice protecting data with decryption 356
Exercise 10.4 – Explore topics 356

Summary 357
Chapter 11: Working with Databases
Using Entity Framework Core 359

Understanding modern databases 359
Understanding Entity Framework 360
Using a sample relational database 361

Setting up SQLite for macOS 362
Setting up SQLite for Windows 362

Creating the Northwind sample database for SQLite 362
Managing the Northwind sample database with SQLiteStudio 363

Setting up EF Core 364
Choosing an EF Core data provider 364
Connecting to the database 365

Defining EF Core models 366
EF Core conventions 366
EF Core annotation attributes 367
EF Core Fluent API 367
Understanding data seeding 368
Building an EF Core model 368

Defining the Category and Product entity classes 369
Defining the Northwind database context class 371

Querying EF Core models 372
Filtering and sorting products 374
Logging EF Core 375
Logging with query tags 380
Pattern matching with Like 380
Defining global filters 382

Loading patterns with EF Core 382
Eager loading entities 383
Enabling lazy loading 384
Explicit loading entities 385

Manipulating data with EF Core 387
Inserting entities 387
Updating entities 389
Deleting entities 390
Pooling database contexts 391
Transactions 391

Table of Contents

[xii]

Defining an explicit transaction 392
Practicing and exploring 393

Exercise 11.1 – Test your knowledge 393
Exercise 11.2 – Practice exporting data using
different serialization formats 394
Exercise 11.3 – Explore the EF Core documentation 394

Summary 394
Chapter 12: Querying and Manipulating Data Using LINQ 395

Writing LINQ queries 395
Extending sequences with the Enumerable class 396
Filtering entities with Where 397

Targeting a named method 399
Simplifying the code by removing the explicit delegate instantiation 400
Targeting a lambda expression 400

Sorting entities 401
Sorting by a single property using OrderBy 401
Sorting by a subsequent property using ThenBy 402

Filtering by type 402
Working with sets and bags using LINQ 404
Using LINQ with EF Core 406

Building an EF Core model 407
Filtering and sorting sequences 409
Projecting sequences into new types 411
Joining and grouping sequences 412
Aggregating sequences 415

Sweetening LINQ syntax with syntactic sugar 416
Using multiple threads with parallel LINQ 418

Creating an app that benefits from multiple threads 418
Using Windows 10 419
Using macOS 419
For all operating systems 419

Creating your own LINQ extension methods 421
Working with LINQ to XML 425

Generating XML using LINQ to XML 425
Reading XML using LINQ to XML 426

Practicing and exploring 427
Exercise 12.1 – Test your knowledge 427
Exercise 12.2 – Practice querying with LINQ 427
Exercise 12.3 – Explore topics 428

Summary 428

Table of Contents

[xiii]

Chapter 13: Improving Performance
and Scalability Using Multitasking 429

Understanding processes, threads, and tasks 429
Monitoring performance and resource usage 431

Evaluating the efficiency of types 431
Monitoring performance and memory use 432
Implementing the Recorder class 433

Measuring the efficiency of processing strings 436
Running tasks asynchronously 437

Running multiple actions synchronously 438
Running multiple actions asynchronously using tasks 439
Waiting for tasks 441
Continuing with another task 442
Nested and child tasks 444

Synchronizing access to shared resources 445
Accessing a resource from multiple threads 446
Applying a mutually exclusive lock to a resource 447
Understanding the lock statement and avoiding deadlocks 448
Making CPU operations atomic 450
Applying other types of synchronization 451

Understanding async and await 451
Improving responsiveness for console apps 451
Improving responsiveness for GUI apps 452
Improving scalability for web applications and web services 453
Common types that support multitasking 453
Using await in catch blocks 454
Working with async streams 454

Practicing and exploring 455
Exercise 13.1 – Test your knowledge 455
Exercise 13.2 – Explore topics 456

Summary 456
Chapter 14: Practical Applications of C# and .NET 457

Understanding app models for C# and .NET 457
Building websites using ASP.NET Core 458
Building websites using a web content management system 458
Understanding web applications 459
Building and consuming web services 460
Building intelligent apps 460

Table of Contents

[xiv]

New features for ASP.NET Core 460
ASP.NET Core 1.0 460
ASP.NET Core 1.1 461
ASP.NET Core 2.0 461
ASP.NET Core 2.1 461
ASP.NET Core 2.2 462
ASP.NET Core 3.0 462

Understanding SignalR 463
Understanding Blazor 464

JavaScript and friends 465
Silverlight – C# and .NET using a plugin 465
WebAssembly – a target for Blazor 465
Blazor on the server-side or client-side 466

Understanding the bonus chapters 466
Building Windows desktop apps 467
Building cross-platform mobile apps 467

Building an entity data model for Northwind 468
Creating a class library for Northwind entity models 468
Creating a class library for a Northwind database context 473

Summary 476
Chapter 15: Building Websites Using ASP.NET Core Razor Pages 477

Understanding web development 477
Understanding HTTP 477
Client-side web development 481

Understanding ASP.NET Core 482
Classic ASP.NET versus modern ASP.NET Core 483
Creating an ASP.NET Core project 484
Testing and securing the website 486
Enabling static and default files 489

Exploring Razor Pages 492
Enabling Razor Pages 492
Defining a Razor Page 493
Using shared layouts with Razor Pages 494
Using code-behind files with Razor Pages 496

Using Entity Framework Core with
ASP.NET Core 498

Configure Entity Framework Core as a service 499
Manipulating data using Razor pages 500

Enabling a model to insert entities 500
Defining a form to insert new suppliers 501

Using Razor class libraries 503

Table of Contents

[xv]

Using a Razor class library 505
Practicing and exploring 506

Exercise 15.1 – Test your knowledge 506
Exercise 15.2 – Practice building a data-driven web page 507
Exercise 15.3 – Explore topics 507

Summary 508
Chapter 16: Building Websites Using the
Model-View-Controller Pattern 509

Setting up an ASP.NET Core MVC website 509
Creating and exploring an ASP.NET Core MVC website 510
Reviewing the ASP.NET Core MVC website 512
Reviewing the ASP.NET Core Identity database 514

Exploring an ASP.NET Core MVC website 515
Understanding ASP.NET Core MVC startup 515
Understanding the default MVC route 517
Understanding controllers and actions 518
Understanding filters 520

Using a filter to secure an action method 521
Using a filter to cache a response 521
Using a filter to define a custom route 522

Understanding entity and view models 522
Understanding views 524

Customizing an ASP.NET Core MVC website 527
Defining a custom style 528
Setting up the category images 528
Understanding Razor syntax 528
Defining a typed view 529
Testing the customized home page 532
Passing parameters using a route value 533
Understanding model binders 535
Validating the model 539
Understanding view helper methods 542
Querying a database and using display templates 543
Improving scalability using asynchronous tasks 545

Making controller action methods asynchronous 546
Using other project templates 547

Installing additional template packs 548
Practicing and exploring 549

Exercise 16.1 – Test your knowledge 549
Exercise 16.2 – Practice implementing MVC
by implementing a category detail page 549

Table of Contents

[xvi]

Exercise 16.3 – Practice improving scalability by
understanding and implementing async action methods 550
Exercise 16.4 – Explore topics 550

Summary 550
Chapter 17: Building Websites Using
a Content Management System 553

Understanding the benefits of a CMS 553
Understanding basic CMS features 554
Understanding enterprise CMS features 554
Understanding CMS platforms 555

Understanding Piranha CMS 555
Creating and exploring a Piranha CMS website 556
Editing site and page content 559
Creating a new top-level page 563
Creating a new child page 564
Reviewing the blog archive 566
Exploring authentication and authorization 567
Exploring configuration 570
Testing the new content 571
Understanding routing 572
Understanding media 574
Understanding the application service 574
Understanding content types 575

Understanding component types 576
Understanding standard fields 576
Reviewing some content types 577

Understanding standard blocks 580
Reviewing component types and standard blocks 581

Defining components, content types, and templates 583
Reviewing the standard page type 583
Reviewing the blog archive page type 585
Defining custom content and component types 586

Creating custom regions 587
Creating an entity data model 588
Creating custom page types 589
Creating custom view models 590

Defining custom content templates for content types 591
Configuring start up and importing from a database 594

Testing the Northwind CMS website 598
Uploading images and creating the catalog root 598
Importing category and product content 599
Managing catalog content 601

Table of Contents

[xvii]

Reviewing how Piranha stores content 603
Practicing and exploring 605

Exercise 17.1 – Test your knowledge 605
Exercise 17.2 – Practice defining a block type for rendering
YouTube videos 605
Exercise 17.3 – Explore topics 606

Summary 606
Chapter 18: Building and Consuming Web Services 607

Building web services using ASP.NET Core Web API 607
Understanding web service acronyms 607
Creating an ASP.NET Core Web API project 608
Reviewing the web service's functionality 611
Creating a web service for the Northwind database 613
Creating data repositories for entities 615
Implementing a Web API controller 618
Configuring the customers repository and Web API controller 620
Specifying problem details 625

Documenting and testing web services 626
Testing GET requests using a browser 626
Testing HTTP requests with REST Client extension 627
Enabling Swagger 631
Testing requests with Swagger UI 632

Consuming services using HTTP clients 637
Understanding HttpClient 637
Configuring HTTP clients using HttpClientFactory 638
Enabling Cross-Origin Resource Sharing 641

Implementing advanced features 643
Implementing Health Check API 643
Implementing Open API analyzers and conventions 644
Understanding endpoint routing 645
Configuring endpoint routing 645

Understanding other communication technologies 648
Understanding Windows Communication Foundation (WCF) 648
Understanding gRPC 648

Practicing and exploring 649
Exercise 18.1 – Test your knowledge 649
Exercise 18.2 – Practice creating and deleting customers with HttpClient 650
Exercise 18.3 – Explore topics 650

Summary 650

Table of Contents

[xviii]

Chapter 19: Building Intelligent Apps Using Machine Learning 651
Understanding machine learning 651

Understanding the machine learning life cycle 652
Understanding datasets for training and testing 653
Understanding machine learning tasks 654
Understanding Microsoft Azure Machine Learning 655

Understanding ML.NET 656
Understanding Infer.NET 656
Understanding ML.NET learning pipelines 657
Understanding model training concepts 657
Understanding missing values and key types 659
Understanding features and labels 659

Making product recommendations 659
Problem analysis 660
Data gathering and processing 661
Creating the NorthwindML website project 662

Creating the data and view models 663
Implementing the controller 666
Training the recommendation models 668
Implementing a shopping cart with recommendations 670

Testing the product recommendations website 675
Practicing and exploring 678

Exercise 19.1 – Test your knowledge 678
Exercise 19.2 – Practice with samples 679
Exercise 19.3 – Explore topics 679

Summary 680
Chapter 20: Building Windows Desktop Apps 681

Understanding legacy Windows application platforms 682
Understanding .NET Core 3.0 support for legacy Windows platforms 683
Installing Microsoft Visual Studio 2019 for Windows 683
Working with Windows Forms 684

Building a new Windows Forms application 684
Reviewing a new Windows Forms application 686
Migrating a legacy Windows Forms application 687
Migrating a Windows Forms app 688

Migrating WPF apps to .NET Core 3.0 689
Migrating legacy apps using the Windows Compatibility Pack 689

Understanding the modern Windows platform 689
Understanding Universal Windows Platform 690
Understanding Fluent Design System 690

Filling user interface elements with acrylic brushes 690
Connecting user interface elements with animations 691

Table of Contents

[xix]

Parallax views and Reveal lighting 691
Understanding XAML Standard 691

Simplifying code using XAML 692
Choosing common controls 693
Understanding markup extensions 693

Creating a modern Windows app 694
Enabling developer mode 694
Creating a UWP project 694
Exploring common controls and acrylic brushes 698
Exploring Reveal 699
Installing more controls 702

Using resources and templates 704
Sharing resources 704
Replacing a control template 705

Using data binding 707
Binding to elements 707
Creating an HTTP service to bind to 709

Downloading the web service's certificate 712
Binding to data from a secure HTTP service 713
Creating the user interface to call the HTTP service 715
Converting numbers to images 717
Testing the HTTP service data binding 724

Practicing and exploring 725
Exercise 20.1 – Test your knowledge 726
Exercise 20.2 – Explore topics 726

Summary 727
Chapter 21: Building Cross-Platform Mobile Apps Using
Xamarin.Forms 729

Understanding Xamarin and Xamarin.Forms 730
How Xamarin.Forms extends Xamarin 730
Mobile first, cloud first 731
Understanding additional functionality 732

Understanding the INotificationPropertyChanged interface 732
Understanding dependency services 733

Understanding Xamarin.Forms user interface components 733
Understanding the ContentPage view 734
Understanding the Entry and Editor controls 734
Understanding the ListView control 735

Building mobile apps using Xamarin.Forms 735
Adding Android SDKs 735
Creating a Xamarin.Forms solution 736
Creating an entity model with two-way data binding 738

Table of Contents

[xx]

Creating a component for dialing phone numbers 742
Creating views for the customers list and customer details 744

Implementing the customer list view 745
Implementing the customer detail view 748
Setting the main page for the mobile app 750

Testing the mobile app 751
Consuming a web service from a mobile app 753

Configuring the web service to allow insecure requests 753
Configuring the iOS app to allow insecure connections 754
Adding NuGet packages for consuming a web service 755
Getting customers from the web service 756

Practicing and exploring 757
Exercise 21.1 – Test your knowledge 757
Exercise 21.2 - Explore topics 758

Summary 758
Epilogue 759

Other Books You May Enjoy 761
Index 765

[xxi]

Preface

There are C# books that are thousands of pages long that aim to be comprehensive
references to the C# programming language and the .NET Framework.

This book is different. It is concise and aims to be a brisk, fun read that is packed
with practical hands-on walkthroughs of each subject. The breadth of the
overarching narrative comes at the cost of some depth, but you will find many
signposts to explore further if you wish. This book is simultaneously a step-by-step
guide to learning modern C# proven practices using cross-platform .NET and a brief
introduction to the main types of applications that can be built with them. This book
is best for beginners to C# and .NET, or programmers who have worked with C#
in the past but feel left behind by the changes in the past few years. If you already
have experience with C# 5.0 or later, then in the first topic of Chapter 2, Speaking C#,
you can review tables of the new language features and jump straight to them. If
you already have experience with .NET Core 1.0 or later, then in the first topic of
Chapter 7, Understanding and Packaging .NET Types, you can review tables of the new
platform features and jump straight to them.

I will point out the cool corners and gotchas of C# and .NET, so you can impress
colleagues and get productive fast. Rather than slowing down and boring some
readers by explaining every little thing, I will assume that you are smart enough
to Google an explanation for topics that are related but not necessary to include
in a beginner-to-intermediate guide.

You can download solutions for the step-by-step guided tasks and exercises from
the following GitHub repository. If you don't know how, then I provide instructions
on how to do this using Visual Studio Code at the end of Chapter 1, Hello, C#!
Welcome, .NET!

https://github.com/markjprice/cs8dotnetcore3

https://github.com/markjprice/cs7dotnetcore2
https://github.com/markjprice/cs7dotnetcore2
https://github.com/markjprice/cs7dotnetcore2
https://github.com/markjprice/cs7dotnetcore2
https://github.com/markjprice/cs7dotnetcore2
https://github.com/markjprice/cs7dotnetcore2

Preface

[xxii]

What this book covers
Chapter 1, Hello, C#! Welcome, .NET!, is about setting up your development
environment and using Visual Studio Code to create the simplest application
possible with C# and .NET. You will learn how to write and compile code on any of
the supported operating systems: Windows, macOS, and Linux variants. You will
also learn the best places to look for help.

Chapter 2, Speaking C#, introduces the versions of C# and has tables of which version
introduced new features, and then explains the grammar and vocabulary that you
will use every day to write the source code for your applications. In particular, you
will learn how to declare and work with variables of different types, and about the
big change in C# 8.0 with the introduction of nullable reference types.

Chapter 3, Controlling Flow and Converting Types, covers using operators to perform
simple actions on variables including comparisons, writing code that makes
decisions, repeats a block of statements, and converts between types. It also covers
writing code defensively to handle errors when they inevitably occur.

Chapter 4, Writing, Debugging, and Testing Functions, is about following the Don't
Repeat Yourself (DRY) principle by writing reusable functions. You will also learn
how to use debugging tools to track down and remove bugs, monitoring your code
while it executes to diagnose problems, and rigorously testing your code to remove
bugs and ensure stability and reliability before it gets deployed into production.

Chapter 5, Building Your Own Types with Object-Oriented Programming, discusses all the
different categories of members that a type can have, including fields to store data
and methods to perform actions. You will use OOP concepts, such as aggregation
and encapsulation. You will learn language features such as tuple syntax support
and out variables, and default literals and inferred tuple names.

Chapter 6, Implementing Interfaces and Inheriting Classes, explains deriving new types
from existing ones using object-oriented programming (OOP). You will learn how
to define operators and local functions, delegates and events, how to implement
interfaces about base and derived classes, how to override a type member, how
to use polymorphism, how to create extension methods, and how to cast between
classes in an inheritance hierarchy.

Chapter 7, Understanding and Packaging .NET Types, introduces the versions of .NET
Core and has tables of which version introduced new features, then presents .NET
Core types that are compliant with .NET Standard, and how they relate to C#. You
will learn how to deploy and package your own apps and libraries.

Chapter 8, Working with Common .NET Types, discusses the types that allow your code
to perform common practical tasks, such as manipulating numbers and text, storing
items in collections, and implementing internationalization.

Preface

[xxiii]

Chapter 9, Working with Files, Streams, and Serialization, talks about interacting with the
filesystem, reading and writing to files and streams, text encoding, and serialization
formats like JSON and XML.

Chapter 10, Protecting Your Data and Applications, is about protecting your data from
being viewed by malicious users using encryption and from being manipulated or
corrupted using hashing and signing. You will also learn about authentication and
authorization to protect applications from unauthorized users.

Chapter 11, Working with Databases Using Entity Framework Core, explains reading
and writing to databases, such as Microsoft SQL Server and SQLite, using the object-
relational mapping (ORM) technology named Entity Framework Core.

Chapter 12, Querying and Manipulating Data Using LINQ, teaches you Language
INtegrated Queries (LINQ)—language extensions that add the ability to work
with sequences of items and filter, sort, and project them into different outputs.

Chapter 13, Improving Performance and Scalability Using Multitasking, discusses
allowing multiple actions to occur at the same time to improve performance,
scalability, and user productivity. You will learn about the async Main feature
and how to use types in the System.Diagnostics namespace to monitor your
code to measure performance and efficiency.

Chapter 14, Practical Applications of C# and .NET, introduces you to the types of cross-
platform applications that can be built using C# and .NET.

Chapter 15, Building Websites Using ASP.NET Core Razor Pages, is about learning the
basics of building websites with a modern HTTP architecture on the server-side using
ASP.NET Core. You will learn how to implement the ASP.NET Core feature known as
Razor Pages, which simplifies creating dynamic web pages for small websites.

Chapter 16, Building Websites Using the Model-View-Controller Pattern, is about learning
how to build large, complex websites in a way that is easy to unit test and manage
with teams of programmers using ASP.NET Core MVC. You will learn about startup
configuration, authentication, routes, models, views, and controllers.

Chapter 17, Building Websites Using a Content Management System, explains how a
web Content Management System (CMS) can enable developers to rapidly build
websites with a customizable administration user interface that non-technical users
can use to create and manage their own content. As an example, you will learn about
a simple open source .NET Core-based one named Piranha CMS.

Chapter 18, Building and Consuming Web Services, explains building backend REST
architecture web services using ASP.NET Core Web API and how to properly
consume them using factory-instantiated HTTP clients.

Preface

[xxiv]

Chapter 19, Building Intelligent Apps Using Machine Learning, introduces you to
Microsoft's open source ML.NET package of machine learning algorithms, which can
be used to embed adaptive intelligence into any cross-platform .NET app, such as a
digital commerce website that provides product recommendations for visitors to add
to their shopping cart.

Chapter 20, Building Windows Desktop Apps, is the first of two chapters about topics
that go beyond what is achievable using cross-platform .NET Core and Visual
Studio Code. This chapter introduces you to how .NET Core 3.0 and its Windows
Desktop Pack enable Windows Forms and WPF apps to benefit from running on
.NET Core. You will then learn the basics of XAML, which can be used to define the
user interface for a graphical app for Windows Presentation Foundation (WPF) or
the Universal Windows Platform (UWP). You will apply principles and features of
Fluent Design to light up a UWP app. The apps for this chapter must be built using
Visual Studio 2019 on Windows 10.

Chapter 21, Building Cross-Platform Mobile Apps Using Xamarin.Forms, introduces you
to taking C# mobile by building a cross-platform app for iOS and Android. The app
for this chapter will be built using Visual Studio 2019 for Mac on macOS.

Appendix, Answers to the Test Your Knowledge Questions, has the answers to the test
questions at the end of each chapter. You can read this appendix at https://
static.packt-cdn.com/downloads/9781788478120_Appendix_Answers_to_the_
Test_Your_Knowledge_Questions.pdf.

What you need for this book
You can develop and deploy C# and .NET Core apps using Visual Studio Code
on many platforms, including Windows, macOS, and many varieties of Linux. An
operating system that supports Visual Studio Code and an internet connection is all
you need to complete Chapters 1 to 19.

You will need Windows 10 to build the apps in Chapter 20, Building Windows Desktop
Apps.

You will need macOS to build the apps in Chapter 21, Building Cross-Platform Mobile Apps
Using Xamarin.Forms, because you must have macOS and Xcode to compile iOS apps.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

https://static.packt-cdn.com/downloads/9781788478120_Appendix_Answers_to_the_Test_Your_Knowledge_Questions.pdf
https://static.packt-cdn.com/downloads/9781788478120_Appendix_Answers_to_the_Test_Your_Knowledge_Questions.pdf
https://static.packt-cdn.com/downloads/9781788478120_Appendix_Answers_to_the_Test_Your_Knowledge_Questions.pdf

Preface

[xxv]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The Controllers, Models, and Views folders contain ASP.NET Core classes and
the .cshtml files for execution on the server."

A block of code is set as follows:

// storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

// storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

Any command-line input or output is written as follows:

dotnet new console

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
on the Next button moves you to the next screen."

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

More Information: Links to external sources of further reading
appear in a box like this.

Good Practice: Recommendations for how to program like an expert
appear like this.

Preface

[xxvi]

To send us general feedback, simply email feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your email address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/CSharp-8.0-and-.NET-Core-3.0-Modern-Cross-Platform-
Development-Third-Edition. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/.
Check them out!

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/CSharp-8.0-and-.NET-Core-3.0-Modern-Cross-Platform-Development-Third-Edition
https://github.com/PacktPublishing/CSharp-8.0-and-.NET-Core-3.0-Modern-Cross-Platform-Development-Third-Edition
https://github.com/PacktPublishing/CSharp-8.0-and-.NET-Core-3.0-Modern-Cross-Platform-Development-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[xxvii]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand
the changes in the output.

You can download this file from https://static.packt-cdn.com/
downloads/9781788478120_ColorImages.pdf.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, www.packtpub.com/support/errata,
selecting your book, clicking on the Errata Submission Form link, and entering
the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address or
website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

https://static.packt-cdn.com/downloads/9781788478120_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781788478120_ColorImages.pdf
https://www.packtpub.com/support/errata
http://authors.packtpub.com/

[1]

Chapter 01
Hello, C#! Welcome, .NET!

In this first chapter, the goals are setting up your development environment,
understanding the similarities and differences between .NET Core, .NET Framework,
and .NET Standard, and then creating the simplest application possible with C# and
.NET Core using Microsoft's Visual Studio Code.

After this first chapter, this book can be divided into three parts: first, the grammar
and vocabulary of the C# language; second, the types available in .NET Core for
building app features; and third, examples of common cross-platform apps you can
build using C# and .NET. The last two chapters are about two types of application
that can be built with C# but the first is not cross-platform and the second does not
use .NET Core yet so they should be considered bonus chapters.

Most people learn complex topics best by imitation and repetition rather than
reading a detailed explanation of the theory; therefore I will not overload you with
detailed explanations of every step throughout this book. The idea is to get you to
write some code, build an application from that code, and then for you to see it run.

You don't need to know all the nitty-gritty details immediately. That will be
something that comes with time as you build your own apps and go beyond what
any book can teach you.

In the words of Samuel Johnson, author of the English dictionary in 1755, I have
committed "a few wild blunders, and risible absurdities, from which no work of such
multiplicity is free." I take sole responsibility for these and hope you appreciate the
challenge of my attempt to lash the wind by writing this book about rapidly evolving
technologies like C# and .NET Core, and the apps that you can build with them.

This first chapter covers the following topics:

• Setting up your development environment
• Understanding .NET
• Building console apps using Visual Studio Code
• Downloading solution code from a GitHub repository
• Looking for help

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[2]

Setting up your development
environment
Before you start programming, you'll need a code editor for C#. Microsoft has a family
of code editors and Integrated Development Environments (IDEs), which include:

• Visual Studio Code
• Visual Studio 2019
• Visual Studio 2019 for Mac

Using Visual Studio Code for cross-platform
development
The most modern and lightweight code editor to choose, and the only one from
Microsoft that is cross-platform, is Microsoft Visual Studio Code. It is able to run on
all common operating systems, including Windows, macOS, and many varieties of
Linux, including Red Hat Enterprise Linux (RHEL) and Ubuntu.

Visual Studio Code is a good choice for modern cross-platform development because
it has an extensive and growing set of extensions to support many languages beyond
C#, and being cross-platform and lightweight it can be installed on all platforms that
your apps will be deployed to for quick bug fixes and so on.

Using Visual Studio Code means a developer can use a cross-platform code editor to
developer cross-platform apps. Therefore, I have chosen to use Visual Studio Code
for all but the last two chapters for this book, because they need special features not
available in Visual Studio Code for building Windows and mobile apps.

If you prefer to use Visual Studio 2019 or Visual Studio for Mac instead of Visual
Studio Code, then of course you can, but I will assume that you are already familiar
with how to use them and so I will not give step-by-step instructions for using them
in this book.

More Information: You can read about Microsoft's plans for
Visual Studio Code at the following link: https://github.
com/Microsoft/vscode/wiki/Roadmap.

More Information: You can read a comparison of Visual Studio
Code and Visual Studio 2019 at the following link: https://
www.itworld.com/article/3403683/visual-studio-
code-stepping-on-visual-studios-toes.html.

https://github.com/Microsoft/vscode/wiki/Roadmap.
https://github.com/Microsoft/vscode/wiki/Roadmap.
https://www.itworld.com/article/3403683/visual-studio-code-stepping-on-visual-studios-toes.html
https://www.itworld.com/article/3403683/visual-studio-code-stepping-on-visual-studios-toes.html
https://www.itworld.com/article/3403683/visual-studio-code-stepping-on-visual-studios-toes.html

Hello, C#! Welcome, .NET! | 01

[3]

Using Visual Studio 2019 for Windows app
development
Microsoft Visual Studio 2019 only runs on Windows, version 7 SP1 or later. You
must run it on Windows 10 to create Universal Windows Platform (UWP) apps. It is
the only Microsoft developer tool that can create Windows apps, so we will use it in
Chapter 20, Building Windows Desktop Apps.

Using Visual Studio for Mac for mobile
development
To create apps for the Apple operating systems like iOS to run on devices like iPhone
and iPad, you must have Xcode, but that tool only runs on macOS. Although you
can use Visual Studio 2019 on Windows with its Xamarin extensions to write a cross-
platform mobile app, you still need macOS and Xcode to compile it.

So, we will use Visual Studio 2019 for Mac on macOS in Chapter 21, Building Cross-
Platform Mobile Apps Using Xamarin.Forms.

Recommended tools for chapters
To help you to set up the best environment to use in this book, the following table
summarizes which tools and operating systems I recommend be used for each of the
chapters in this book:

Chapters Tool Operating systems

Chapters 1 to 19 Visual Studio Code Windows, macOS, Linux

Chapter 20 Visual Studio 2019 Windows 10

Chapter 21 Visual Studio 2019 for Mac macOS

To write this book, I used my MacBook Pro and the following listed software:

• Visual Studio Code on macOS as my primary code editor.
• Visual Studio Code on Windows 10 in a virtual machine to test OS-specific

behavior like working with the filesystem.
• Visual Studio 2019 on Windows 10 in a virtual machine to build

Windows apps.
• Visual Studio 2019 for Mac on macOS to build mobile apps.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[4]

Deploying cross-platform
Your choice of code editor and operating system for development does not limit
where your code gets deployed.

.NET Core 3.0 supports the following platforms for deployment:

• Windows: Windows 7 SP1, or later. Windows 10 version 1607, or later.
Windows Server 2012 R2 SP1, or later. Nano Server version 1803, or later.

• Mac: macOS High Sierra (version 10.13), or later.
• Linux: RHEL 6, or later. RHEL, CentOS, Oracle Linux version 7, or later.

Ubuntu 16.04, or later. Fedora 29, or later. Debian 9, or later. openSUSE 15,
or later.

Understanding Microsoft Visual Studio Code
versions
Microsoft releases a new feature version of Visual Studio Code (almost) every month
and bug fix versions more frequently. For example:

• Version 1.38, August 2019 feature release.
• Version 1.38.1, August 2019 bug fix release.

The version used in this book is 1.38.1 released on 11 September 2019, but the version
of Microsoft Visual Studio Code is less important than the version of the C# for
Visual Studio Code extension that you will install later.

More Information: Google and Amazon are supporters of Visual
Studio Code, as you can read at the following link: https://
www.cnbc.com/2018/12/20/microsoft-cmo-capossela-
says-google-employees-use-visual-studio-code.html.

More Information: You can read the official list of supported
operating systems at the following link: https://github.
com/dotnet/core/blob/master/release-notes/3.0/3.0-
supported-os.md.

More Information: You can read about the latest versions at the
following link: https://code.visualstudio.com/updates.

https://www.cnbc.com/2018/12/20/microsoft-cmo-capossela-says-google-employees-use-visual-studio-code.html
https://www.cnbc.com/2018/12/20/microsoft-cmo-capossela-says-google-employees-use-visual-studio-code.html
https://www.cnbc.com/2018/12/20/microsoft-cmo-capossela-says-google-employees-use-visual-studio-code.html
https://github.com/dotnet/core/blob/master/release-notes/3.0/3.0-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/3.0/3.0-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/3.0/3.0-supported-os.md
https://code.visualstudio.com/updates

Hello, C#! Welcome, .NET! | 01

[5]

While the C# extension is not required, it provides IntelliSense as you type, code
navigation, and debugging features, so it's something that's very handy to install. To
support C# 8.0, you should install C# extension version 1.21.3 or later.

In this book, I will show keyboard shortcuts and screenshots of Visual Studio Code
using the macOS version. Visual Studio Code on Windows and variants of Linux are
practically identical, although keyboard shortcuts are likely different.

Some common keyboard shortcuts that we will use are shown in the following table:

Action macOS Windows
Show Command Palette Cmd + Shift + P,

F1
Ctrl + Shift + P,
F1

Go To Definition F12 F12
Go Back Ctrl + - Alt + ←
Go Forward Ctrl + Shift + - Alt + →
Show Terminal Ctrl + ' (backtick) Ctrl + ' (quote)
New Terminal Ctrl + Shift + ' (backtick) Ctrl + Shift + ' (quote)
Toggle Line Comment Ctrl + / Ctrl + /
Toggle Block Comment Shift + Option + A Shift + Alt + A

I recommend that you download a PDF of keyboard shortcuts for your operating
system from the following list:

• Windows: https://code.visualstudio.com/shortcuts/keyboard-
shortcuts-windows.pdf

• macOS: https://code.visualstudio.com/shortcuts/keyboard-
shortcuts-macos.pdf

• Linux: https://code.visualstudio.com/shortcuts/keyboard-
shortcuts-linux.pdf

Visual Studio Code has rapidly improved over the past couple of years and has
pleasantly surprised Microsoft with its popularity. If you are brave and like to live
on the bleeding edge, then there is an Insiders edition, which is a daily build of the
next version.

More Information: You can learn about the default key bindings
for Visual Studio Code and how to customize them at the
following link: https://code.visualstudio.com/docs/
getstarted/keybindings.

https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf
https://code.visualstudio.com/docs/getstarted/keybindings
https://code.visualstudio.com/docs/getstarted/keybindings

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[6]

Downloading and installing Visual Studio
Code
Now you are ready to download and install Visual Studio Code, its C# extension,
and the .NET Core 3.0 SDK.

1. Download and install either the Stable build or the Insiders edition of Visual
Studio Code from the following link: https://code.visualstudio.com/.

2. Download and install the .NET Core SDK from the following link: https://
www.microsoft.com/net/download.

3. To install the C# extension, you must first launch the Visual Studio Code
application.

4. In Visual Studio Code, click the Extensions icon or navigate to View
| Extensions.

5. C# is one of the most popular extensions available, so you should see it at
the top of the list, or you can enter C# in the search box, as shown in the
following screenshot:

6. Click Install and wait for supporting packages to download and install.

More Information: You can read more about Visual Studio
Code support for C# at the following link: https://code.
visualstudio.com/docs/languages/csharp.

https://code.visualstudio.com/
https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
https://code.visualstudio.com/docs/languages/csharp
https://code.visualstudio.com/docs/languages/csharp

Hello, C#! Welcome, .NET! | 01

[7]

Installing other extensions
In later chapters of this book, you will use more extensions. If you want to install
them now, all the extensions that we will use are shown in the following table:

Extension Description
C# for Visual Studio Code
(powered by OmniSharp)
ms-vscode.csharp

C# editing support, including syntax highlighting,
IntelliSense, Go to Definition, Find All References,
debugging support for .NET Core (CoreCLR), and
support for project.json and csproj projects on
Windows, macOS, and Linux.

C# XML Documentation
Comments k--kato.docomment

Generate XML documentation comments for Visual
Studio Code.

C# Extensions
jchannon.csharpextensions

Add C# class, add C# interface, add fields and
properties from constructors, add constructor from
properties.

REST Client
humao.rest-client

Send an HTTP request and view the response directly
in Visual Studio Code.

ILSpy .NET Decompiler
icsharpcode.ilspy-vscode

Decompile MSIL assemblies – support for .NET
Framework, .NET Core, and .NET Standard.

SharpPad
jmazouri.sharppad

Easily inspect the results of your code. It works
similarly to standalone tools like LinqPad and
RoslynPad.

Understanding .NET
.NET Framework, .NET Core, Xamarin, and .NET Standard are related and
overlapping platforms for developers used to build applications and services. In this
section, we're going to introduce you to each of these .NET concepts.

Understanding the .NET Framework
.NET Framework is a development platform that includes a Common Language
Runtime (CLR), which manages the execution of code, and a Base Class Library (BCL),
which provides a rich library of classes to build applications from. Microsoft originally
designed the .NET Framework to have the possibility of being cross-platform, but
Microsoft put their implementation effort into making it work best with Windows.

Since .NET Framework 4.5.2 it has been an official component of the Windows
operating system. .NET Framework is installed on over one billion computers so it
must change as little as possible. Even bug fixes can cause problems, so it is updated
infrequently.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[8]

All of the apps on a computer written for the .NET Framework share the same
version of the CLR and libraries stored in the Global Assembly Cache (GAC),
which can lead to issues if some of them need a specific version for compatibility.

Understanding the Mono and Xamarin
projects
Third parties developed a .NET Framework implementation named the Mono
project. Mono is cross-platform, but it fell well behind the official implementation
of .NET Framework.

Mono has found a niche as the foundation of the Xamarin mobile platform as well as
cross-platform game development platforms like Unity.

Microsoft purchased Xamarin in 2016 and now gives away what used to be an
expensive Xamarin extension for free with Visual Studio 2019. Microsoft renamed the
Xamarin Studio development tool, which could only create mobile apps, to Visual
Studio for Mac and gave it the ability to create other types of apps. With Visual Studio
2019 for Mac, Microsoft has replaced parts of the Xamarin Studio editor with parts from
Visual Studio for Windows to provide closer parity of experience and performance.

Understanding .NET Core
Today, we live in a truly cross-platform world where modern mobile and cloud
development have made Windows, as an operating system, much less important.
Because of that, Microsoft has been working on an effort to decouple .NET from
its close ties with Windows. While rewriting .NET Framework to be truly cross-
platform, they've taken the opportunity to refactor and remove major parts that are
no longer considered core.

Good Practice: Practically speaking, .NET Framework is Windows-
only and a legacy platform. Do not create new apps using it.

More Information: You can read more about the project at the
following link: http://www.mono-project.com/.

More Information: You can read more about Unity at the
following link: https://docs.unity3d.com/.

http://www.mono-project.com/.
https://docs.unity3d.com/

Hello, C#! Welcome, .NET! | 01

[9]

This new product was branded .NET Core and includes a cross-platform
implementation of the CLR known as CoreCLR and a streamlined library
of classes known as CoreFX.

Scott Hunter, Microsoft Partner Director Program Manager for .NET, has said
that "Forty percent of our .NET Core customers are brand-new developers to the
platform, which is what we want with .NET Core. We want to bring new people in."

.NET Core is fast moving and because it can be deployed side by side with an app,
it can change frequently knowing those changes will not affect other .NET Core apps
on the same machine. Improvements that Microsoft can make to .NET Core cannot
be added to .NET Framework.

Understanding future versions of .NET
At the Microsoft Build developer conference in May 2019, the .NET team announced
that after .NET Core 3.0 is released in September 2019, .NET Core will be renamed
.NET and the major version number will skip the number four to avoid confusion
with .NET Framework 4.x. So, the next version of .NET Core will be .NET 5.0 and
it is scheduled for release in November 2020. After that, Microsoft plans on annual
major version releases every November, rather like Apple does major version
number releases of iOS every second week in September.

The following table shows when the key versions of .NET Core were released,
when future releases are planned, and which version is used by the various editions
of this book:

Version Released Edition Published

.NET Core RC1 November 2015 First March 2016

.NET Core 1.0 June 2016

.NET Core 1.1 November 2016

More Information: You can read more about Microsoft's
positioning of .NET Core and .NET Framework at the following
link: https://devblogs.microsoft.com/dotnet/update-
on-net-core-3-0-and-net-framework-4-8/.

More Information: You can read more about Microsoft's
plans for .NET 5.0 at the following link: https://devblogs.
microsoft.com/dotnet/introducing-net-5/

https://devblogs.microsoft.com/dotnet/update-on-net-core-3-0-and-net-framework-4-8/
https://devblogs.microsoft.com/dotnet/update-on-net-core-3-0-and-net-framework-4-8/
https://devblogs.microsoft.com/dotnet/update-on-net-core-3-0-and-net-framework-4-8/
https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://devblogs.microsoft.com/dotnet/introducing-net-5/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[10]

.NET Core 1.0.4 and .NET Core 1.1.1 March 2017 Second March 2017

.NET Core 2.0 August 2017

.NET Core for UWP in Windows 10 Fall
Creators Update

October 2017 Third November 2017

.NET Core 2.1 May 2018

.NET Core 2.2 December 2018

.NET Core 3.0 (Current) September 2019 Fourth October 2019

.NET Core 3.1 (LTS) November 2019

.NET 5.0 November 2020

.NET 6.0 November 2021

I cannot promise 5th and 6th editions of this book to match future releases of .NET,
but that would be a safe bet.

Understanding .NET Core support
.NET Core versions are either Long-Term Support (LTS) or Current, as described in
the following list:

• LTS releases are stable and require fewer updates over their lifetime.
These are a good choice for applications that you do not intend to update
frequently. LTS releases will be supported for 3 years after general
availability. .NET Core 3.1 will be an LTS release.

.NET Core 1.0 and 1.1 reached end of life and went out of support on 27 June 2019, 3
years after the initial .NET Core 1.0 release.

• Current releases include features that may change based on feedback. These
are a good choice for applications that you are actively developing because
they provide access to the latest improvements. After a 3-month maintenance
period, the previous minor version will no longer be supported. For example,
after 1.2 releases systems running version 1.1 will have 3 months to update
to 1.2 to remain eligible for support. .NET Core 3.0 is a Current release so if
.NET Core 3.1 releases in November 2019 as planned, then you will need to
upgrade to it by February 2020.

Both receive critical fixes throughout their lifetime for security and reliability. You
must stay up to date with the latest patches to get support. For example, if a system
is running 1.0 and 1.0.1 has been released, 1.0.1 will need to be installed.

Hello, C#! Welcome, .NET! | 01

[11]

What is different about .NET Core?
.NET Core is smaller than the current version of .NET Framework due to the fact
that legacy technologies have been removed. For example, Windows Forms and
Windows Presentation Foundation (WPF) can be used to build graphical user
interface (GUI) applications, but they are tightly bound to the Windows ecosystem,
so they have been removed from .NET Core on macOS and Linux.

One of the new features of .NET Core 3.0 is support for running old Windows Forms
and WPF applications using the Windows Desktop Pack that is included with
the Windows version of .NET Core 3.0 which is why it is bigger than the SDKs for
macOS and Linux. You can make some small changes to your legacy Windows app
if necessary, and then rebuild it for .NET Core to take advantage of new features and
performance improvements. You'll learn about support for building these types of
Windows apps in Chapter 20, Building Windows Desktop Apps.

The latest technology used to build Windows apps is the Universal Windows
Platform (UWP), which is built on a custom version of .NET Core. UWP is not part
of .NET Core because it is not cross-platform.

ASP.NET Web Forms and Windows Communication Foundation (WCF) are old
web application and service technologies that fewer developers are choosing to use
for new development projects today, so they have also been removed from .NET
Core. Instead, developers prefer to use ASP.NET MVC and ASP.NET Web API. These
two technologies have been refactored and combined into a new product that runs on
.NET Core, named ASP.NET Core. You'll learn about the technologies in Chapter 15,
Building Websites Using ASP.NET Core Razor Pages, Chapter 16, Building Websites Using
the Model-View-Controller Pattern, and Chapter 18, Building and Consuming Web Services.

Entity Framework (EF) 6 is an object-relational mapping technology that is designed
to work with data that is stored in relational databases such as Oracle and Microsoft
SQL Server. It has gained baggage over the years, so the cross-platform API has been
slimmed down, will be given support for non-relational databases like Microsoft
Azure Cosmos DB, and named Entity Framework Core. You will learn about it in
Chapter 11, Working with Databases Using Entity Framework Core.

More Information: Some .NET Framework developers are
upset that ASP.NET Web Forms, WCF, and Windows Workflow
(WF) are missing from .NET Core and would like Microsoft to
change their minds. There are open source projects to enable
WCF and WF to migrate to .NET Core. You can read more at the
following link: https://devblogs.microsoft.com/dotnet/
supporting-the-community-with-wf-and-wcf-oss-
projects/.

https://devblogs.microsoft.com/dotnet/supporting-the-community-with-wf-and-wcf-oss-projects/
https://devblogs.microsoft.com/dotnet/supporting-the-community-with-wf-and-wcf-oss-projects/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[12]

If you have existing apps that use the old EF then version 6.3 is supported on .NET
Core 3.0.

In addition to removing large pieces from .NET Framework in order to make .NET
Core, Microsoft has componentized the .NET Core into NuGet packages, those being
small chunks of functionality that can be deployed independently.

Microsoft's primary goal is not to make .NET Core smaller than .NET Framework.
The goal is to componentize .NET Core to support modern technologies and to have
fewer dependencies, so that deployment requires only those packages that your
application needs.

Understanding .NET Standard
The situation with .NET in 2019 is that there are three forked .NET platforms
controlled by Microsoft, as shown in the following list:

• .NET Core: for cross-platform and new apps.
• .NET Framework: for legacy apps.
• Xamarin: for mobile apps.

Each has strengths and weaknesses because they are all designed for different
scenarios. This has led to the problem that a developer must learn three platforms,
each with annoying quirks and limitations. Because of that, Microsoft defined .NET
Standard: a specification for a set of APIs that all .NET platforms can implement
to indicate what level of compatibility they have. For example, basic support is
indicated by a platform being compliant with .NET Standard 1.4.

With .NET Standard 2.0 and later, Microsoft made all three platforms converge on
a modern minimum standard, which makes it much easier for developers to share
code between any flavor of .NET.

For .NET Core 2.0 and later, this added a number of the missing APIs that developers
need to port old code written for .NET Framework to the cross-platform .NET Core.
However, some APIs are implemented, but throw an exception to indicate to a
developer that they should not actually be used! This is usually due to differences in
the operating system on which you run .NET Core. You'll learn how to handle these
exceptions in Chapter 2, Speaking C#.

It is important to understand that .NET Standard is just a standard. You are not able
to install .NET Standard in the same way that you cannot install HTML5. To use
HTML5, you must install a web browser that implements the HTML5 standard.

Hello, C#! Welcome, .NET! | 01

[13]

To use the .NET Standard, you must install a .NET platform that implements the
.NET Standard specification. .NET Standard 2.0 is implemented by the latest versions
of .NET Framework, .NET Core, and Xamarin.

The latest .NET Standard, 2.1, is only implemented by .NET Core 3.0, Mono, and
Xamarin. Some features of C# 8.0 require .NET Standard 2.1. .NET Standard 2.1 is not
implemented by .NET Framework 4.8 so we should treat .NET Framework as legacy.

.NET platforms and tools used by the book
editions
For the first edition of this book, which was written in March 2016, I focused on .NET
Core functionality but used .NET Framework when important or useful features had
not yet been implemented in .NET Core, because that was before the final release of
.NET Core 1.0. Visual Studio 2015 was used for most examples, with Visual Studio
Code shown only briefly.

The second edition was (almost) completely purged of all .NET Framework code
examples so that readers were able to focus on .NET Core examples that truly run
cross-platform. The third edition completed the switch. It was rewritten so that all of
the code was pure .NET Core. But giving step-by-step instructions for multiple tools
added unnecessary complexity.

In this fourth edition, we'll continue the trend by only showing coding examples
using Visual Studio Code for all but the last two chapters of this book. In Chapter
20, Building Windows Desktop Apps, you'll need to use Visual Studio 2019 running on
Windows 10, and in Chapter 21, Building Cross-Platform Mobile Apps Using Xamarin.
Forms, you'll need to use Visual Studio 2019 for Mac.

Understanding intermediate language
The C# compiler (named Roslyn) used by the dotnet CLI tool converts your
C# source code into intermediate language (IL) code and stores the IL in an
assembly (a DLL or EXE file). IL code statements are like assembly language
instructions, which are executed by .NET Core's virtual machine, known as
CoreCLR.

More Information: .NET Standard versions and which .NET
platforms support them are listed at the following link:
https://github.com/dotnet/standard/blob/master/
docs/versions.md.

https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[14]

At runtime, CoreCLR loads the IL code from the assembly, the just-in-time (JIT)
compiler compiles it into native CPU instructions, and then it is executed by the CPU
on your machine. The benefit of this three-step compilation process is that Microsoft
is able to create CLRs for Linux and macOS, as well as for Windows. The same IL
code runs everywhere because of the second compilation process, which generates
code for the native operating system and CPU instruction set.

Regardless of which language the source code is written in, for example, C#,
Visual Basic or F#, all .NET applications use IL code for their instructions stored
in an assembly. Microsoft and others provide disassembler tools that can open an
assembly and reveal this IL code like the ILSpy .NET Decompiler extension.

Understanding .NET Native
Another .NET initiative is called .NET Native. This compiles C# code to native CPU
instructions ahead of time (AoT), rather than using the CLR to compile IL code JIT
to native code later. .NET Native improves execution speed and reduces the memory
footprint for applications because the native code is generated at build time and then
deployed instead of the IL code.

Comparing .NET technologies
We can summarize and compare .NET technologies in 2019, as shown in the
following table:

Technology Description Host OSes

.NET Core Modern feature set, full C# 8.0 support,
port existing and create new Windows
and Web apps and services.

Windows, macOS, Linux

.NET Framework Legacy feature set, limited C# 8.0
support, maintain existing applications.

Windows only

Xamarin Mobile apps only. Android, iOS, macOS

By the end of 2020, Microsoft promises that there will be a single .NET platform
instead of three. .NET 5.0 is planned to have a single BCL and two runtimes: one
optimized for server or desktop scenarios like websites and Windows desktop apps
based on the .NET Core runtime, and one optimized for mobile apps based on the
Xamarin runtime.

More Information: You can read more about .NET Native at the
following link: https://github.com/dotnet/corert/blob/
master/Documentation/intro-to-corert.md.

https://github.com/dotnet/corert/blob/master/Documentation/intro-to-corert.md
https://github.com/dotnet/corert/blob/master/Documentation/intro-to-corert.md
https://github.com/dotnet/corert/blob/master/Documentation/intro-to-corert.md

Hello, C#! Welcome, .NET! | 01

[15]

Building console apps using Visual
Studio Code
The goal of this section is to showcase how to build a console app using Visual
Studio Code. Both instructions and screenshots in this section are for macOS, but the
same actions will work with Visual Studio Code on Windows and Linux variants.

The main differences will be native command-line actions such as deleting a file:
both the command and the path are likely to be different on Windows or macOS and
Linux. Luckily, the dotnet command-line tool will be identical on all platforms.

Writing code using Visual Studio Code
Let's get started writing code!

1. Start Visual Studio Code.
2. On macOS, navigate to File | Open..., or press Cmd + O. On Windows,

navigate to File | Open Folder…, or press Ctrl + K Ctrl + O. On both OSes, you
can click the Open Folder button in the EXPLORER pane or click the Open
Folder… link on the Welcome page, as shown in the following screenshot:

3. In the dialog box, navigate to your user folder on macOS (mine is named
markjprice), your Documents folder on Windows, or any directory or drive
in which you want to save your projects.

4. Click the New Folder button and name the folder Code.
5. In the Code folder, create a new folder named Chapter01.
6. In the Chapter01 folder, create a new folder named HelloCS.
7. Select the HelloCS folder and on macOS click Open or on Windows click

Select Folder.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[16]

8. Navigate to View | Terminal, or on macOS press Ctrl + ' (backtick) and on
Windows press Ctrl + ' (single quote). Confusingly on Windows the key
combination Ctrl + ' (backtick) splits the current window!

9. In TERMINAL, enter the following command:
dotnet new console

10. You will see that the dotnet command-line tool creates a new Console
Application project for you in the current folder, and the EXPLORER
window shows the two files created, HelloCS.proj and Program.cs, as
shown in the following screenshot:

11. In EXPLORER, click on the file named Program.cs to open it in the editor
window. The first time that you do this, Visual Studio Code may have to
download and install C# dependencies like OmniSharp, the Razor Language
Server, and the .NET Core debugger, if it did not do this when you installed
the C# extension.

12. If you see a warning saying that required assets are missing, click Yes, as
shown in the following screenshot:

Hello, C#! Welcome, .NET! | 01

[17]

13. After a few seconds, a folder named .vscode will appear in the EXPLORER
pane. These are used during debugging, as you will learn in Chapter 4,
Writing, Debugging, and Testing Functions.

14. In Program.cs, modify line 9 so that the text that is being written to the
console says, Hello, C#!

15. Navigate to File | Auto Save. This toggle will save the annoyance of
remembering to save before rebuilding your application each time.

Compiling and running code using dotnet CLI
The next task is to compile and run the code.

1. Navigate to View | Terminal and enter the following command:
dotnet run

2. The output in the TERMINAL window will show the result of running your
application, as shown in the following screenshot:

Downloading solution code from
a GitHub repository
Git is a commonly used source code management system. GitHub is a company,
website, and desktop application that makes it easier to manage Git. Microsoft
recently purchased GitHub, so it will continue to get closer integration with
Microsoft tools.

I used GitHub to store solutions to all the practical exercises that are featured at the
end of each chapter. You will find the repository for this chapter at the following
link: https://github.com/markjprice/cs8dotnetcore3.

https://github.com/markjprice/cs8dotnetcore3

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[18]

Using Git with Visual Studio Code
Visual Studio Code has support for Git, but it will use your OS's Git installation, so
you must install Git 2.0 or later first before you get these features. You can install Git
from the following link: https://git-scm.com/download.

If you like to use a GUI, you can download GitHub Desktop from the following link:
https://desktop.github.com

Cloning the book solution code repository
Let's clone the book solution code repository.

1. Create a folder named Repos in your user or Documents folder, or wherever
you want to store your Git repositories.

2. In Visual Studio Code, open the Repos folder.
3. Navigate to View | Terminal, and enter the following command:

git clone https://github.com/markjprice/cs8dotnetcore3.git

4. Cloning all of the solutions for all of the chapters will take a minute or so, as
shown in the following screenshot:

Looking for help
This section is all about how to find quality information about programming on the
web.

More Information: For more information about source code
version control with Visual Studio Code, visit the following
link: https://code.visualstudio.com/Docs/editor/
versioncontrol

https://git-scm.com/download
https://desktop.github.com
https://code.visualstudio.com/Docs/editor/versioncontrol
https://code.visualstudio.com/Docs/editor/versioncontrol

Hello, C#! Welcome, .NET! | 01

[19]

Reading Microsoft documentation
The definitive resource for getting help with Microsoft developer tools and platforms
used to be Microsoft Developer Network (MSDN). Now, it is Microsoft Docs, and
you can find it at the following link: https://docs.microsoft.com/.

Getting help for the dotnet tool
At the command line, you can ask the dotnet tool for help about its commands.

1. To open the official documentation in a browser window for the dotnet new
command, enter the following at the command line or in Visual Studio Code
Terminal:
dotnet help new

2. To get help output at the command line, use the -h or --help flag, as shown
in the following command:
dotnet new console -h

3. You will see the following partial output:
Console Application (C#)

Author: Microsoft

Description: A project for creating a command-line application
that can run on .NET Core on Windows, Linux and macOS

Options:

 --langVersion Sets langVersion in the created project file

 text - Optional

 --no-restore If specified, skips the automatic restore of the
project on create.

 bool - Optional

 Default: false / (*) true

* Indicates the value used if the switch is provided without
a value.

Getting definitions of types and their
members
One of the most useful keyboard shortcuts in Visual Studio Code is F12 to Go To
Definition. This will show what the public definition of the type or member looks
like by reading the metadata in the compiled assembly. Some tools like ILSpy .NET
Decompiler will even reverse-engineer from the metadata and IL code back into C#
for you.

https://docs.microsoft.com/.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[20]

1. In Visual Studio Code, open the HelloCS folder.
2. In Program.cs, inside the Main method, enter the following statement to

declare an integer variable named z:
int z;

3. Click inside int and then press F12, or right-click and choose Go To
Definition. In the new code window that appears, you can see how the int
data type is defined, as shown in the following screenshot:

You can see that int:
 ° Is defined using the struct keyword.
 ° Is in the System.Runtime assembly.
 ° Is in the System namespace.
 ° Is named Int32.
 ° Is therefore an alias for the System.Int32 type.
 ° Implements interfaces such as IComparable.
 ° Has constant values for its maximum and minimum values.
 ° Has methods like Parse.

Right now, the Go To Definition feature is not that useful to you because
you do not yet know what these terms mean.

Good Practice: When you try to use Go To Definition you will
sometimes see an error saying, No definition found. This is because
the C# extension does not know about the current project. Navigate
to View | Command Palette, enter and select OmniSharp:
Select Project, and then select the correct project that you want to
work with.

Hello, C#! Welcome, .NET! | 01

[21]

By the end of the first part of this book, which teaches you about C#, you will
know enough for this feature to become very handy.

4. In the code editor window, scroll down to find the Parse method with a single
string parameter starting on line 86, as shown in the following screenshot:

In the comment, you will see that Microsoft has documented what exceptions
might occur if you call this method, including ArgumentNullException,
FormatException, and OverflowException. Now, we know that we need to wrap a
call to this method in a try statement and which exceptions to catch.

Hopefully, you are getting inpatient to learn what all this means!

Be patient for a little longer. You are almost at the end of this chapter, and in the next
chapter you will dive into the details of the C# language. But first, let's see where else
you can look for help.

Looking for answers on Stack Overflow
Stack Overflow is the most popular third-party website for getting answers
to difficult programming questions. It's so popular that search engines such as
DuckDuckGo have a special way to write a query to search the site.

1. Start your favorite web browser.
2. Navigate to DuckDuckGo.com, enter the following query, and note the search

results, which are also shown in the following screenshot:

!so securestring

https://duckduckgo.com/
http://DuckDuckGo.com

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[22]

Searching for answers using Google
You can search Google with advanced search options to increase the likelihood of
finding what you need.

1. Navigate to Google.
2. Search for information about garbage collection using a simple Google

query, and note that you will probably see a Wikipedia definition of garbage
collection in computer science, and then a list of garbage collection services
in your local area, as shown in the following screenshot:

Hello, C#! Welcome, .NET! | 01

[23]

3. Improve the search by restricting it to a useful site such as Stack Overflow,
and by removing languages that we might not care about such as C++, Rust,
and Python, or by adding C# and .NET explicitly, as shown in the following
search query:

garbage collection site:stackoverflow.com +C# -Java

Subscribing to the official .NET blog
To keep up to date with .NET, an excellent blog to subscribe to is the official .NET
Blog written by the .NET engineering teams, and you can find it at the following
link: https://blogs.msdn.microsoft.com/dotnet/

Practicing and exploring
Let's now test your knowledge and understanding by trying to answer some
questions, getting some hands-on practice, and exploring with deeper research into
the topics covered throughout this chapter.

Exercise 1.1 – Test your knowledge
Try to answer the following questions, remembering that although most answers
can be found in this chapter, some online research or code writing will be needed to
answer others:

1. Why can a programmer use different languages, for example, C# and F#, to
write applications that run on .NET Core?

2. What do you type at the prompt to create a console app?
3. What do you type at the prompt to build and execute C# source code?
4. What is the Visual Studio Code keyboard shortcut to view Terminal?
5. Is Visual Studio 2019 better than Visual Studio Code?
6. Is .NET Core better than .NET Framework?
7. What is .NET Standard and why is it important?
8. What is the name of the entry point method of a .NET console application

and how should it be declared?
9. Where would you look for help about a C# keyword?
10. Where would you look for solutions to common programming problems?

https://blogs.msdn.microsoft.com/dotnet/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[24]

Exercise 1.2 – Practice C# anywhere
You don't need Visual Studio Code, or even Visual Studio 2019 or Visual Studio 2019
for Mac to write C#. You can go to .NET Fiddle - https://dotnetfiddle.net/ -
and start coding online.

Microsoft is also working on an online version of Visual Studio Code that can run in
any browser but currently it is only available in private preview. Eventually, it will be
accessible to everyone at the following link: https://online.visualstudio.com/

Exercise 1.3 – Explore topics
You can use the following links to read more details about the topics we've covered
in this chapter:

• Welcome to .NET Core: http://dotnet.github.io
• .NET Core Command-Line Interface (CLI) tool: https://aka.ms/dotnet-

cli-docs

• .NET Core runtime, CoreCLR: https://github.com/dotnet/coreclr/
• .NET Core Roadmap: https://github.com/dotnet/core/blob/master/

roadmap.md

• .NET Standard FAQ: https://github.com/dotnet/standard/blob/
master/docs/faq.md

• Stack Overflow: http://stackoverflow.com/
• Google Advanced Search: http://www.google.com/advanced_search
• Microsoft Virtual Academy: https://mva.microsoft.com/
• Microsoft Channel 9: Developer Videos: https://channel9.msdn.com/

Summary
In this chapter, we set up your development environment, discussed the differences
between .NET Framework, .NET Core, Xamarin, and .NET Standard, we used Visual
Studio Code and .NET Core SDK to create a simple console application, we learned
how to download the solution code for this book from a GitHub repository, and most
importantly, how to find help.

In the next chapter, you will learn to speak C#.

https://dotnetfiddle.net/
https://dotnetfiddle.net/
https://online.visualstudio.com/
https://online.visualstudio.com/
http://dotnet.github.io
https://aka.ms/dotnet-cli-docs
https://aka.ms/dotnet-cli-docs
https://github.com/dotnet/coreclr/
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
http://stackoverflow.com/
http://www.google.com/advanced_search
https://mva.microsoft.com/
https://channel9.msdn.com/

[25]

Chapter 02
Speaking C#

This chapter is all about the basics of the C# programming language. Over the course
of this chapter, you'll learn how to write statements using the grammar of C#, as well
as being introduced to some of the common vocabulary that you will use every day.
In addition to this, by the end of the chapter you'll feel confident in knowing how to
temporarily store and work with information in your computer's memory.

This chapter covers the following topics:

• Introducing C#
• Understanding the basics of C#
• Working with variables
• Working with null values
• Further exploring console applications

Introducing C#
This part of the book is about the C# language—the grammar and vocabulary that
you will use every day to write the source code for your applications.

Programming languages have many similarities to human languages, except that in
programming languages, you can make up your own words, just like Dr. Seuss!

In a book written by Dr. Seuss in 1950, If I Ran the Zoo, he states this:

"And then, just to show them, I'll sail to Ka-Troo And Bring Back an
It-Kutch, a Preep, and a Proo, A Nerkle, a Nerd, and a Seersucker, too!"

Understanding language versions and features
This part of the book covers the C# programming language and is written primarily
for beginners, so it covers the fundamental topics that all developers need to know,
from declaring variables to storing data to how to define your own custom data types.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[26]

Advanced and obscure topics like ref local variable reassignment and reference
semantics with value types are not covered.

This book covers features of the C# language from version 1.0 up to the latest
version, 8.0. If you already have some familiarity with older versions of C# and
are excited to find out about the new features in the most recent versions of C#, I
have made it easier for you to jump around by listing language versions and their
important new features below, along with the chapter number and topic title where
you can learn about them.

C# 1.0
C# 1.0 was released in 2002 and included all the important features of a statically
typed object-oriented modern language, as you will see throughout all the chapters
in Part 1.

C# 2.0
C# 2.0 was released in 2005 and focused on enabling strong data typing using
generics, to improve code performance and reduce type errors, including the topics
listed in the following table:

Feature Chapter Topic

Nullable value types 2 Making a value type nullable
Generics 6 Making types more reusable with generics

C# 3.0
C# 3.0 was released in 2007 and focused on enabling declarative coding with
Language INtegrated Queries (LINQ) and related features like anonymous types
and lambda expressions, including the topics listed in the following table:

Feature Chapter Topic

Implicitly typed local variables 2 Inferring the type of a local variable
LINQ 12 All topics in Chapter 12, Querying and

Manipulating Data Using LINQ

C# 4.0
C# 4.0 was released in 2010 and focused on improving interoperability with dynamic
languages like F# and Python, including the topics listed in the following table:

Speaking C# | 02

[27]

Feature Chapter Topic

Dynamic types 2 The dynamic type
Named/optional arguments 5 Optional parameters and named arguments

C# 5.0
C# 5.0 was released in 2012 and focused on simplifying asynchronous operation
support by automatically implementing complex state machines while writing what
looks like synchronous statements, including the topics listed in the following table:

Feature Chapter Topic

Simplified asynchronous tasks 13 Understanding async and await

C# 6.0
C# 6.0 was released in 2015 and focused on minor refinements to the language,
including the topics listed in the following table:

Feature Chapter Topic

static imports 2 Simplifying the usage of the console
Interpolated strings 2 Displaying output to the user
Expression bodied members 5 Defining read-only properties

C# 7.0
C# 7.0 was released in March 2017 and focused on adding functional language
features like tuples and pattern matching, as well as minor refinements to the
language, including the topics listed in the following table:

Feature Chapter Topic

Binary literals and digit
separators

2 Storing whole numbers

Pattern matching 3 Pattern matching with the if statement
out variables 5 Controlling how parameters are passed
Tuples 5 Combining multiple values with tuples
Local functions 6 Defining local functions

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[28]

C# 7.1
C# 7.1 was released in August 2017 and focused on minor refinements to the
language, including the topics listed in the following table:

Feature Chapter Topic

Default literal expressions 5 Setting fields with default literal
Inferred tuple element names 5 Inferring tuple names
async Main 13 Improving responsiveness for console apps

C# 7.2
C# 7.2 was released in November 2017 and focused on minor refinements to the
language, including the topics listed in the following table:

Feature Chapter Topic

Leading underscores in numeric literals 2 Storing whole numbers
Non-trailing named arguments 5 Optional parameters and named

arguments
private protected access modifier 5 Understanding access modifiers
You can test == and != with tuple types 5 Comparing tuples

C# 7.3
C# 7.3 was released in May 2018 and focused on performance-oriented safe code
that improve ref variables, pointers, and stackalloc. These are advanced and rarely
needed for most developers so they are not covered in this book.

C# 8.0
C# 8.0 was released in September 2019 and focused on a major change to the
language related to null handling, including the topics listed in the following table:

Feature Chapter Topic

Nullable reference types 2 Making a reference type nullable

Switch expressions 3 Simplifying switch statements
with switch expressions

More Information: If you're interested, you can read the details
at the following link: https://docs.microsoft.com/en-us/
dotnet/csharp/whats-new/csharp-7-3

https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-7-3
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-7-3

Speaking C# | 02

[29]

Default interface methods 6 Understanding default interface
methods

Discovering your C# compiler versions
With the C# 7.x generation, Microsoft decided to increase the cadence of language
releases, releasing minor version numbers, also known as point releases, for the first
time since C# 1.1.

.NET language compilers for C#, Visual Basic, and F#, also known as Roslyn, are
distributed as part of .NET Core SDK. To use a specific version of C#, you must have
at least that version of .NET Core SDK installed, as shown in the following table:

.NET Core SDK Roslyn C#
1.0.4 2.0 - 2.2 7.0
1.1.4 2.3 - 2.4 7.1
2.1.2 2.6 - 2.7 7.2
2.1.200 2.8 - 2.10 7.3
3.0 3.0 - 3.3 8.0

Let's see what C# language compiler versions you have available.

1. Start Visual Studio Code.
2. Navigate to View | Terminal.
3. To determine which version of the .NET Core SDK you have available, enter

the following command:
dotnet --version

4. Note the version at the time of writing is .NET Core 3.0, as shown in the
following output:
3.0.100

More Information: You can learn more about the current status
of the C# language at this link: https://github.com/dotnet/
roslyn/blob/master/docs/Language%20Feature%20
Status.md.

More Information: You can see a list of versions at the following
link: https://github.com/dotnet/roslyn/wiki/NuGet-
packages

https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md.
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md.
https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md.
https://github.com/dotnet/roslyn/wiki/NuGet-packages
https://github.com/dotnet/roslyn/wiki/NuGet-packages

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[30]

5. To determine which versions of the C# compiler you have available, enter
the following command:
csc -langversion:?

6. Note all the versions available at the time of writing, as shown in the
following output:
Supported language versions:

default

1

2

3

4

5

6

7.0

7.1

7.2

7.3

8.0 (default)

latestmajor

preview

latest

Enabling a specific language version compiler
Developer tools like Visual Studio Code and the dotnet command-line interface
assume that you want to use the latest major version of a C# language compiler by
default. So before C# 8.0 was released, C# 7.0 was the latest major version and was used
by default. To use the improvements in a C# point release like 7.1, 7.2, or 7.3, you had to
add a configuration element to the project file, as shown in the following markup:

<LangVersion>7.3</LangVersion>

If Microsoft releases a C# 8.1 compiler and you want to use its new language features
then you will have to add a configuration element to your project file, as shown in
the following markup:

<LangVersion>8.1</LangVersion>

Potential values for the <LangVersion> are shown in the following table:

Speaking C# | 02

[31]

LangVersion Description
7, 7.1, 7.2, 7.3, 8 Entering a specific version number will use that compiler if it has

been installed.
latestmajor Uses the highest major number, for example, 7.0 in August 2019,

8.0 in October 2019.
latest Uses the highest major and highest minor number, for example,

7.2 in 2017, 7.3 in 2018, 8 in 2019, perhaps 8.1 in 2020.
preview Uses the highest available preview version, for example, 8.0

in January 2019 with .NET Core 3.0 Preview 1 installed.

After creating a new project with the dotnet command-line tool, you can edit the
csproj file and add the <LangVersion> element, as shown highlighted in the
following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 <LangVersion>preview</LangVersion>
 </PropertyGroup>

</Project>

Your projects must target either netcoreapp3.0 or netstandard2.1 to use the full
features of C# 8.0.

Understanding C# basics
To learn C#, you will need to create some simple applications. To avoid overloading
you with too much information too soon, the chapters in the first part of this book
will use the simplest type of application: a console application.

Let's start by looking at the basics of the grammar and vocabulary of C#. Throughout
this chapter, you will create multiple console applications, with each one showing
a feature of the C# language.

1. If you've completed Chapter 1, Hello, C#! Welcome, .NET!, then you will
already have a Code folder in your user folder. If not, then you'll need to
create it.

More Information: The version of C# used by your project
is determined by the target framework, as described at the
following link: https://devblogs.microsoft.com/dotnet/
an-update-to-c-versions-and-c-tooling/.

https://devblogs.microsoft.com/dotnet/an-update-to-c-versions-and-c-tooling/
https://devblogs.microsoft.com/dotnet/an-update-to-c-versions-and-c-tooling/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[32]

2. Create a subfolder named Chapter02, with a sub-subfolder named Basics.
3. Start Visual Studio Code and open the Chapter02/Basics folder.
4. In Visual Studio Code, navigate to View | Terminal, and enter the following

command:
dotnet new console

5. In EXPLORER, click the Program.cs file, and then click on Yes to add the
missing required assets.

Understanding C# grammar
The grammar of C# includes statements and blocks. To document your code, you
can use comments.

Statements
In English, we indicate the end of a sentence with a full stop. A sentence can be
composed of multiple words and phrases, with the order of words being part of the
grammar. For example, in English, we say: "the black cat."

The adjective, black, comes before the noun, cat. Whereas French grammar has
a different order; the adjective comes after the noun, "le chat noir." What's important
to take away from this is that the order matters.

C# indicates the end of a statement with a semicolon. A statement can be composed
of multiple variables and expressions. For example, in the following statement,
totalPrice is a variable and subtotal + salesTax is an expression:

var totalPrice = subtotal + salesTax;

The expression is made up of an operand named subtotal, an operator +, and
another operand named salesTax. The order of operands and operators matters.

Comments
When writing your code, you're able to add comments to explain your code using
a double slash, //. By inserting // the compiler will ignore everything after the //
until the end of the line, as shown in the following code:

Good Practice: Comments should never be the only way that you
document your code. Choosing sensible names for variables and
functions, writing unit tests, and creating literal documents are
other ways to document your code.

Speaking C# | 02

[33]

// sales tax must be added to the subtotal
var totalPrice = subtotal + salesTax;

Visual Studio Code will add or remove the comment double slashes at the start of
the currently selected line(s) if you press Ctrl + K + C to add them or Ctrl + K + U to
remove them. In macOS, press Cmd instead of Ctrl.

To write a multiline comment, use /* at the beginning and */ at the end of the
comment, as shown in the following code:

/*
This is a multi-line
comment.
*/

Blocks
In English, we indicate a paragraph by starting a new line. C# indicates a block of
code with the use of curly brackets, { }. Blocks start with a declaration to indicate
what it is being defined. For example, a block can define a namespace, class, method,
or a statement, something we will learn more about later.

In your current project, note that the grammar of C# is written for you by the
dotnet CLI tool. I've added some comments to the statements written by the project
template, as shown in the following code:

using System; // a semicolon indicates the end of a statement

namespace Basics
{
 class Program
 {
 static void Main(string[] args)
 { // the start of a block
 Console.WriteLine("Hello World!"); // a statement
 } // the end of a block
 }
}

Understanding C# vocabulary
The C# vocabulary is made up of keywords, symbol characters, and types.

Some of the predefined, reserved keywords that you will see in this book include
using, namespace, class, static, int, string, double, bool, if, switch, break,
while, do, for, and foreach.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[34]

Some of the symbol characters that you will see include ", ', +, -, *, /, %, @, and $.

By default, Visual Studio Code shows C# keywords in blue in order to make them
easier to differentiate from other code. Visual Studio Code allows you to customize
the color scheme.

1. In Visual Studio Code, navigate to Code | Preferences | Color Theme (it is
on the File menu on Windows), or press Ctrl or Cmd + K, Ctrl or Cmd + T.

2. Select a color theme. For reference, I'll use the Light+ (default light) color
theme so that the screenshots look good in a printed book.

There are other contextual keywords that only have a special meaning in a specific
context. However, that still means that there are only about 100 actual C# keywords
in the language.

The English language has more than 250,000 distinct words, so how does C# get
away with only having about one hundred keywords? Moreover, why is C# so
difficult to learn if it has only 0.0416% of the amount of words compared to the
English language?

One of the key differences between a human language and a programming language
is that developers need to be able to define the new "words" with new meanings.
Apart from the 104 keywords in the C# language, this book will teach you about
some of the hundreds of thousands of "words" that other developers have defined,
but you will also learn how to define your own "words."

Help for writing correct code
Plain text editors such as Notepad don't help you write correct English. Likewise,
Notepad won't help you write correct C# either.

Microsoft Word can help you write English by highlighting spelling mistakes
with red squiggles, with Word saying that "icecream" should be ice-cream or ice
cream, and grammatical errors with blue squiggles, like a sentence should have an
uppercase first letter.

More Information: Programmers all over the world must learn
English because most programming languages use English
words such as namespace and class. There are programming
languages that use other human languages, such as Arabic, but
they are rare. If you are interested in learning, this YouTube
video shows a demonstration of an Arabic programming
language: https://youtu.be/dkO8cdwf6v8

https://youtu.be/dkO8cdwf6v8

Speaking C# | 02

[35]

Similarly, Visual Studio Code's C# extension helps you write C# code by
highlighting spelling mistakes, like the method name should be WriteLine with an
uppercase L, and grammatical errors, like statements that must end with a semicolon.

The C# extension constantly watches what you type and gives you feedback by
highlighting problems with colored squiggly lines, similar to that of Microsoft Word.

Let's see it in action.

1. In Program.cs, change the L in the WriteLine method to lowercase.
2. Delete the semicolon at the end of the statement.
3. Navigate to View | Problems, or press Ctrl or Cmd + Shift + M, and note that

a red squiggle appears under the code mistakes and details are shown in the
PROBLEMS window, as you can see in the following screenshot:

4. Fix the two coding mistakes.

Verbs are methods
In English, verbs are doing or action words, like run and jump. In C#, doing or action
words are called methods. There are hundreds of thousands of methods available to
C#. In English, verbs change how they are written based on when in time the action
happens. For example, Amir was jumping in the past, Beth jumps in the present, they
jumped in the past, and Charlie will jump in the future.

In C#, methods such as WriteLine change how they are called or executed based
on the specifics of the action. This is called overloading, which is something we will
cover in more detail during Chapter 5, Building Your Own Types with Object-Oriented
Programming. But for now, consider the following example:

// outputs a carriage-return
Console.WriteLine();

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[36]

// outputs the greeting and a carriage-return
Console.WriteLine("Hello Ahmed");

// outputs a formatted number and date and a carriage-return
Console.WriteLine(
 "Temperature on {0:D} is {1}°C.", DateTime.Today, 23.4);

A different analogy is that some words are spelled the same, but have different
meanings depending on the context.

Nouns are types, fields, and variables
In English, nouns are names that refer to things. For example, Fido is the name of
a dog. The word "dog" tells us the type of thing that Fido is, and so in order for Fido
to fetch a ball, we would use his name.

In C#, their equivalents are types, fields, and variables. For example, Animal and
Car are types; that is, they are nouns for categorizing things. Head and Engine
are fields, that is, nouns that belong to Animal and Car. Whilst Fido and Bob are
variables, that is, nouns for referring to a specific thing.

There are tens of thousands of types available to C#, though have you noticed how
I didn't say, "There are tens of thousands of types in C#?" The difference is subtle
but important. The language of C# only has a few keywords for types, such as
string and int, and strictly speaking, C# doesn't define any types. Keywords such
as string that look like types are aliases, which represent types provided by the
platform on which C# runs.

It's important to know that C# cannot exist alone; after all, it's a language that runs
on variants of .NET. In theory, someone could write a compiler for C# that uses a
different platform, with different underlying types. In practice, the platform for C#
is .NET, which provides tens of thousands of types to C#, including System.Int32,
which is the C# keyword alias int maps to, as well as many more complex types,
such as System.Xml.Linq.XDocument.

It's worth taking note that the term type is often confused with class. Have you
ever played the parlor game Twenty Questions, also known as Animal, Vegetable,
or Mineral? In the game, everything can be categorized as an animal, vegetable, or
mineral. In C#, every type can be categorized as a class, struct, enum, interface,
or delegate. The C# keyword string is a class, but int is a struct. So, it is best to
use the term type to refer to both.

Revealing the extent of the C# vocabulary
We know that there are more than one hundred keywords in C#, but how many
types are there? Let's now write some code in order to find out how many types
(and their methods) are available to C# in our simple console application.

Speaking C# | 02

[37]

Don't worry about how this code works for now; it uses a technique called reflection.

1. We'll start by adding the following statements at the top of the Program.cs
file, as shown in the following code:
using System.Linq;
using System.Reflection;

2. Inside the Main method, delete the statement that writes Hello World! and
replace it with the following code:
// loop through the assemblies that this app references
foreach (var r in Assembly.GetEntryAssembly()
 .GetReferencedAssemblies())
{
 // load the assembly so we can read its details
 var a = Assembly.Load(new AssemblyName(r.FullName));

 // declare a variable to count the number of methods
 int methodCount = 0;

 // loop through all the types in the assembly
 foreach (var t in a.DefinedTypes)
 {
 // add up the counts of methods
 methodCount += t.GetMethods().Count();
 }
 // output the count of types and their methods
 Console.WriteLine(
 "{0:N0} types with {1:N0} methods in {2} assembly.",
 arg0: a.DefinedTypes.Count(),
 arg1: methodCount,
 arg2: r.Name);
}

3. Navigate to View | Terminal.
4. In TERMINAL, enter the following command:

dotnet run

5. After running that command, you will see the following output, which
shows the actual number of types and methods that are available to you in
the simplest application when running on macOS. The numbers of types and
methods displayed may be different depending on the operating system that
you are using, as shown in the following output:
30 types with 325 methods in System.Runtime assembly.

99 types with 1,068 methods in System.Linq assembly.

56 types with 691 methods in System.Console assembly.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[38]

6. Add statements to the top of the Main method to declare some variables,
as shown highlighted in the following code:
static void Main(string[] args)
{
 // declare some unused variables using types
 // in additional assemblies
 System.Data.DataSet ds;
 System.Net.Http.HttpClient client;

By declaring variables that use types in other assemblies, those assemblies
are loaded with our application, which allows our code to see all the types
and methods in them. The compiler will warn you that you have unused
variables but that won't stop your code from running.

7. Run the console application again and view the results, which should look
similar to the following output:

30 types with 325 methods in System.Runtime assembly.

371 types with 6,735 methods in System.Data.Common assembly.

406 types with 4,228 methods in System.Net.Http assembly.

99 types with 1,068 methods in System.Linq assembly.

56 types with 691 methods in System.Console assembly.

Now, you have a better sense of why learning C# is a challenge, because there are so
many types and methods to learn. Methods are only one category of a member that a
type can have, and other programmers are constantly defining new members!

Working with variables
All applications process data. Data comes in, data is processed, and then data goes
out. Data usually comes into our program from files, databases, or user input,
and it can be put temporarily into variables that will be stored in the memory of
the running program. When the program ends, the data in memory is lost. Data
is usually output to files and databases, or to the screen or a printer. When using
variables, you should think about, firstly, how much space it takes in the memory,
and, secondly, how fast it can be processed.

We control this by picking an appropriate type. You can think of simple common
types such as int and double as being different-sized storage boxes, where a smaller
box would take less memory but may not be as fast at being processed; for example,
adding 16-bit numbers might not be processed as fast as adding 64-bit numbers on a
64-bit operating system. Some of these boxes may be stacked close by, and some may
be thrown into a big heap further away.

Speaking C# | 02

[39]

Naming things and assigning values
There are naming conventions for things, and it is good practice to follow them,
as shown in the following table:

Naming convention Examples Use for
Camel case cost, orderDetail,

dateOfBirth
Local variables, private fields.

Title case String, Int32, Cost,
DateOfBirth, Run

Types, non-private fields, and
other members like methods.

The following code block shows an example of declaring a named local variable and
assigning a value to it with the = symbol. You should note that you can output the
name of a variable using a keyword introduced in C# 6.0, nameof:

// let the heightInMetres variable become equal to the value 1.88
double heightInMetres = 1.88;
Console.WriteLine($"The variable {nameof(heightInMetres)} has the
value {heightInMetres}.");

The message in double quotes in the preceding code wraps onto a second line
because the width of a printed page is too narrow. When entering a statement like
this in your code editor, type it all in a single line.

Literal values
When you assign to a variable, you often, but not always, assign a literal value. But
what is a literal value? A literal is a notation that represents a fixed value. Data types
have different notations for their literal values, and over the next few sections, you
will see examples of using literal notation to assign values to variables.

Good Practice: Following a consistent set of naming conventions
will enable your code to be easily understood by other developers
(and yourself in the future!).

You can find more information about Naming Guidelines at
https://docs.microsoft.com/en-us/dotnet/standard/
design-guidelines/naming-guidelines

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[40]

Storing text
For text, a single letter, such as an A, is stored as a char type and is assigned using
single quotes around the literal value, or assigning the return value of a function call,
as shown in the following code:

char letter = 'A'; // assigning literal characters
char digit = '1';
char symbol = '$';
char userChoice = GetKeystroke(); // assigning from a function

For text, multiple letters, such as Bob, are stored as a string type and are assigned
using double quotes around the literal value, or assigning the return value
of a function call, as shown in the following code:

string firstName = "Bob"; // assigning literal strings
string lastName = "Smith";
string phoneNumber = "(215) 555-4256";

// assigning a string returned from a function call
string address = GetAddressFromDatabase(id: 563);

Understanding verbatim strings
When storing text in a string variable, you can include escape sequences, which
represent special characters like tabs and new lines using a backslash, as shown in
the following code:

string fullNameWithTabSeparator = "Bob\tSmith";

But what if you are storing the path to a file, and one of the folder names starts with
a T, as shown in the following code:

string filePath = "C:\televisions\sony\bravia.txt";

The compiler will convert the \t into a tab character and you will get errors!

You must prefix with the @ symbol to use a verbatim literal string, as shown in the
following code:

string filePath = @"C:\televisions\sony\bravia.txt";

More Information: You can read more about escape sequences
at the following link: https://devblogs.microsoft.com/
csharpfaq/what-character-escape-sequences-are-
available/.

https://devblogs.microsoft.com/csharpfaq/what-character-escape-sequences-are-available/
https://devblogs.microsoft.com/csharpfaq/what-character-escape-sequences-are-available/
https://devblogs.microsoft.com/csharpfaq/what-character-escape-sequences-are-available/

Speaking C# | 02

[41]

To summarize:

• Literal string: Characters enclosed in double-quote characters. They can use
escape characters like \t for tab.

• Verbatim string: A literal string prefixed with @ to disable escape characters
so that a backslash is a backslash.

• Interpolated string: A literal string prefixed with $ to enable embedded
formatted variables. You will learn more about this later in this chapter.

Storing numbers
Numbers are data that we want to perform an arithmetic calculation on, for example,
multiplying. A telephone number is not a number. To decide whether a variable
should be stored as a number or not, ask yourself whether you need to perform
arithmetic operations on the number or whether the number includes non-digit
characters such as parentheses or hyphens to format the number as (414) 555-1234. In
this case, the number is a sequence of characters, so it should be stored as a string.

Numbers can be natural numbers, such as 42, used for counting (also called whole
numbers); they can also be negative numbers, such as -42 (called integers); or, they
can be real numbers, such as 3.9 (with a fractional part), which are called single or
double-precision floating point numbers in computing.

Let's explore numbers.

1. Create a new folder inside the Chapter02 folder named Numbers.
2. In Visual Studio Code, open the Numbers folder.
3. In TERMINAL, create a new console application using the dotnet new

console command.
4. Inside the Main method, type statements to declare some number variables

using various data types, as shown in the following code:
// unsigned integer means positive whole number
// including 0
uint naturalNumber = 23;

// integer means negative or positive whole number
// including 0

More Information: You can read more about verbatim strings
at the following link: https://docs.microsoft.com/en-us/
dotnet/csharp/language-reference/tokens/verbatim.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/verbatim
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/verbatim

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[42]

int integerNumber = -23;

// float means single-precision floating point
// F suffix makes it a float literal
float realNumber = 2.3F;

// double means double-precision floating point
double anotherRealNumber = 2.3; // double literal

Storing whole numbers
You might know that computers store everything as bits. The value of a bit is either 0
or 1. This is called a binary number system. Humans use a decimal number system.

The decimal number system, also known as Base 10, has 10 as its base, meaning there
are ten digits, from 0 to 9. Although it is the number base most commonly used by
human civilizations, other number-base systems are popular in science, engineering,
and computing. The binary number system also known as Base 2 has two as its base,
meaning there are two digits, 0 and 1.

The following table shows how computers store the decimal number 10. Take note of
the bits with the value 1 in the 8 and the 2 columns; 8 + 2 = 10:

128 64 32 16 8 4 2 1
0 0 0 0 1 0 1 0

So, 10 in decimal is 00001010 in binary.

Two of the improvements seen in C# 7.0 and later are the use of the underscore
character, _, as a digit separator and support for binary literals. You can insert
underscores anywhere into the digits of a number literal, including decimal, binary,
or hexadecimal notation, to improve legibility. For example, you could write the
value for one million in decimal notation, that is, Base 10, as 1_000_000

To use binary notation, that is, Base 2, using only 1s and 0s, start the number literal
with 0b. To use hexadecimal notation, that is, Base 16, using 0 to 9 and A to F, start
the number literal with 0x.

1. At the bottom of the Main method, type statements to declare some number
variables using underscore separators, as shown in the following code:
// three variables that store the number 2 million
int decimalNotation = 2_000_000;
int binaryNotation = 0b_0001_1110_1000_0100_1000_0000;
int hexadecimalNotation = 0x_001E_8480;

Speaking C# | 02

[43]

// check the three variables have the same value
// both statements output true
Console.WriteLine($"{decimalNotation == binaryNotation}");
Console.WriteLine(
 $"{decimalNotation == hexadecimalNotation}");

2. Run the console app and note the result is that all three numbers are the
same, as shown in the following output:
True

True

Computers can always exactly represent integers using the int type or one of its
sibling types such as long and short.

Storing real numbers
Computers cannot always exactly represent floating point numbers. The float and
double types store real numbers using single and double precision
floating points.

Most programming languages implement the IEEE Standard for Floating-Point
Arithmetic. IEEE 754 is a technical standard for floating-point arithmetic established
in 1985 by the Institute of Electrical and Electronics Engineers (IEEE).

The following table shows how a computer represents the number 12.75 in binary
notation. Note the bits with the value 1 in the 8, 4, ½, and ¼ columns.

8 + 4 + ½ + ¼ = 12¾ = 12.75.

128 64 32 16 8 4 2 1 . ½ ¼ 1/8 1/16
0 0 0 0 1 1 0 0 . 1 1 0 0

So, 12.75 in decimal is 00001100.1100 in binary. As you can see, the number 12.75
can be exactly represented using bits. However, some numbers can't, something that
we'll be exploring shortly.

More Information: If you want to dive deep into understanding
floating point numbers then you can read an excellent primer
at the following link: https://ciechanow.ski/exposing-
floating-point/.

https://ciechanow.ski/exposing-floating-point/
https://ciechanow.ski/exposing-floating-point/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[44]

Writing code to explore number sizes
C# has an operator named sizeof() that returns the number of bytes that a type
uses in memory. Some types have members named MinValue and MaxValue, which
return the minimum and maximum values that can be stored in a variable of that
type. We are now going to use these features to create a console application to
explore number types.

1. Inside the Main method, type statements to show the size of three number
data types, as shown in the following code:
Console.WriteLine($"int uses {sizeof(int)} bytes and can store
numbers in the range {int.MinValue:N0} to {int.MaxValue:N0}.");
Console.WriteLine($"double uses {sizeof(double)} bytes and can
store numbers in the range {double.MinValue:N0} to {double.
MaxValue:N0}.");
Console.WriteLine($"decimal uses {sizeof(decimal)} bytes and can
store numbers in the range {decimal.MinValue:N0} to {decimal.
MaxValue:N0}.");

The width of printed pages in this book make the string values (in double-
quotes) to wrap over multiple lines. You must type them on a single line, or
you will get compile errors.

2. Run the console application by entering dotnet run, and view the output, as
shown in the following screenshot:

An int variable uses four bytes of memory and can store positive or negative
numbers up to about 2 billion. A double variable uses eight bytes of memory and
can store much bigger values! A decimal variable uses 16 bytes of memory and can
store big numbers, but not as big as a double type.

But you may be asking yourself, why might a double variable be able to store bigger
numbers than a decimal variable, yet it's only using half the space in memory? Well,
let's now find out!

Speaking C# | 02

[45]

Comparing double and decimal types
You will now write some code to compare double and decimal values. Although it
isn't hard to follow, don't worry about understanding the syntax right now.

1. Under the previous statements, enter statements to declare two double
variables, add them together and compare them to the expected result, and
write the result to the console, as shown in the following code:
Console.WriteLine("Using doubles:");

double a = 0.1;
double b = 0.2;

if (a + b == 0.3)
{
 Console.WriteLine($"{a} + {b} equals 0.3");
}
else
{
 Console.WriteLine($"{a} + {b} does NOT equal 0.3");
}

2. Run the console application and view the result, as shown in the following
output:
Using doubles:

0.1 + 0.2 does NOT equal 0.3

The double type is not guaranteed to be accurate because some numbers
literally cannot be represented as floating-point values.

As a rule of thumb, you should only use double when accuracy, especially
when comparing the equality of two numbers, is not important. An example
of this may be when you're measuring a person's height.
The problem with the preceding code is illustrated by how the computer
stores the number 0.1, or multiples of 0.1. To represent 0.1 in binary, the
computer stores 1 in the 1/16 column, 1 in the 1/32 column, 1 in the 1/256
column, 1 in the 1/512 column, and so on.

More Information: Read more about why 0.1 does not exist in
floating-point numbers: https://www.exploringbinary.
com/why-0-point-1-does-not-exist-in-floating-
point/.

https://www.exploringbinary.com/why-0-point-1-does-not-exist-in-floating-point/
https://www.exploringbinary.com/why-0-point-1-does-not-exist-in-floating-point/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[46]

The number 0.1 in decimal is 0.00011001100110011… repeating forever:

4 2 1 . ½ ¼ 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048
0 0 0 . 0 0 0 1 1 0 0 1 1 0 0

3. Copy and paste the statements that you wrote before (that used the double
variables).

4. Modify the statements to use decimal and rename the variables to c and d,
as shown in the following code:
Console.WriteLine("Using decimals:");

decimal c = 0.1M; // M suffix means a decimal literal value
decimal d = 0.2M;

if (c + d == 0.3M)
{
 Console.WriteLine($"{c} + {d} equals 0.3");
}
else
{
 Console.WriteLine($"{c} + {d} does NOT equal 0.3");
}

5. Run the console application and view the result, as shown in the following
output:

Using decimals:
0.1 + 0.2 equals 0.3

The decimal type is accurate because it stores the number as a large integer and
shifts the decimal point. For example, 0.1 is stored as 1, with a note to shift the
decimal point one place to the left. 12.75 is stored as 1275, with a note to shift the
decimal point two places to the left.

Good Practice: Never compare double values using ==. During the
First Gulf War, an American Patriot missile battery used double
values in its calculations. The inaccuracy caused it to fail to track
and intercept an incoming Iraqi Scud missile, and 28 soldiers
were killed; you can read about this at https://www.ima.umn.
edu/~arnold/disasters/patriot.html.

Good Practice: Use int for whole numbers and double for real
numbers that will not be compared to other values. Use decimal
for money, CAD drawings, general engineering, and wherever
accuracy of a real number is important.

https://www.ima.umn.edu/~arnold/disasters/patriot.html.
https://www.ima.umn.edu/~arnold/disasters/patriot.html.

Speaking C# | 02

[47]

The double type has some useful special values; double.NaN means not-a-number,
double.Epsilon is the smallest positive number that can be stored in a double, and
double.Infinity means an infinitely large value.

Storing Booleans
Booleans can only contain one of the two literal values: true or false, as shown in
the following code:

bool happy = true;
bool sad = false;

They are most commonly used to branch and loop. You don't need to fully understand
them yet, as they are covered more in Chapter 3, Controlling Flow and Converting Types.

Using Visual Studio Code workspaces
Before we create any more projects, let's talk about workspaces.

Although we could continue to create and open separate folders for each project,
it can be useful to have multiple folders open at the same time. Visual Studio has
a feature called workspaces that enables this.

Let's create a workspace for the two projects we have created so far in this chapter.

1. In Visual Studio Code, navigate to File | Save Workspace As….
2. Enter Chapter02 for the workspace name, change to the Chapter02 folder,

and click Save, as shown in the following screenshot:

3. Navigate to File | Add Folder to Workspace…
4. Select the Basics folder, click Add, and note that both Basics and Numbers

are now part of the Chapter02 workspace.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[48]

Storing any type of object
There is a special type named object which can store any type of data, but its
flexibility comes at the cost of messier code and possibly poor performance. Because
of those two reasons, you should avoid it whenever possible.

1. Create a new folder named Variables and add it to the Chapter02
workspace.

2. Navigate to Terminal | New Terminal.
3. Select the Variables project, as shown in the following screenshot:

4. Enter the command to create a new console application: dotnet new
console.

5. Navigate to View | Command Palette.
6. Enter and select OmniSharp: Select Project.
7. Select the Variables project, and if prompted, click Yes to add required assets

to debug.
8. In EXPLORER, in the Variables project, open Program.cs.
9. In the Main method, add statements to declare and use some variables using

the object type, as shown in the following code:
object height = 1.88; // storing a double in an object
object name = "Amir"; // storing a string in an object

Console.WriteLine($"{name} is {height} metres tall.");

int length1 = name.Length; // gives compile error!
int length2 = ((string)name).Length; // tell compiler it is a
string

Good Practice: When using workspaces, be careful when entering
commands in Terminal. Be sure that you are in the correct folder
before entering potentially destructive commands! You will see how
in the next task.

Speaking C# | 02

[49]

Console.WriteLine($"{name} has {length2} characters.");

10. In Terminal, execute the code by entering dotnet run, and note that the
fourth statement cannot compile because the data type of the name variable is
not known by the compiler.

11. Add comment double slashes to the beginning of the statement that cannot
compile to "comment it out."

12. In Terminal, execute the code by entering dotnet run, and note that the
compiler can access the length of a string if the programmer explicitly tells
the compiler that the object variable contains a string, as shown in the
following output:
Amir is 1.88 metres tall.
Amir has 4 characters.

The object type has been available since the first version of C#, but C# 2.0 and
later have a better alternative called generics, which we will cover in Chapter 6,
Implementing Interfaces and Inheriting Classes, which will provide us with the flexibility
we want, but without the performance overhead.

Storing dynamic types
There is another special type named dynamic that can also store any type of data, but
even more than object, its flexibility comes at the cost of performance. The dynamic
keyword was introduced in C# 4.0. However, unlike an object, the value stored in
the variable can have its members invoked without an explicit cast.

1. In the Main method, add statements to declare a dynamic variable and assign
a string value, as shown in the following code:
// storing a string in a dynamic object
dynamic anotherName = "Ahmed";

2. Add a statement to get the length of the string value, as shown in the
following code:

// this compiles but would throw an exception at run-time
// if you later store a data type that does not have a
// property named Length
int length = anotherName.Length;

One limitation of dynamic is that Visual Studio Code cannot show IntelliSense to
help you write the code. This is because the compiler cannot check what the type is
during build time. Instead, CLR checks for the member at runtime and throws an
exception if it is missing.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[50]

Exceptions are a way to indicate that something has gone wrong. You will learn
more about them and how to handle them in Chapter 3, Controlling Flow and
Converting Types.

Declaring local variables
Local variables are declared inside methods, and they only exist during the execution
of that method, and once the method returns, the memory allocated to any local
variables is released.

Strictly speaking, value types are released while reference types must wait for a
garbage collection. You will learn about the difference between value types and
reference types in Chapter 6, Implementing Interfaces and Inheriting Classes.

Specifying and inferring the type of a local variable
Let's explore local variables declared with specific types and using type inference.

1. Inside the Main method, enter statements to declare and assign values to
some local variables using specific types, as shown in the following code:
int population = 66_000_000; // 66 million in UK
double weight = 1.88; // in kilograms
decimal price = 4.99M; // in pounds sterling
string fruit = "Apples"; // strings use double-quotes
char letter = 'Z'; // chars use single-quotes
bool happy = true; // Booleans have value of true or false

Visual Studio Code will show green squiggles under each of the variable
names to warn you that the variable is assigned, but its value is never used.
You can use the var keyword to declare local variables. The compiler will
infer the type from the value that you assign after the assignment operator, =.
A literal number without a decimal point is inferred as an int variable, that
is, unless you add the L suffix, in which case, it infers a long variable.

A literal number with a decimal point is inferred as double unless you
add the M suffix, in which case, it infers a decimal variable, or the F suffix,
in which case, it infers a float variable. Double quotes indicate a string
variable, single quotes indicate a char variable, and the true and false
values infer a bool type.

2. Modify the previous statements to use var, as shown in the following code:

var population = 66_000_000; // 66 million in UK
var weight = 1.88; // in kilograms

Speaking C# | 02

[51]

var price = 4.99M; // in pounds sterling
var fruit = "Apples"; // strings use double-quotes
var letter = 'Z'; // chars use single-quotes
var happy = true; // Booleans have value of true or false

// good use of var because it avoids the repeated type
// as shown in the more verbose second statement
var xml1 = new XmlDocument();
XmlDocument xml2 = new XmlDocument();

// bad use of var because we cannot tell the type, so we
// should use a specific type declaration as shown in
// the second statement
var file1 = File.CreateText(@"C:\something.txt");
StreamWriter file2 = File.CreateText(@"C:\something.txt");

Getting default values for types
Most of the primitive types except string are value types, which means that
they must have a value. You can determine the default value of a type using the
default() operator.

The string type is a reference type. This means that string variables contain the
memory address of a value, not the value itself. A reference type variable can have
a null value, which is a literal that indicates that the variable does not reference
anything (yet). null is the default for all reference types.

You'll learn more about value types and reference types in Chapter 6, Implementing
Interfaces and Inheriting Classes.

Let's explore default values.

1. In the Main method, add statements to show the default values of an int,
bool, DateTime, and string, as shown in the following code:
Console.WriteLine($"default(int) = {default(int)}");
Console.WriteLine($"default(bool) = {default(bool)}");

Good Practice: Although using var is convenient, some developers
avoid using it, to make it easier for a code reader to understand the
types in use. Personally, I use it only when the type is obvious. For
example, in the following code statements, the first statement is just
as clear as the second in stating what the type of the xml variable
is, but it is shorter. However, the third statement isn't clear, so the
fourth is better. If in doubt, spell it out!

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[52]

Console.WriteLine(
 $"default(DateTime) = {default(DateTime)}");
Console.WriteLine(
 $"default(string) = {default(string)}");

2. Run the console app and view the result, as shown in the following output:

default(int) = 0

default(bool) = False

default(DateTime) = 01/01/0001 00:00:00

default(string) =

Storing multiple values
When you need to store multiple values of the same type, you can declare an array.
For example, you may do this when you need to store four names in a string array.

The following code will allocate memory for an array for storing four string values.
It will then store string values at index positions 0 to 3 (arrays count from zero, so
the last item is one less than the length of the array). Finally, it will loop through each
item in the array using a for statement, something that we will cover in more detail
in Chapter 3, Controlling Flow and Converting Types.

1. In the Chapter02 folder, create a new folder named Arrays.
2. Add the Arrays folder to the Chapter02 workspace.
3. Create a new Terminal window for the Arrays project.
4. Create a new console application project in the Arrays folder.
5. Select Arrays as the current project for OmniSharp.
6. In the Arrays project, in Program.cs, in the Main method, add statements to

declare and use an array of string values, as shown in the following code:
string[] names; // can reference any array of strings

// allocating memory for four strings in an array
names = new string[4];

// storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

// looping through the names

Speaking C# | 02

[53]

for (int i = 0; i < names.Length; i++)
{
 // output the item at index position i
 Console.WriteLine(names[i]);
}

7. Run the console app and note the result, as shown in the following output:

Kate

Jack

Rebecca

Tom

Arrays are always of a fixed size at the time of memory allocation, so you need to
decide how many items you want to store before instantiating them.

Arrays are useful for temporarily storing multiple items, but collections are a more
flexible option when adding and removing items dynamically. You don't need to
worry about collections right now, as we will cover them in Chapter 8, Working with
Common .NET Types.

Working with null values
You have now seen how to store primitive values like numbers in variables. But what
if a variable does not yet have a value? How can we indicate that? C# has the concept
of a null value, which can be used to indicate that a variable has not been set.

Making a value type nullable
By default, value types like int and DateTime must always have a value, hence their
name. Sometimes, for example, when reading values stored in a database that allows
empty, missing, or null values, it is convenient to allow a value type to be null, we
call this a nullable value type.

You can enable this by adding a question mark as a suffix to the type when declaring
a variable. Let's see an example.

1. In the Chapter02 folder, create a new folder named NullHandling.
2. Add the NullHandling folder to the Chapter02 workspace.
3. Create a new Terminal window for the NullHandling project.
4. Create a new console application project in the NullHandling folder.
5. Select NullHandling as the current project for OmniSharp.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[54]

6. In the NullHandling project, in Program.cs, in the Main method, add
statements to declare and assign values, including null, to int variables, as
shown in the following code:
int thisCannotBeNull = 4;
thisCannotBeNull = null; // compile error!

int? thisCouldBeNull = null;
Console.WriteLine(thisCouldBeNull);
Console.WriteLine(thisCouldBeNull.GetValueOrDefault());

thisCouldBeNull = 7;
Console.WriteLine(thisCouldBeNull);
Console.WriteLine(thisCouldBeNull.GetValueOrDefault());

7. Comment out the statement that gives a compile error.
8. Run the application and view the result, as shown in the following output:

0

7

7

The first line is blank because it is outputting the null value!

Understanding nullable reference types
The use of the null value is so common, in so many languages, that many
experienced programmers never question the need for its existence. But there
are many scenarios where we could write better, simpler code, if a variable is not
allowed to have a null value.

The most significant change to the language in C# 8.0 is the introduction of nullable
and non-nullable reference types. "But wait!", you are probably thinking, "Reference
types are already nullable!"

And you would be right, but in C# 8.0, reference types can be configured to no
longer allow the null value by setting a file- or project-level option to enable this
useful new feature. Since this is a big change for C#, Microsoft decided to make the
feature opt-in.

More Information: You can find out more through the
following link, where the inventor of null, Sir Charles Antony
Richard Hoare, admits his mistake in a recorded hour-long
talk: https://www.infoq.com/presentations/Null-
References-The-Billion-Dollar-Mistake-Tony-Hoare.

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare.
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare.

Speaking C# | 02

[55]

It will take multiple years for this new C# language feature to make an impact since
there are thousands of existing library packages and apps that will expect the old
behavior. Even Microsoft has not had time to fully implement this new feature in
all the core .NET packages. During the transition, you can choose between several
approaches for your own projects:

• Default: No changes needed. Non-nullable references types not supported.
• Opt-in project, opt-out files: Enable the feature at the project level and for

any files that need to remain compatible with old behavior, opt out. This is
the approach Microsoft is using internally while it updates its own packages
to use this new feature.

• Opt-in files: Only enable the feature for individual files.

Enabling nullable and non-nullable reference
types
To enable the feature at the project level, add the following to your project file:

<PropertyGroup>
 <Nullable>enable</Nullable>
</PropertyGroup>

To disable the feature at the file level, add the following to the top of a code file:
#nullable disable

To enable the feature at the file level, add the following to the top of a code file:
#nullable enable

Declaring non-nullable variables and
parameters
If you enable nullable reference types and you want a reference type to be assigned
the null value, then you will have to use the same syntax as making a value type
nullable, that is, adding a ? symbol after the type declaration.

So, how do nullable reference types work? Let's look at an example. When storing
information about an address, you might want to force a value for the street, city,
and region, but building can be left blank, that is, null.

1. In NullHandling.csproj, add an element to enable nullable reference types,
as shown highlighted in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[56]

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 <Nullable>enable</Nullable>
 </PropertyGroup>

</Project>

2. In Program.cs, at the top of the file add a statement to enable nullable
reference types, as shown in the following code:
#nullable enable

3. In Program.cs, in the NullHandling namespace, above the Program class,
add statements to declare an Address class with four fields, as shown in the
following code:
class Address
{
 public string? Building;
 public string Street;
 public string City;
 public string Region;
}

4. After a few seconds, note that the C# extension warns of problems with the
non-nullable fields like Street, as shown in the following screenshot:

5. Assign the empty string value to each of the three fields that are non-
nullable, as shown in the following code:
public string Street = string.Empty;
public string City = string.Empty;
public string Region = string.Empty;

Speaking C# | 02

[57]

6. In Main, add statements to instantiate an Address and set its properties, as
shown in the following code:
var address = new Address();
address.Building = null;
address.Street = null;
address.City = "London";
address.Region = null;

7. Note the warnings, as shown in the following screenshot:

So, this is why the new language feature is named nullable reference types. Starting
with C# 8.0, unadorned reference types can become non-nullable, and the same
syntax is used to make a reference type nullable, as is used for value types.

Checking for null
Checking whether a nullable reference type or nullable value type variable currently
contains null is important because if you do not, a NullReferenceException can be
thrown, which results in an error. You should check for a null value before using a
nullable variable, as shown in the following code:

// check that the variable is not null before using it
if (thisCouldBeNull != null)
{
 // access a member of thisCouldBeNull
 int length = thisCouldBeNull.Length; // could throw exception
 ...
}

More Information: You can watch a video to learn how to get
rid of null reference exceptions forever at the following link:
https://channel9.msdn.com/Shows/On-NET/This-is-
how-you-get-rid-of-null-reference-exceptions-
forever.

https://channel9.msdn.com/Shows/On-NET/This-is-how-you-get-rid-of-null-reference-exceptions-forever
https://channel9.msdn.com/Shows/On-NET/This-is-how-you-get-rid-of-null-reference-exceptions-forever
https://channel9.msdn.com/Shows/On-NET/This-is-how-you-get-rid-of-null-reference-exceptions-forever

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[58]

If you are trying to use a member of a variable that might be null, use the null-
conditional operator ?., as shown in the following code:

string authorName = null;

// the following throws a NullReferenceException
int x = authorName.Length;

// instead of throwing an exception, null is assigned to y
int? y = authorName?.Length;

Sometimes you want to either assign a variable to a result or use an alternative value,
such as 3, if the variable is null. You do this using the null-coalescing operator, ??,
as shown in the following code:

// result will be 3 if authorName?.Length is null
var result = authorName?.Length ?? 3;
Console.WriteLine(result);

Exploring console applications further
We have already created and used basic console applications, but we're now at a
stage where we should delve into them more deeply.

Console applications are text-based and are run at the command line. They typically
perform simple tasks that need to be scripted, such as compiling a file or encrypting
a section of a configuration file.

Equally they can also have arguments passed to them to control their behavior. An
example of this would be to create a new console app using the F# language with
a specified name instead of using the name of the current folder, as shown in the
following command line:

dotnet new console -lang "F#" -name "ExploringConsole"

More Information: You can read more about the null-
conditional operator at the following link: https://docs.
microsoft.com/en-us/dotnet/csharp/language-
reference/operators/null-conditional-operators

More Information: You can read about the null-coalescing
operator at the following link: https://docs.microsoft.
com/en-us/dotnet/csharp/language-reference/
operators/null-coalescing-operator

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-conditional-operators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-conditional-operators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-conditional-operators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-operator
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-operator
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-operator

Speaking C# | 02

[59]

Displaying output to the user
The two most common tasks that a console application performs are writing and
reading data. We have already been using the WriteLine method to output, but
if we didn't want a carriage return at the end of the lines, we could have used the
Write method.

Formatting using numbered positional arguments
One way for generating formatted strings is to use numbered positional arguments.

This feature is supported by methods like Write and WriteLine, and for methods
that do not support the feature, the string parameter can be formatted using the
Format method of string.

1. Add a new console application project named Formatting to the Chapter02
folder and workspace.

2. In the Main method, add statements to declare some number variables and
write them to the console, as shown in the following code:
int numberOfApples = 12;
decimal pricePerApple = 0.35M;

Console.WriteLine(
 format: "{0} apples costs {1:C}",
 arg0: numberOfApples,
 arg1: pricePerApple * numberOfApples);

string formatted = string.Format(
 format: "{0} apples costs {1:C}",
 arg0: numberOfApples,
 arg1: pricePerApple * numberOfApples);

//WriteToFile(formatted); // writes the string into a file

The WriteToFile method is a nonexistent method used to illustrate the idea.

Formatting using interpolated strings
C# 6.0 and later has a handy feature named interpolated strings. A string prefixed
with $ can use curly braces around the name of a variable or expression to output the
current value of that variable or expression at that position in the string.

1. In the Main method, enter a statement at the bottom of the Main method, as
shown in the following code:
Console.WriteLine($"{numberOfApples} apples costs {pricePerApple *
numberOfApples:C}");

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[60]

2. Run the console app, and view the result, as shown in the following output:
12 apples costs £4.20

For short formatted strings, an interpolated string can be easier for people to read.
But for code examples in a book, where lines need to wrap over multiple lines,
this can be tricky. For many of the code examples in this book I will use numbered
positional arguments.

Understanding format strings
A variable or expression can be formatted using a format string after a comma or
colon.

An N0 format string means a number with thousand separators and no decimal places,
while a C format string means currency. The currency format will be determined by the
current thread. For instance, if you run this code on a PC in the UK, you'll get pounds
sterling with commas as the thousand separators, but if you run this code on a PC in
Germany, you would get Euros with dots as the thousand separators.

The full syntax of a format item is:

{ index [, alignment] [: formatString] }

Each format item can have an alignment, which is useful when outputting tables
of values, some of which might need to the left- or right-aligned within a width of
characters. Alignment values are integers. Positive integers are right-aligned and
negative integers are left-aligned.

For example, to output a table of fruit and how many of each there are, we might
want to left-align the names within a column of 8 characters and right-align the
counts formatted as numbers with zero decimal places within a column of six
characters.

1. In the Main method, enter statements at the bottom of the Main method:
string applesText = "Apples";
int applesCount = 1234;
string bananasText = "Bananas";
int bananasCount = 56789;

Console.WriteLine(
 format: "{0,-8} {1,6:N0}",
 arg0: "Name",
 arg1: "Count");

Console.WriteLine(

Speaking C# | 02

[61]

 format: "{0,-8} {1,6:N0}",
 arg0: applesText,
 arg1: applesCount);

Console.WriteLine(
 format: "{0,-8} {1,6:N0}",
 arg0: bananasText,
 arg1: bananasCount);

2. Run the console app and note the effect of the alignment and number format,
as shown in the following output:
Name Count

Apples 1,234

Bananas 56,789

Getting text input from the user
We can get text input from the user using the ReadLine method. This method waits
for the user to type some text, then as soon as the user presses Enter, whatever the
user has typed is returned as a string value.

1. In the Main method, type statements to ask the user for their name and age
and then output what they entered, as shown in the following code:
Console.Write("Type your first name and press ENTER: ");
string firstName = Console.ReadLine();

Console.Write("Type your age and press ENTER: ");
string age = Console.ReadLine();

Console.WriteLine(
 $"Hello {firstName}, you look good for {age}.");

2. Run the console application.
3. Enter name and age, as shown in the following output:

Type your name and press ENTER: Gary

Type your age and press ENTER: 34

Hello Gary, you look good for 34.

More Information: You can read more details about formatting
types in .NET at the following link: https://docs.
microsoft.com/en-us/dotnet/standard/base-types/
formatting-types.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types
https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types
https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[62]

Importing a namespace
You might have noticed that unlike our very first application in Chapter 1, Hello, C#!
Welcome, .NET!, we have not been typing System before Console. This is because
System is a namespace, which is like an address for a type. To refer to someone
exactly, you might use Oxford.HighStreet.BobSmith, which tells us to look for a
person named Bob Smith on the High Street in the city of Oxford.

The System.Console.WriteLine line tells the compiler to look for a method named
WriteLine in a type named Console in a namespace named System. To simplify our
code, the dotnet new console command added a statement at the top of the code
file to tell the compiler to always look in the System namespace for types that haven't
been prefixed with their namespace, as shown in the following code:

using System;

We call this importing the namespace. The effect of importing a namespace is that all
available types in that namespace will be available to your program without needing
to enter the namespace prefix and will be seen in IntelliSense while you write code.

Simplifying the usage of the console
In C# 6.0 and later, the using statement can be used to further simplify our code. Then,
we won't need to enter the Console type throughout our code. We can use Visual
Studio Code's Replace feature to remove times we have previously wrote Console.

1. Add a statement to statically import the System.Console class to the top of
the Program.cs file, as shown in the following code:
using static System.Console;

2. Select the first Console. in your code, ensuring that you select the dot after
the word Console too.

3. Navigate to Edit | Replace and note that an overlay dialog appears ready for
you to enter what you would like to replace Console. with, as shown in the
following screenshot:

Speaking C# | 02

[63]

4. Click on the Replace All button (the second of the two buttons to the right
of the replace box) or press Alt + A or Alt + Cmd + Enter to replace all, and
then close the replace box by clicking on the cross in its top-right corner.

Getting key input from the user
We can get key input from the user using the ReadKey method. This method waits
for the user to type some text, then as soon as the user presses Enter, whatever the
user has typed is returned as a string value.

1. In the Main method, type statements to ask the user to press any key
combination and then output information about it, as shown in the
following code:
Write("Press any key combination: ");
ConsoleKeyInfo key = ReadKey();
WriteLine();
WriteLine("Key: {0}, Char: {1}, Modifiers: {2}",
arg0: key.Key,
arg1: key.KeyChar,
arg2: key.Modifiers);

2. Run the console application, press the K key, and note the result, as shown in
the following output:
Press any key combination: k

Key: K, Char: k, Modifiers: 0

3. Run the console application, hold down Shift and press the K key, and note
the result, as shown in the following output:
Press any key combination: K

Key: K, Char: K, Modifiers: Shift

4. Run the console application, press the F12 key, and note the result, as shown
in the following output:
Press any key combination:

Key: F12, Char: , Modifiers: 0

When running a console application in Terminal within Visual Studio Code, some
keyboard combinations will be captured by the code editor or operating system
before they can be processed by your app.

Getting arguments
You might have been wondering what the string[] args arguments are in the
Main method. They're an array used to pass arguments into a console application;
let's take a look to see how it works.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[64]

Command-line arguments are separated by spaces. Other characters like hyphens
and colons are treated as part of an argument value. To include spaces in an
argument value, enclose the argument value in single or double quotes.

Imagine that we want to be able to enter the names of some colors for the foreground
and background, and the dimensions of the Terminal window at the command line.
We would be able to read the colors and numbers by reading them from the args
array, which is always passed into the Main method of a console application.

1. Create a new folder for a console application project named Arguments and
add it to the Chapter02 workspace.

2. Add a statement to statically import the System.Console type and a
statement to output the number of arguments passed to the application, as
shown highlighted in the following code:
using System;
using static System.Console;

namespace Arguments
{
 class Program
 {
 static void Main(string[] args)
 {
 WriteLine($"There are {args.Length} arguments.");
 }
 }
}

3. Run the console application and view the result, as shown in the
following output:
There are 0 arguments.

4. In TERMINAL, enter some arguments after the dotnet run
command, as shown in the following command line:
dotnet run firstarg second-arg third:arg "fourth arg"

5. Note the result indicates four arguments, as shown in the following
output:
There are 4 arguments.

Good Practice: Remember to statically import the System.
Console type in all future projects to simplify your code, as these
instructions will not be repeated every time.

Speaking C# | 02

[65]

6. To enumerate or iterate (that is, loop through) the values of those four
arguments, add the following statements after outputting the length of the
array:
foreach (string arg in args)
{
 WriteLine(arg);
}

7. In TERMINAL, repeat the same arguments after the dotnet run
command, as shown in the following command line:
dotnet run firstarg second-arg third:arg "fourth arg"

8. Note the result shows the details of the four arguments, as shown in the
following output:
There are 4 arguments.

firstarg

second-arg

third:arg

fourth arg

Setting options with arguments
We will now use these arguments to allow the user to pick a color for the
background, foreground, width, and height of the output window.

The System namespace is already imported so that the compiler knows about
the ConsoleColor and Enum types. If you cannot see either of these types in the
IntelliSense list, it is because you are missing the using System; statement at the top
of the file.

1. Add statements to warn the user if they do not enter four arguments and
then parse those arguments and use them to set the color and dimensions of
the console window, as shown in the following code:
if (args.Length < 4)
{
 WriteLine("You must specify two colors and dimensions,
e.g.");
 WriteLine("dotnet run red yellow 80 40");
 return; // stop running
}

ForegroundColor = (ConsoleColor)Enum.Parse(
 enumType: typeof(ConsoleColor),

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[66]

 value: args[0],
 ignoreCase: true);

BackgroundColor = (ConsoleColor)Enum.Parse(
 enumType: typeof(ConsoleColor),
 value: args[1],
 ignoreCase: true);

WindowWidth = int.Parse(args[2]);
WindowHeight = int.Parse(args[3]);

2. Enter the following command in TERMINAL:
dotnet run red yellow 50 10

On Windows, this will work correctly, although TERMINAL in Visual Studio Code
does not change its size. If this is run in an external Windows Command Prompt,
that window would change size.

On macOS, you'll see an unhandled exception, as shown in the following screenshot:

Although the compiler did not give an error or warning, at runtime some API calls
may fail on some platforms. Although a console application running on Windows
can change its size, on macOS, it cannot.

Handling platforms that do not support an API
So how do we solve this problem? We can solve this by using an exception handler.
You will learn more details about the try-catch statement in Chapter 3, Controlling
the Flow and Converting Types, so for now, just enter the code.

1. Modify the code to wrap the lines that change the height and width in a try
statement, as shown in the following code:

Speaking C# | 02

[67]

try
{
 WindowWidth = int.Parse(args[2]);
 WindowHeight = int.Parse(args[3]);
}
catch (PlatformNotSupportedException)
{
 WriteLine("The current platform does not support changing the
size of a console window.");
}

2. Rerun the console application; note the exception is caught, and a friendly
message is shown to the user, as shown in the following screenshot:

Practicing and exploring
Test your knowledge and understanding by answering some questions, get
some hands-on practice, and explore the topics covered in this chapter with deeper
research.

Exercise 2.1 – Test your knowledge
To get the best answer to some of these questions you will need to do your own
research. I want you to "think outside the book" so I have deliberately not provided
all the answers in the book.

I want to encourage you to get in the good habit of looking for help elsewhere,
following the principle of "teach a person to fish."

What type would you choose for the following "numbers"?

1. A person's telephone number.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[68]

2. A person's height.
3. A person's age.
4. A person's salary.
5. A book's ISBN.
6. A book's price.
7. A book's shipping weight.
8. A country's population.
9. The number of stars in the universe.
10. The number of employees in each of the small or medium businesses in the

United Kingdom (up to about 50,000 employees per business).

Exercise 2.2 – Practice number sizes and
ranges
Create a console application project named Exercise02 that outputs the number
of bytes in memory that each of the following number types use, and the minimum
and maximum values they can have: sbyte, byte, short, ushort, int, uint, long,
ulong, float, double, and decimal.

The result of running your console application should look something like the
following screenshot:

More Information: You can always read the documentation,
available at https://docs.microsoft.com/en-us/dotnet/
standard/base-types/composite-formatting for
Composite Formatting to learn how to align text in a console
application.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting
https://docs.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting

Speaking C# | 02

[69]

Exercise 2.3 – Explore topics
Use the following links to read more about the topics covered in this chapter:

• C# Keywords: https://docs.microsoft.com/en-us/dotnet/csharp/
language-reference/keywords/index

• Main() and command-line arguments (C# Programming Guide): https://
docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-
and-command-args/

• Types (C# Programming Guide): https://docs.microsoft.com/en-us/
dotnet/csharp/programming-guide/types/

• Statements, Expressions, and Operators (C# Programming Guide):
https://docs.microsoft.com/en-us/dotnet/csharp/programming-
guide/statements-expressions-operators/

• Strings (C# Programming Guide): https://docs.microsoft.com/en-us/
dotnet/csharp/programming-guide/strings/

• Nullable Types (C# Programming Guide): https://docs.microsoft.com/
en-us/dotnet/csharp/programming-guide/nullable-types/

• Nullable reference types: https://docs.microsoft.com/en-us/dotnet/
csharp/nullable-references

• Console Class: https://docs.microsoft.com/en-us/dotnet/api/
system.console?view=netcore-3.0

Summary
In this chapter, you learned how to declare variables with a specified or an inferred
type; we discussed some of the built-in types for numbers, text, and Booleans; we
covered how to choose between number types; we covered nullability of types; we
learned how to control the output formatting in console apps.

In the next chapter, you will learn about operators, branching, looping, and
converting between types.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-and-command-args/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-and-command-args/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-and-command-args/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/
https://docs.microsoft.com/en-us/dotnet/csharp/nullable-references
https://docs.microsoft.com/en-us/dotnet/csharp/nullable-references
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.console?view=netcore-3.0

[71]

Chapter 03
Controlling Flow and

Converting Types
This chapter is all about writing code that performs simple operations on variables,
makes decisions, repeats blocks of statements, converts variable or expression values
from one type to another, handles exceptions, and checks for overflows in number
variables.

This chapter covers the following topics:

• Operating on variables
• Understanding selection statements
• Understanding iteration statements
• Casting and converting between types
• Handling exceptions
• Checking for overflow

Operating on variables
Operators apply simple operations such as addition and multiplication to operands
such as variables and literal values. They usually return a new value that is the result
of the operation that can be assigned to a variable.

Most operators are binary, meaning that they work on two operands, as shown in the
following pseudocode:

var resultOfOperation = firstOperand operator secondOperand;

Some operators are unary, meaning they work on a single operand, and can apply
before or after the operand, as shown in the following pseudocode:

var resultOfOperation = onlyOperand operator;
var resultOfOperation2 = operator onlyOperand;

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[72]

Examples of unary operators include incrementors and retrieving a type or its size in
bytes, as shown in the following code:

int x = 5;
int incrementedByOne = x++;
int incrementedByOneAgain = ++x;

Type theTypeOfAnInteger = typeof(int);
int howManyBytesInAnInteger = sizeof(int);

A ternary operator works on three operands, as shown in the following pseudocode:

var resultOfOperation = firstOperand firstOperator
 secondOperand secondOperator thirdOperand;

Unary operators
Two common unary operators are used to increment, ++, and decrement, --,
a number.

1. If you have completed the previous chapters, then you will already have
a Code folder in your user folder. If not, create it.

2. In the Code folder, create a folder named Chapter03.
3. Start Visual Studio Code and close any open workspace or folder.
4. Save the current workspace in the Chapter03 folder as Chapter03.code-

workspace.
5. Create a new folder named Operators and add it to the Chapter03

workspace.
6. Navigate to Terminal | New Terminal.
7. In Terminal, enter a command to create a new console application in the

Operators folder.
8. Open Program.cs.
9. Statically import System.Console.
10. In the Main method, declare two integer variables named a and b, set a to

three, increment a while assigning the result to b, and then output their
values, as shown in the following code:
int a = 3;
int b = a++;
WriteLine($"a is {a}, b is {b}");

Controlling Flow and Converting Types | 03

[73]

11. Before running the console application, ask yourself a question: what do you
think the value of b will be when output? Once you've thought about that,
run the console application, and compare your prediction against the actual
result, as shown in the following output:
a is 4, b is 3

The variable b has the value 3 because the ++ operator executes after the
assignment; this is known as a postfix operator. If you need to increment
before the assignment, then use the prefix operator.

12. Copy and paste the statements, and then modify them to rename the
variables and use the prefix operator, as shown in the following code:
int c = 3;
int d = ++c; // increment c before assigning it
WriteLine($"c is {c}, d is {d}");

13. Rerun the console application and note the result, as shown in the following
output:
a is 4, b is 3

c is 4, d is 4

Binary arithmetic operators
Increment and decrement are unary arithmetic operators. Other arithmetic operators
are usually binary and allow you to perform arithmetic operations on two numbers.

1. Add the statements to the bottom of the Main method to declare and assign
values to two integer variables named e and f, and then perform the five
common binary arithmetic operators to the two numbers, as shown in the
following code:
int e = 11;
int f = 3;
WriteLine($"e is {e}, f is {f}");
WriteLine($"e + f = {e + f}");
WriteLine($"e - f = {e - f}");
WriteLine($"e * f = {e * f}");

Good Practice: Due to the confusion between prefix and postfix
for the increment and decrement operators when combined with
assignment, the Swift programming language designers decided to
drop support for this operator in version 3. My recommendation
for usage in C# is to never combine the use of ++ and -- operators
with an assignment operator, =. Perform the operations as separate
statements.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[74]

WriteLine($"e / f = {e / f}");
WriteLine($"e % f = {e % f}");

2. Rerun the console application and note the result, as shown in the following
output:
e is 11, f is 3

e + f = 14

e - f = 8

e * f = 33

e / f = 3

e % f = 2

To understand the divide / and modulo % operators when applied to
integers, you need to think back to primary school. Imagine you have
eleven sweets and three friends. How can you divide the sweets between
your friends? You can give three sweets to each of your friends, and there
will be two left over. Those two sweets are the modulus, also known as the
remainder after dividing. If you have twelve sweets, then each friend gets
four of them, and there are none left over, so the remainder would be 0.

3. Add statements to declare and assign a value to a double variable named g
to show the difference between whole number and real number divisions, as
shown in the following code:
double g = 11.0;
WriteLine($"g is {g:N1}, f is {f}");
WriteLine($"g / f = {g / f}");

4. Rerun the console application and note the result, as shown in the following
output:
g is 11.0, f is 3

g / f = 3.6666666666666665

If the first operand is a floating-point number, such as g with the value 11.0, then the
divide operator returns a floating-point value, such as 3.6666666666665, rather than
a whole number.

Assignment operators
You have already been using the most common assignment operator, =.

To make your code more concise, you can combine the assignment operator with
other operators like arithmetic operators, as shown in the following code:

Controlling Flow and Converting Types | 03

[75]

int p = 6;
p += 3; // equivalent to p = p + 3;
p -= 3; // equivalent to p = p - 3;
p *= 3; // equivalent to p = p * 3;
p /= 3; // equivalent to p = p / 3;

Logical operators
Logical operators operate on Boolean values, so they return either true or false.

Let's explore binary logical operators that operate on two Boolean values.

1. Create a new folder and console application named BooleanOperators and
add it to the Chapter03 workspace. Remember to use the Command Palette
to select BooleanOperators as the project.

2. In Program.cs, in the Main method, add statements to declare two Boolean
variables with values true and false, and then output truth tables showing
the results of applying AND, OR, and XOR (exclusive OR) logical operators,
as shown in the following code:
bool a = true;
bool b = false;

WriteLine($"AND | a | b ");
WriteLine($"a | {a & a,-5} | {a & b,-5} ");
WriteLine($"b | {b & a,-5} | {b & b,-5} ");
WriteLine();
WriteLine($"OR | a | b ");
WriteLine($"a | {a | a,-5} | {a | b,-5} ");
WriteLine($"b | {b | a,-5} | {b | b,-5} ");
WriteLine();
WriteLine($"XOR | a | b ");
WriteLine($"a | {a ^ a,-5} | {a ^ b,-5} ");
WriteLine($"b | {b ^ a,-5} | {b ^ b,-5} ");

3. Run the console application and note the results, as shown in the following
output:
AND | a | b

a | True | False

More Information: Read about truth tables at the following link:
https://en.wikipedia.org/wiki/Truth_table

https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Truth_table

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[76]

b | False | False

OR | a | b

a | True | True

b | True | False

XOR | a | b

a | False | True

b | True | False

For the AND & logical operator, both operands must be true for the result to be true.
For the OR | logical operator, either operand can be true for the result to be true.
For the XOR ^ logical operator, either operand can be true (but not both!) for the
result to be true.

Conditional logical operators
Conditional logical operators are similar to logical operators, but you use two
symbols instead of one, for example, && instead of &, or || instead of |.

In Chapter 4, Writing, Debugging, and Testing Functions, you will learn about functions
in more detail, but I need to introduce functions now to explain conditional logical
operators, also known as short-circuiting Boolean operators.

A function executes statements and then returns a value. That value could be
a Boolean value like true that is used in a Boolean operation.

1. After and outside the Main method, write statements to declare a function
that writes a message to the console and returns true, as shown highlighted
in the following code:
class Program
{
 static void Main(string[] args)
 {
 ...
 }

 private static bool DoStuff()
 {
 WriteLine("I am doing some stuff.");
 return true;
 }
}

Controlling Flow and Converting Types | 03

[77]

2. Inside and at the bottom of the Main method, perform an AND & operation on
the a and b variables and the result of calling the function, as shown in the
following code:
WriteLine($"a & DoStuff() = {a & DoStuff()}");
WriteLine($"b & DoStuff() = {b & DoStuff()}");

3. Run the console app, view the result, and note that the function was called
twice, once for a and once for b, as shown in the following output:
I am doing some stuff.

a & DoStuff() = True

I am doing some stuff.

b & DoStuff() = False

4. Change the & operators into && operators, as shown in the following code:
WriteLine($"a && DoStuff() = {a && DoStuff()}");
WriteLine($"b && DoStuff() = {b && DoStuff()}");

5. Run the console app, view the result, and note that the function does run
when combined with the a variable, but it does not run when combined with
the b variable because the b variable is false so the result will be false
anyway so it does not need to execute the function, as shown in the following
output:

I am doing some stuff.

a && DoStuff() = True

b && DoStuff() = False // DoStuff function was not executed!

Bitwise and binary shift operators
Bitwise operators effect the bits in a number. Binary shift operators can perform
some common arithmetic calculations much faster than traditional operators.

Let's explore bitwise and binary shift operators.

1. Create a new folder and console application named
BitwiseAndShiftOperators and add it to the workspace.

Good Practice: Now you can see why the conditional logical
operators are described as being short-circuiting. They can make
your apps more efficient, but they can also introduce subtle bugs in
cases where you assume that the function would always be called. It
is safest to avoid them.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[78]

2. Add statements to the Main method to declare two integer variables with
values 10 and 6, and then output the results of applying AND, OR, and XOR
(exclusive OR) bitwise operators, as shown in the following code:
int a = 10; // 0000 1010
int b = 6; // 0000 0110

WriteLine($"a = {a}");
WriteLine($"b = {b}");
WriteLine($"a & b = {a & b}"); // 2-bit column only
WriteLine($"a | b = {a | b}"); // 8, 4, and 2-bit columns
WriteLine($"a ^ b = {a ^ b}"); // 8 and 4-bit columns

3. Run the console application and note the results, as shown in the following
output:
a = 10

b = 6

a & b = 2

a | b = 14

a ^ b = 12

4. Add statements to the Main method to output the results of applying the
left-shift operator to move the bits of the variable a by three columns,
multiplying a by 8, and right-shifting the bits of the variable b by one
column, as shown in the following code:
// 0101 0000 left-shift a by three bit columns
WriteLine($"a << 3 = {a << 3}");

// multiply a by 8
WriteLine($"a * 8 = {a * 8}");

// 0000 0011 right-shift b by one bit column
WriteLine($"b >> 1 = {b >> 1}");

5. Run the console application and note the results, as shown in the following
output:

a << 3 = 80

a * 8 = 80

b >> 1 = 3

The 80 result is because the bits in it were shifted three columns to the left, so the
1-bits moved into the 64- and 16-bit columns and 64 + 16 = 80. This is the equivalent
of multiplying by 8 but CPUs can perform a bit-shift faster. The 3 result is because
the 1-bits in b were shifted one column into the 2- and 1-bit columns.

Controlling Flow and Converting Types | 03

[79]

Miscellaneous operators
nameof and sizeof are convenient operators when working with types. nameof
returns the short name (without namespace) of a variable, type, or member as
a string value, which is useful when outputting exception messages. sizeof returns
the size in bytes of simple types, which is useful for determining efficiency of data
storage.

There are many other operators; for example, the dot between a variable and its
members is called the member access operator and the round brackets at the end of a
function or method name is called the invocation operator, as shown in the following
code:

int age = 47;

// How many operators in the following statement?
string firstDigit = age.ToString()[0];

// There are four operators:
// = is the assignment operator
// . is the member access operator
// () is the invocation operator
// [] is the indexer access operator

Understanding selection statements
Every application needs to be able to select from choices and branch along different
code paths. The two selection statements in C# are if and switch. You can use if
for all your code, but switch can simplify your code in some common scenarios such
as when there is a single variable that can have multiple values that each require
different processing.

Branching with the if statement
The if statement determines which branch to follow by evaluating a Boolean
expression. If the expression is true, then the block executes. The else block is
optional, and it executes if the if expression is false. The if statement can be
nested.

More Information: You can read more about some of these
miscellaneous operators at the following link: https://
docs.microsoft.com/en-us/dotnet/csharp/language-
reference/operators/member-access-operators.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[80]

The if statement combined with other if statements as else if branches, as shown
in the following code:

if (expression1)
{
 // runs if expression1 is true
}
else if (expression2)
{
 // runs if expression1 is false and expression2 if true
}
else if (expression3)
{
 // runs if expression1 and expression2 are false
 // and expression3 is true
}
else
{
 // runs if all expressions are false
}

Each if statement's Boolean expression is independent of the others and unlike
switch statements does not need to reference a single value.

Let's create a console application to explore selection statements like if.

1. Create a folder and console application named SelectionStatements and
add it to the workspace.

2. Add the following statements inside the Main method to check whether this
console application has any arguments passed to it:
if (args.Length == 0)
{
 WriteLine("There are no arguments.");
}
else
{
 WriteLine("There is at least one argument.");
}

Good Practice: Remember to statically import the System.
Console type to simplify statements in a console app.

Controlling Flow and Converting Types | 03

[81]

3. Run the console application by entering the following command into
Terminal:

dotnet run

Why you should always use braces with if
statements
As there is only a single statement inside each block, the preceding code could be
written without the curly braces, as shown in the following code:

if (args.Length == 0)
 WriteLine("There are no arguments.");
else
 WriteLine("There is at least one argument.");

This style of the if statement should be avoided because it can introduce serious
bugs, for example, the infamous #gotofail bug in Apple's iPhone iOS operating
system. For 18 months after Apple's iOS 6 was released, in September 2012, it had a
bug in its Secure Sockets Layer (SSL) encryption code, which meant that any user
running Safari, the device's web browser, who tried to connect to secure websites,
such as their bank, was not properly secure because an important check was being
accidentally skipped.

You can read about this infamous bug at the following link: https://gotofail.com/.

Just because you can leave out the curly braces, doesn't mean you should. Your code
is not "more efficient" without them; instead, it is less maintainable and potentially
more dangerous.

Pattern matching with the if statement
A feature introduced with C# 7.0 and later is pattern matching. The if statement can
use the is keyword in combination with declaring a local variable to make your code
safer.

1. Add statements to the end of the Main method so that if the value stored in
the variable named o is an int, then the value is assigned to the local variable
named i, which can then be used inside the if statement. This is safer
than using the variable named o because we know for sure that i is an int
variable and not something else, as shown in the following code:
// add and remove the "" to change the behavior
object o = "3";

https://gotofail.com/
https://gotofail.com/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[82]

int j = 4;

if(o is int i)
{
 WriteLine($"{i} x {j} = {i * j}");
}
else
{
 WriteLine("o is not an int so it cannot multiply!");
}

2. Run the console application and view the results, as shown in the following
output:
o is not an int so it cannot multiply!

3. Delete the double-quote characters around the "3" value so that the value
stored in the variable named o is an int type instead of a string type.

4. Rerun the console application to view the results, as shown in the following
output:
3 x 4 = 12

Branching with the switch statement
The switch statement is different from the if statement because it compares a single
expression against a list of multiple possible case statements. Every case statement
is related to the single expression. Every case section must end with:

• The break keyword (like case 1 in the following code),
• Or the goto case keywords (like case 2 in the following code),
• Or they should have no statements (like case 3 in the following code).

Let's write some code to explore the switch statements.

1. Enter some statements for a switch statement after the if statements that
you wrote previously. You should note that the first line is a label that can
be jumped to, and the second line generates a random number. The switch
statement branches based on the value of this random number, as shown in
the following code:
A_label:
 var number = (new Random()).Next(1, 7);

 WriteLine($"My random number is {number}");

Controlling Flow and Converting Types | 03

[83]

 switch (number)
 {
 case 1:
 WriteLine("One");
 break; // jumps to end of switch statement
 case 2:
 WriteLine("Two");
 goto case 1;
 case 3:
 case 4:
 WriteLine("Three or four");
 goto case 1;
 case 5:
 // go to sleep for half a second
 System.Threading.Thread.Sleep(500);
 goto A_label;
 default:
 WriteLine("Default");
 break;
 } // end of switch statement

2. Run the console application multiple times in order to see what happens
in various cases of random numbers, as shown in the following example
output:
bash-3.2$ dotnet run

My random number is 4

Three or four

One

bash-3.2$ dotnet run

My random number is 2

Two

One

bash-3.2$ dotnet run

My random number is 1

One

Good Practice: You can use the goto keyword to jump to another
case or a label. The goto keyword is frowned upon by most
programmers but can be a good solution to code logic in some
scenarios. However, you should use it sparingly.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[84]

Pattern matching with the switch statement
Like the if statement, the switch statement supports pattern matching in C# 7.0 and
later. The case values no longer need to be literal values. They can be patterns.

Let's see an example of pattern matching with the switch statement using a folder
path. If you are using macOS, then swap the commented statement that sets the path
variable and replace my username with your user folder name.

1. Add the following statement to the top of the file to import types for working
with input/output:
using System.IO;

2. Add statements to the end of the Main method to declare a string path to
a file, open it as a stream, and then show a message based on what type and
capabilities the stream has, as shown in the following code:
// string path = "/Users/markjprice/Code/Chapter03";
string path = @"C:\Code\Chapter03";

Stream s = File.Open(
 Path.Combine(path, "file.txt"), FileMode.OpenOrCreate);

string message = string.Empty;

switch (s)
{
 case FileStream writeableFile when s.CanWrite:
 message = "The stream is a file that I can write to.";
 break;
 case FileStream readOnlyFile:
 message = "The stream is a read-only file.";
 break;
 case MemoryStream ms:
 message = "The stream is a memory address.";
 break;
 default: // always evaluated last despite its current position
 message = "The stream is some other type.";
 break;
 case null:
 message = "The stream is null.";
 break;
}

WriteLine(message);

Controlling Flow and Converting Types | 03

[85]

3. Run the console app and note that the variable named s is declared as a Stream
type so it could be any subtype of stream like a memory stream or file stream.
In this code, the stream is created using the File.Open method, which returns
a file stream and due to the FileMode, it will be writeable, so the result will be
a message that describes the situation, as shown in the following output:

The stream is a file that I can write to.

In .NET, there are multiple subtypes of Stream, including FileStream and
MemoryStream. In C# 7.0 and later, your code can more concisely branch, based on
the subtype of stream, and declare and assign a local variable to safely use it. You
will learn more about the System.IO namespace and the Stream type in Chapter 9,
Working with Files, Streams, and Serialization.

Additionally, case statements can include a when keyword to perform more specific
pattern matching. In the first case statement in the preceding code, s will only be a
match if the stream is a FileStream and its CanWrite property is true.

Simplifying switch statements with switch
expressions
In C# 8.0 or later, you can simplify switch statements using switch expressions.

Most switch statements are very simple, yet they require a lot of typing. Switch
expressions are designed to simplify the code you need to type while still expressing
the same intent.

Let's implement the previous code that uses a switch statement using a switch
expression so that you can compare the two styles.

1. Add statements to the end of the Main method to set the message based on
what type and capabilities the stream has using a switch expression, as
shown in the following code:
message = s switch
{
 FileStream writeableFile when s.CanWrite
 => "The stream is a file that I can write to.",
 FileStream readOnlyFile
 => "The stream is a read-only file.",
 MemoryStream ms
 => "The stream is a memory address.",

More Information: You can read more about pattern matching
at the following link: https://docs.microsoft.com/en-us/
dotnet/csharp/pattern-matching.

https://docs.microsoft.com/en-us/dotnet/csharp/pattern-matching.
https://docs.microsoft.com/en-us/dotnet/csharp/pattern-matching.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[86]

 null
 => "The stream is null.",
 _
 => "The stream is some other type."
};

WriteLine(message);

The main differences are the removal of the case and break keywords. The
underscore character is used to represent the default return value.

2. Run the console app, and note the result is the same as before.

Understanding iteration statements
Iteration statements repeat a block of statements either while a condition is true or for
each item in a collection. The choice of which statement to use is based on a combination
of ease of understanding to solve the logic problem and personal preference.

Looping with the while statement
The while statement evaluates a Boolean expression and continues to loop while it is
true. Let's explore iteration statements.

1. Create a new folder and console application project named
IterationStatements and add it to the workspace.

2. Type the following code inside the Main method:
int x = 0;

while (x < 10)
{
 WriteLine(x);
 x++;
}

3. Run the console application and view the results, which should be the
numbers 0 to 9, as shown in the following output:
0

More Information: You can read more about patterns and
switch expressions at the following link: https://devblogs.
microsoft.com/dotnet/do-more-with-patterns-
in-c-8-0/.

https://devblogs.microsoft.com/dotnet/do-more-with-patterns-in-c-8-0/
https://devblogs.microsoft.com/dotnet/do-more-with-patterns-in-c-8-0/

Controlling Flow and Converting Types | 03

[87]

1

2

3

4

5

6

7

8

9

Looping with the do statement
The do statement is like while, except the Boolean expression is checked at the
bottom of the block instead of the top, which means that the block always executes at
least once.

1. Type the following code at the end of the Main method:
string password = string.Empty;

do
{
 Write("Enter your password: ");
 password = ReadLine();
}
while (password != "Pa$$w0rd");

WriteLine("Correct!");

2. Run the console application, and note that you are prompted to enter your
password repeatedly until you enter it correctly, as shown in the following
output:
Enter your password: password

Enter your password: 12345678

Enter your password: ninja

Enter your password: correct horse battery staple

Enter your password: Pa$$w0rd

Correct!

3. As an optional challenge, add statements so that the user can only make ten
attempts before an error message is displayed.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[88]

Looping with the for statement
The for statement is like while, except that it is more succinct. It combines:

• An initializer expression, which executes once at the start of the loop.
• A conditional expression, which that executes on every iteration at the start

of the loop to check whether the looping should continue.
• An iterator expression, which that executes on every loop at the bottom of

the statement.

The for statement is commonly used with an integer counter. Let's explore
some code.

1. Enter a for statement to output the numbers 1 to 10, as shown in the
following code:
for (int y = 1; y <= 10; y++)
{
 WriteLine(y);
}

2. Run the console application to view the result, which should be the numbers
1 to 10.

Looping with the foreach statement
The foreach statement is a bit different from the previous three iteration statements.

It is used to perform a block of statements on each item in a sequence, for example,
an array or collection. Each item is usually read-only, and if the sequence structure
is modified during iteration, for example, by adding or removing an item, then an
exception will be thrown.

1. Type statements to create an array of string variables and then output the
length of each one, as shown in the following code:
string[] names = { "Adam", "Barry", "Charlie" };

foreach (string name in names)
{
 WriteLine($"{name} has {name.Length} characters.");
}

2. Run the console application and view the results, as shown in the following
output:
Adam has 4 characters.

Controlling Flow and Converting Types | 03

[89]

Barry has 5 characters.

Charlie has 7 characters.

Understanding how foreach works internally
Technically, the foreach statement will work on any type that follows these rules:

1. The type must have a method named GetEnumerator that returns an object.
2. The returned object must have a property named Current and a method

named MoveNext.
3. The MoveNext method must return true if there are more items to enumerate

through or false if there are no more items.

There are interfaces named IEnumerable and IEnumerable<T> that formally define
these rules but technically the compiler does not require the type to implement these
interfaces.

The compiler turns the foreach statement in the preceding example into something
similar to the following pseudocode:

IEnumerator e = names.GetEnumerator();

while (e.MoveNext())
{
 string name = (string)e.Current; // Current is read-only!
 WriteLine($"{name} has {name.Length} characters.");
}

Due to the use of an iterator, the variable declared in a foreach statement cannot be
used to modify the value of the current item.

Casting and converting between types
You will often need to convert values of variables between different types. For
example, data input is often entered as text at the console, so it is initially stored in
a variable of the string type, but it then needs to be converted into a date/time, or
number, or some other data type, depending on how it should be stored and processed.

Sometimes you will need to convert between number types, like between an integer
and a floating-point, before performing calculations.

Converting is also known as casting, and it has two varieties: implicit and explicit.
Implicit casting happens automatically, and it is safe, meaning that you will not lose
any information.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[90]

Explicit casting must be performed manually because it may lose information, for
example, the precision of a number. By explicitly casting, you are telling the C#
compiler that you understand and accept the risk.

Casting numbers implicitly and explicitly
Implicitly casting an int variable into a double variable is safe because no
information can be lost.

1. Create a new folder and console application project named
CastingConverting and add it to the workspace.

2. In the Main method, enter statements to declare and assign an int variable
and a double variable, and then implicitly cast the integer's value when
assigning it to the double variable, as shown in the following code:
int a = 10;
double b = a; // an int can be safely cast into a double
WriteLine(b);

3. In the Main method, enter the following statements:
double c = 9.8;
int d = c; // compiler gives an error for this line
WriteLine(d);

4. View the PROBLEMS window by navigating to View | Problems, and note
the error message, as shown in the following screenshot:

If you need to create the required assets to show PROBLEMS, then
try closing and reopening the workspace, select the correct project for
OmniSharp, and then click Yes when prompted to create missing assets for
example, the .vscode folder. The status bar should show the currently active
project, like CastingConverting in the preceding screenshot.

Controlling Flow and Converting Types | 03

[91]

You cannot implicitly cast a double variable into an int variable because it is
potentially unsafe and could lose data.

5. View the TERMINAL window, and enter the dotnet run command, and
note the error message, as shown in the following output:
Program.cs(19,15): error CS0266: Cannot implicitly convert type
'double' to 'int'. An explicit conversion exists (are you missing
a cast?) [/Users/markjprice/Code/Chapter03/CastingConverting/
CastingConverting.csproj]

The build failed. Please fix the build errors and run again.

You must explicitly cast a double variable into an int variable using a pair
of round brackets around the type you want to cast the double type into. The
pair of round brackets is the cast operator. Even then, you must beware that
the part after the decimal point will be trimmed off without warning because
you have chosen to perform an explicit cast and therefore understand the
consequences.

6. Modify the assignment statement for the d variable, as shown in the
following code:
int d = (int)c;
WriteLine(d); // d is 9 losing the .8 part

7. Run the console application to view the results, as shown in the following
output:
10

9

We must perform a similar operation when converting values between larger
integers and smaller integers. Again, beware that you might lose information
because any value too big will have its bits copied and then interpreted in
ways that you might not expect!

8. Enter statements to declare and assign a long 64-bit variable to an int 32-bit
variable, both using a small value that will work and a too-large value that
will not, as shown in the following code:
long e = 10;
int f = (int)e;
WriteLine($"e is {e:N0} and f is {f:N0}");

e = long.MaxValue;
f = (int)e;
WriteLine($"e is {e:N0} and f is {f:N0}");

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[92]

9. Run the console application to view the results, as shown in the following
output:
e is 10 and f is 10

e is 9,223,372,036,854,775,807 and f is -1

10. Modify the value of e to 5 billion, as shown in the following code:
e = 5_000_000_000;

11. Run the console application to view the results, as shown in the following
output:
e is 5,000,000,000 and f is 705,032,704

Converting with the System.Convert type
An alternative to using the cast operator is to use the System.Convert type. The
System.Convert type can convert to and from all the C# number types as well as
Booleans, strings, and date and time values.

1. At the top of the Program.cs file, statically import the System.Convert
class, as shown in the following code:
using static System.Convert;

2. Add statements to the bottom of the Main method to declare and assign
a value to a double variable, convert it to an integer, and then write both
values to the console, as shown in the following code:
double g = 9.8;
int h = ToInt32(g);
WriteLine($"g is {g} and h is {h}");

3. Run the console application and view the result, as shown in the following
output:
g is 9.8 and h is 10

One difference between casting and converting is that converting rounds the double
value 9.8 up to 10 instead of trimming the part after the decimal point.

Rounding numbers
You have now seen that the cast operator trims the decimal part of a real number and
that the System.Convert methods round up or down. However, what is the rule for
rounding?

Controlling Flow and Converting Types | 03

[93]

Understanding the default rounding rules
In British primary schools for children aged 5 to 11, pupils are taught to round up if
the decimal part is .5 or higher and round down if the decimal part is less.

Let's explore if C# follows the same primary school rule.

1. At the bottom of the Main method, add statements to declare and assign an
array of double values, convert each of them to an integer, and then write the
result to the console, as shown in the following code:
double[] doubles = new[]
 { 9.49, 9.5, 9.51, 10.49, 10.5, 10.51 };

foreach (double n in doubles)
{
 WriteLine($"ToInt({n}) is {ToInt32(n)}");
}

2. Run the console application and view the result, as shown in the following
output:

ToInt(9.49) is 9

ToInt(9.5) is 10

ToInt(9.51) is 10

ToInt(10.49) is 10

ToInt(10.5) is 10

ToInt(10.51) is 11

We have shown that the rule for rounding in C# is subtly different from the primary
school rule:

• It always rounds down if the decimal part is less than the midpoint .5.
• It always rounds up if the decimal part is more than the midpoint .5.
• It will round up if the decimal part is the midpoint .5 and the non-decimal

part is odd, but it will round down if the non-decimal part is even.

This rule is known as Banker's Rounding, and it is preferred because it reduces bias
by alternating when it rounds up or down. Sadly, other languages such as JavaScript
use the primary school rule.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[94]

Taking control of rounding rules
You can take control of the rounding rules by using the Round method of the Math
class.

1. At the bottom of the Main method, add statements to round each of the double
values using the "away from zero" rounding rule also known as rounding "up",
and then write the result to the console, as shown in the following code:
foreach (double n in doubles)
{
 WriteLine(format:
 "Math.Round({0}, 0, MidpointRounding.AwayFromZero) is {1}",
 arg0: n,
 arg1: Math.Round(value: n,
 digits: 0,
 mode: MidpointRounding.AwayFromZero));
}

2. Run the console application and view the result, as shown in the following
output:
Math.Round(9.49, 0, MidpointRounding.AwayFromZero) is 9

Math.Round(9.5, 0, MidpointRounding.AwayFromZero) is 10

Math.Round(9.51, 0, MidpointRounding.AwayFromZero) is 10

Math.Round(10.49, 0, MidpointRounding.AwayFromZero) is 10

Math.Round(10.5, 0, MidpointRounding.AwayFromZero) is 11

Math.Round(10.51, 0, MidpointRounding.AwayFromZero) is 11

Converting from any type to a string
The most common conversion is from any type into a string variable for outputting
as human-readable text, so all types have a method named ToString that they
inherit from the System.Object class.

More Information: MidpointRounding.AwayFromZero
is the primary school rule. You can read more about taking
control of rounding at the following link: https://docs.
microsoft.com/en-us/dotnet/api/system.math.
round?view=netcore-3.0.

Good Practice: For every programming language that you use,
check its rounding rules. They may not work the way you expect!

https://docs.microsoft.com/en-us/dotnet/api/system.math.round?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.math.round?view=netcore-3.0

Controlling Flow and Converting Types | 03

[95]

The ToString method converts the current value of any variable into a textual
representation. Some types can't be sensibly represented as text, so they return their
namespace and type name.

1. At the bottom of the Main method, type statements to declare some variables,
convert them to their string representation, and write them to the console,
as shown on the following code:
int number = 12;
WriteLine(number.ToString());

bool boolean = true;
WriteLine(boolean.ToString());

DateTime now = DateTime.Now;
WriteLine(now.ToString());

object me = new object();
WriteLine(me.ToString());

2. Run the console application and view the result, as shown in the following
output:
12

True

27/01/2019 13:48:54

System.Object

Converting from a binary object to a string
When you have a binary object like an image or video that you want to either store
or transmit, you sometimes do not want to send the raw bits, because you do not
know how those bits could be misinterpreted, for example, by the network protocol
transmitting them or another operating system that is reading the store binary object.

The safest thing to do is to convert the binary object into a string of safe characters.
Programmers call this Base64 encoding.

The Convert type has a pair of methods, ToBase64String and FromBase64String,
that perform this conversion for you.

1. Add statements to the end of the Main method to create an array of bytes
randomly populated with byte values, write each byte nicely formatted to the
console, and then write the same bytes converted to Base64 to the console, as
shown in the following code:
// allocate array of 128 bytes
byte[] binaryObject = new byte[128];

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[96]

// populate array with random bytes
(new Random()).NextBytes(binaryObject);

WriteLine("Binary Object as bytes:");

for(int index = 0; index < binaryObject.Length; index++)
{
 Write($"{binaryObject[index]:X} ");
}
WriteLine();

// convert to Base64 string and output as text
string encoded = Convert.ToBase64String(binaryObject);
WriteLine($"Binary Object as Base64: {encoded}");

By default, an int value would output assuming decimal notation, that
is, base10. You can use format codes such as :X to format the value using
hexadecimal notation.

2. Run the console application and view the result:
Binary Object as bytes:

B3 4D 55 DE 2D E BB CF BE 4D E6 53 C3 C2 9B 67 3 45 F9 E5 20 61 7E
4F 7A 81 EC 49 F0 49 1D 8E D4 F7 DB 54 AF A0 81 5 B8 BE CE F8 36
90 7A D4 36 42 4 75 81 1B AB 51 CE 5 63 AC 22 72 DE 74 2F 57 7F CB
E7 47 B7 62 C3 F4 2D 61 93 85 18 EA 6 17 12 AE 44 A8 D B8 4C 89 85
A9 3C D5 E2 46 E0 59 C9 DF 10 AF ED EF 8AA1 B1 8D EE 4A BE 48 EC
79 A5 A 5F 2F 30 87 4A C7 7F 5D C1 D 26 EE

Binary Object as Base64: s01V3i0Ou8++TeZTw8KbZwNF +eUgYX5PeoHsS
fBJHY7U99tUr6CBBbi+zvg2kHrUNkIEdYEbq1HOBWOsInLedC9Xf8vnR7diw/QtY
ZOFGOoGFxKuRKgNuEyJhak81eJG4FnJ3xCv7e+KobGN7kq+SO x5pQpfLzCHSsd/
XcENJu4=

Parsing from strings to numbers or dates and
times
The second most common conversion is from strings to numbers or date and time
values.

The opposite of ToString is Parse. Only a few types have a Parse method,
including all the number types and DateTime.

1. Add statements to the Main method to parse an integer and a date and time
value from strings and then write the result to the console, as shown in the
following code:

Controlling Flow and Converting Types | 03

[97]

int age = int.Parse("27");
DateTime birthday = DateTime.Parse("4 July 1980");

WriteLine($"I was born {age} years ago.");
WriteLine($"My birthday is {birthday}.");
WriteLine($"My birthday is {birthday:D}.");

2. Run the console application and view the result, as shown in the following
output:
I was born 27 years ago.

My birthday is 04/07/1980 00:00:00.

My birthday is 04 July 1980.

By default, a date and time value outputs with the short date and time
format. You can use format codes such as D to output only the date part using
long date format.

One problem with the Parse method is that it gives errors if the string
cannot be converted.

3. Add a statement to the bottom of the Main method to attempt to parse a string
containing letters into an integer variable, as shown in the following code:
int count = int.Parse("abc");

4. Run the console application and view the result, as shown in the following
output:
Unhandled Exception: System.FormatException: Input string was not
in a correct format.

As well as the preceding exception message, you will see a stack trace. I have not
included stack traces in this book because they take up too much space.

Avoiding exceptions using the TryParse method
To avoid errors, you can use the TryParse method instead. TryParse attempts to
convert the input string and returns true if it can convert it and false if it cannot.

More Information: There are many other format codes for
common scenarios that you can read about at the following
link: https://docs.microsoft.com/en-us/dotnet/
standard/base-types/standard-date-and-time-
format-strings.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[98]

The out keyword is required to allow the TryParse method to set the count variable
when the conversion works.

1. Replace the int count declaration with statements to use the TryParse
method and ask the user to input a count for a number of eggs, as shown in
the following code:
Write("How many eggs are there? ");
int count;
string input = Console.ReadLine();
if (int.TryParse(input, out count))
{
 WriteLine($"There are {count} eggs.");
}
else
{
 WriteLine("I could not parse the input.");
}

2. Run the console application.
3. Enter 12 and view the result, as shown in the following output:

How many eggs are there? 12

There are 12 eggs.

4. Run the console application again.
5. Enter twelve and view the result, as shown in the following output:

How many eggs are there? twelve
I could not parse the input.

You can also use methods of the System.Convert type to convert string values into
other types; however, like the Parse method, it gives an error if it cannot convert.

Handling exceptions when converting types
You've seen several scenarios when errors have occurred when converting types.
When this happens, we say a runtime exception has been thrown.

As you have seen, the default behavior of a console application is to write a message
about the exception including a stack trace in the output and then stop running the
application.

Good Practice: Avoid writing code that will throw an exception
whenever possible, perhaps by performing if statement checks, but
sometimes you can't. In those scenarios, you could catch the exception
and handle it in a better way than the default behavior.

Controlling Flow and Converting Types | 03

[99]

Wrapping error-prone code in a try block
When you know that a statement can cause an error, you should wrap that statement
in a try block. For example, parsing from text to a number can cause an error. Any
statements in the catch block will be executed only if an exception is thrown by a
statement in the try block. We don't have to do anything inside the catch block.

1. Create a folder and console application named HandlingExceptions and
add it to the workspace.

2. In the Main method, add statements to prompt the user to enter their age and
then write their age to the console, as shown in the following code:
WriteLine("Before parsing");

Write("What is your age? ");
string input = Console.ReadLine();

try
{
 int age = int.Parse(input);
 WriteLine($"You are {age} years old.");
}
catch
{

}

WriteLine("After parsing");

This code includes two messages to indicate before parsing and after parsing
to make clearer the flow through the code. These will be especially useful as
the example code grows more complex.

3. Run the console application.
4. Enter a valid age, for example, 47, and view the result, as shown in the

following output:
Before parsing

What is your age? 47

You are 47 years old.

After parsing

5. Run the console application again.
6. Enter an invalid age, for example, kermit, and view the result, as shown in

the following output:

Before parsing

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[100]

What is your age? Kermit

After parsing

When the code executed, the error exception was caught and the default message
and stack trace were not output, and the console application continued running. This
is better than the default behavior, but it might be useful to see the type of error that
occurred.

Catching all exceptions
To get information about any type of exception that might occur, you can declare a
variable of type System.Exception to the catch block.

1. Add an exception variable declaration to the catch block and use it to write
information about the exception to the console, as shown in the following code:
catch(Exception ex)
{
 WriteLine($"{ex.GetType()} says {ex.Message}");
}

2. Run the console application.
3. Enter an invalid age, for example, kermit, and view the result, as shown in

the following output:

Before parsing

What is your age? kermit

System.FormatException says Input string was not in a correct
format.

After parsing

Catching specific exceptions
Now that we know which specific type of exception occurred, we can improve our
code by catching just that type of exception and customizing the message that we
display to the user.

1. Leave the existing catch block, and above it, add a new catch block for the
format exception type, as shown in the following highlighted code:
catch (FormatException)
{
 WriteLine("The age you entered is not a valid number format.");
}
catch (Exception ex)
{

Controlling Flow and Converting Types | 03

[101]

 WriteLine($"{ex.GetType()} says {ex.Message}");
}

2. Run the console application.
3. Enter an invalid age, for example, kermit, and view the result, as

shown in the following output:

Before parsing

What is your age? kermit

The age you entered is not a valid number format.

After parsing

The reason we want to leave the more general catch below is because there
might be other types of exceptions that can occur.

4. Run the console application.
5. Enter a number that is too big for an integer, for example,

9876543210, and view the result, as shown in the following output:
Before parsing

What is your age? 9876543210

System.OverflowException says Value was either too large or too
small for an Int32.

After parsing

Let's add another catch block for this type of exception.

6. Leave the existing catch blocks, and add a new catch block for the
overflow exception type, as shown in the following highlighted code:
catch (OverflowException)
{
 WriteLine("Your age is a valid number format but it is either
too big or small.");
}
catch (FormatException)
{
 WriteLine("The age you entered is not a valid number format.");
}

7. Run the console application.
8. Enter a number that is too big, and view the result, as shown in the

following output:

Before parsing

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[102]

What is your age? 9876543210

Your age is a valid number format but it is either too big or
small.

After parsing

The order in which you catch exceptions is important. The correct order is related
to the inheritance hierarchy of the exception types. You will learn about inheritance
in Chapter 5, Building Your Own Types with Object-Oriented Programming. However,
don't worry too much about this—the compiler will give you build errors if you get
exceptions in the wrong order anyway.

Checking for overflow
Earlier, we saw that when casting between number types, it was possible to lose
information, for example, when casting from a long variable to an int variable.
If the value stored in a type is too big, it will overflow.

Throwing overflow exceptions with the checked
statement
The checked statement tells .NET to throw an exception when an overflow happens
instead of allowing it to happen silently.

We will set the initial value of an int variable to its maximum value minus one.
Then, we will increment it several times, outputting its value each time. Once it
gets above its maximum value, it overflows to its minimum value and continues
incrementing from there.

1. Create a folder and console application named CheckingForOverflow and
add it to the workspace.

2. In the Main method, type statements to declare and assign an integer to one
less than its maximum possible value, and then increment it and write its
value to the console three times, as shown in the following code:
int x = int.MaxValue - 1;
WriteLine($"Initial value: {x}");
x++;
WriteLine($"After incrementing: {x}");
x++;
WriteLine($"After incrementing: {x}");
x++;
WriteLine($"After incrementing: {x}");

Controlling Flow and Converting Types | 03

[103]

3. Run the console application and view the result, as shown in the following
output:
Initial value: 2147483646
After incrementing: 2147483647
After incrementing: -2147483648
After incrementing: -2147483647

4. Now, let's get the compiler to warn us about the overflow by wrapping the
statements using a checked statement block, as shown highlighted in the
following code:
checked
{
 int x = int.MaxValue - 1;
 WriteLine($"Initial value: {x}");
 x++;
 WriteLine($"After incrementing: {x}");
 x++;
 WriteLine($"After incrementing: {x}");
 x++;
 WriteLine($"After incrementing: {x}");
}

5. Run the console application and view the result, as shown in the
following output:
Initial value: 2147483646

After incrementing: 2147483647

Unhandled Exception: System.OverflowException: Arithmetic
operation resulted in an overflow.

6. Just like any other exception, we should wrap these statements in a
try statement block and display a nicer error message for the user, as shown
in the following code:
try
{
 // previous code goes here
}
catch (OverflowException)
{
 WriteLine("The code overflowed but I caught the exception.");
}

7. Run the console application and view the result, as shown in the
following output:

Initial value: 2147483646
After incrementing: 2147483647
The code overflowed but I caught the exception.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[104]

Disabling compiler overflow checks with the
unchecked statement
A related keyword is unchecked. This keyword switches off overflow checks
performed by the compiler within a block of code.

1. Type the following statement at the end of the previous statements.
The compiler will not compile this statement because it knows it would
overflow:
int y = int.MaxValue + 1;

2. View the PROBLEMS window by navigating to View | Problems, and
note a compile-time check is shown as an error message, as shown in the
following screenshot:

3. To disable compile-time checks, wrap the statement in an unchecked block,
write the value of y to the console, decrement it, and repeat, as shown in the
following code:
unchecked
{
 int y = int.MaxValue + 1;

 WriteLine($"Initial value: {y}");
 y--;
 WriteLine($"After decrementing: {y}");
 y--;
 WriteLine($"After decrementing: {y}");
}

4. Run the console application and view the results, as shown in the
following output:

Initial value: -2147483648

Controlling Flow and Converting Types | 03

[105]

After decrementing: 2147483647

After decrementing: 2147483646

Of course, it would be rare that you would want to explicitly switch off a check like
this because it allows an overflow to occur. But, perhaps, you can think of a scenario
where you might want that behavior.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore with deeper research into this chapter's topics.

Exercise 3.1 – Test your knowledge
Answer the following questions:

1. What happens when you divide an int variable by 0?
2. What happens when you divide a double variable by 0?
3. What happens when you overflow an int variable, that is, set it to a

value beyond its range?
4. What is the difference between x = y++; and x = ++y;?
5. What is the difference between break, continue, and return when

used inside a loop statement?
6. What are the three parts of a for statement and which of them are

required?
7. What is the difference between the = and == operators?
8. Does the following statement compile? for (; true;) ;
9. What does the underscore _ represent in a switch expression?
10. What interface must an object implement to be enumerated over by using

the foreach statement?

Exercise 3.2 – Explore loops and overflow
What will happen if this code executes?

int max = 500;
for (byte i = 0; i < max; i++)
{
 WriteLine(i);
}

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[106]

Create a console application in Chapter03 named Exercise02 and enter the
preceding code. Run the console application and view the output. What happens?

What code could you add (don't change any of the preceding code) to warn us about
the problem?

Exercise 3.3 – Practice loops and operators
FizzBuzz is a group word game for children to teach them about division. Players
take turns to count incrementally, replacing any number divisible by three with
the word fizz, any number divisible by five with the word buzz, and any number
divisible by both with fizzbuzz.

Some interviewers give applicants simple FizzBuzz-style problems to solve during
interviews. Most good programmers should be able to write out on paper or
whiteboard a program to output a simulated FizzBuzz game in under a couple
of minutes.

Want to know something worrisome? Many computer science graduates can't.
You can even find senior programmers who take more than 10-15 minutes to write
a solution.

"199 out of 200 applicants for every programming job can't write code at
all. I repeat: they can't write any code whatsoever."

 – Reginald Braithwaite

This quote is taken from the following website: http://blog.codinghorror.com/
why-cant-programmers-program/.

Create a console application in Chapter03 named Exercise03 that outputs a
simulated FizzBuzz game counting up to 100. The output should look something like
the following screenshot:

More Information: Refer to the following link for more
information: http://imranontech.com/2007/01/24/using-
fizzbuzz-to-find-developers-who-grok-coding/.

http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/.
http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/.

Controlling Flow and Converting Types | 03

[107]

Exercise 3.4 – Practice exception handling
Create a console application in Chapter03 named Exercise04 that asks the user for
two numbers in the range 0-255 and then divides the first number by the second:

Enter a number between 0 and 255: 100

Enter another number between 0 and 255: 8

100 divided by 8 is 12

Write exception handlers to catch any thrown errors, as shown in the following
output:

Enter a number between 0 and 255: apples

Enter another number between 0 and 255: bananas

FormatException: Input string was not in a correct format.

Exercise 3.5 – Test your knowledge of
operators
What are the values of x and y after the following statements execute?

1. x = 3;
y = 2 + ++x;

2. x = 3 << 2;
y = 10 >> 1;

3. x = 10 & 8;
y = 10 | 7;

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[108]

Exercise 3.6 – Explore topics
Use the following links to read in more detail about the topics covered in this
chapter:

• C# Operators: https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/statements-expressions-operators/operators

• Bitwise and shift operators: https://docs.microsoft.com/en-us/
dotnet/csharp/language-reference/operators/bitwise-and-shift-
operators#left-shift-operator-

• Selection Statements (C# Reference): https://docs.microsoft.com/
en-us/dotnet/articles/csharp/language-reference/keywords/
selection-statements

• Iteration Statements (C# Reference): https://docs.microsoft.com/
en-us/dotnet/articles/csharp/language-reference/keywords/
iteration-statements

• Jump Statements (C# Reference): https://docs.microsoft.com/en-
us/dotnet/articles/csharp/language-reference/keywords/jump-
statements

• Casting and Type Conversions (C# Programming Guide): https://docs.
microsoft.com/en-us/dotnet/articles/csharp/programming-guide/
types/casting-and-type-conversions

• Exception Handling Statements (C# Reference): https://docs.
microsoft.com/en-us/dotnet/articles/csharp/language-reference/
keywords/exception-handling-statements

Summary
In this chapter, you experimented with some operators, learned how to branch and
loop, how to convert between types, and how to catch exceptions.

You are now ready to learn how to reuse blocks of code by defining functions, how
to pass values into them and get values back, and how to track down bugs in your
code and squash them!

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/operators
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/selection-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/selection-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/selection-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/iteration-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/iteration-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/iteration-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/jump-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/jump-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/jump-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/exception-handling-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/exception-handling-statements
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/exception-handling-statements

[109]

Chapter 04
Writing, Debugging, and

Testing Functions
This chapter is about writing functions to reuse code, debugging logic errors during
development, logging exceptions during runtime, and unit testing your code to
remove bugs and ensure stability and reliability.

This chapter covers the following topics:

• Writing functions
• Debugging during development
• Logging during runtime
• Unit testing

Writing functions
A fundamental principle of programming is Don't Repeat Yourself (DRY).

While programming, if you find yourself writing the same statements over and over
again, then turn those statements into a function. Functions are like tiny programs
that complete one small task. For example, you might write a function to calculate
sales tax and then reuse that function in many places in a financial application.

Like programs, functions usually have inputs and outputs. They are sometimes
described as black boxes, where you feed some raw materials in one end and
a manufactured item emerges at the other. Once created, you don't need to think
about how they work.

Let's say that you want to help your child learn their times tables, so you want
to make it easy to generate a times table for a number, such as the 12 times table:

1 x 12 = 12
2 x 12 = 24
...
12 x 12 = 144

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[110]

You previously learned about the for statement earlier in this book, so you know
that for can be used to generate repeated lines of output when there is a regular
pattern, like the 12 times table, as shown in the following code:

for (int row = 1; row <= 12; row++)
{
 Console.WriteLine($"{row} x 12 = {row * 12}");
}

However, instead of outputting the 12 times table, we want to make this more
flexible, so it could output the times table for any number. We can do this by creating
a function.

Writing a times table function
Let's explore functions by creating a function to draw a times table.

1. In your Code folder, create a folder named Chapter04.
2. Start Visual Studio Code. Close any open folder or workspace and save the

current workspace in the Chapter04 folder as Chapter04.code-workspace.
3. In the Chapter04 folder, create a folder named WritingFunctions, add it

to the Chapter04 workspace, and create a new console application project
in WritingFunctions.

4. Modify Program.cs, as shown in the following code:
using static System.Console;

namespace WritingFunctions
{
 class Program
 {
 static void TimesTable(byte number)
 {
 WriteLine($"This is the {number} times table:");
 for (int row = 1; row <= 12; row++)
 {
 WriteLine(
 $"{row} x {number} = {row * number}");
 }
 WriteLine();
 }

 static void RunTimesTable()
 {

Writing, Debugging, and Testing Functions | 04

[111]

 bool isNumber;
 do
 {
 Write("Enter a number between 0 and 255: ");

 isNumber = byte.TryParse(
 ReadLine(), out byte number);

 if (isNumber)
 {
 TimesTable(number);
 }
 else
 {
 WriteLine("You did not enter a valid number!");
 }
 }
 while (isNumber);
 }

 static void Main(string[] args)
 {
 RunTimesTable();
 }
 }
}

In the preceding code, note the following:

 ° We have statically imported the Console type so that we can simplify
calls to its methods such as WriteLine.

 ° We have written a function named TimesTable that must have
a byte value passed to it named number.

 ° TimesTable does not return a value to the caller, so it is declared
with the void keyword before its name.

 ° TimesTable uses a for statement to output the times table for the
number passed to it.

 ° We have written a function named RunTimesTable that prompts the
user to enter a number, and then calls TimesTable, passing it the
entered number. It loops while the user enters valid numbers.

 ° We call RunTimesTable in the Main method.

5. Run the console application.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[112]

6. Enter a number, for example, 6, and then view the result, as shown in the
following output:

Enter a number between 0 and 255: 6

This is the 6 times table:

1 x 6 = 6

2 x 6 = 12

3 x 6 = 18

4 x 6 = 24

5 x 6 = 30

6 x 6 = 36

7 x 6 = 42

8 x 6 = 48

9 x 6 = 54

10 x 6 = 60

11 x 6 = 66

12 x 6 = 72

Writing a function that returns a value
The previous function performed actions (looping and writing to the console), but it
did not return a value. Let's say that you need to calculate sales or valued-added tax
(VAT). In Europe, VAT rates can range from 8% in Switzerland to 27% in Hungary.
In the United States, state sales taxes can range from 0% in Oregon to 8.25% in
California.

1. Add a function to the Program class named CalculateTax, with a second
function to run it, as shown in the code below. Before you run the code, note
the following:

 ° The CalculateTax function has two inputs: A parameter named
amount that will be the amount of money spent, and a parameter
named twoLetterRegionCode that will be the region the amount is
spent in.

 ° The CalculateTax function will perform a calculation using
a switch statement, and then return the sales tax or VAT owed on
the amount as a decimal value; so, before the name of the function,
we have declared the data type of the return value.

 ° The RunCalculateTax function prompts the user to enter an amount
and a region code, and then calls CalculateTax and outputs the
result.

Writing, Debugging, and Testing Functions | 04

[113]

static decimal CalculateTax(
 decimal amount, string twoLetterRegionCode)
{
 decimal rate = 0.0M;
 switch (twoLetterRegionCode)
 {
 case "CH": // Switzerland
 rate = 0.08M;
 break;
 case "DK": // Denmark
 case "NO": // Norway
 rate = 0.25M;
 break;
 case "GB": // United Kingdom
 case "FR": // France
 rate = 0.2M;
 break;
 case "HU": // Hungary
 rate = 0.27M;
 break;
 case "OR": // Oregon
 case "AK": // Alaska
 case "MT": // Montana
 rate = 0.0M; break;
 case "ND": // North Dakota
 case "WI": // Wisconsin
 case "ME": // Maryland
 case "VA": // Virginia
 rate = 0.05M;
 break;
 case "CA": // California
 rate = 0.0825M;
 break;
 default: // most US states
 rate = 0.06M;
 break;
 }
 return amount * rate;
}

static void RunCalculateTax()
{
 Write("Enter an amount: ");
 string amountInText = ReadLine();

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[114]

 Write("Enter a two-letter region code: ");
 string region = ReadLine();

 if (decimal.TryParse(amountInText, out decimal amount))
 {
 decimal taxToPay = CalculateTax(amount, region);
 WriteLine($"You must pay {taxToPay} in sales tax.");
 }
 else
 {
 WriteLine("You did not enter a valid amount!");
 }
}

2. In the Main method, comment the RunTimesTable method call, and call the
RunSalesTax method, as shown in the following code:
// RunTimesTable();
RunSalesTax();

3. Run the console application.
4. Enter an amount like 149 and a valid region code like FR to view the result,

as shown in the following output:

Enter an amount: 149

Enter a two-letter region code: FR

You must pay 29.8 in sales tax.

Writing mathematical functions
Although you might never create an application that needs to have mathematical
functionality, everyone studies mathematics at school, so using mathematics
is a common way to learn about functions.

Converting numbers from ordinal to cardinal
Numbers that are used to count are called cardinal numbers, for example, 1, 2, and 3.
Whereas numbers that are used to order are ordinal numbers, for example, 1st, 2nd,
and 3rd.

Challenge: Can you think of any problems with the
CalculateTax function as written? What would happen if the
user enters a code like fr or UK? How could you rewrite the
function to improve it? Would using a switch expression instead
of a switch statement be clearer?

Writing, Debugging, and Testing Functions | 04

[115]

5. Write a function named CardinalToOrdinal that converts a cardinal int
value into an ordinal string value; for example, it converts 1 into 1st, 2 into
2nd, and so on, as shown in the following code:
static string CardinalToOrdinal(int number)
{
 switch (number)
 {
 case 11:
 case 12:
 case 13:
 return $"{number}th";
 default:
 string numberAsText = number.ToString();
 char lastDigit = numberAsText[numberAsText.Length - 1];
 string suffix = string.Empty;
 switch (lastDigit)
 {
 case '1':
 suffix = "st";
 break;
 case '2':
 suffix = "nd";
 break;
 case '3':
 suffix = "rd";
 break;
 default:
 suffix = "th";
 break;
 }
 return $"{number}{suffix}";
 }
}

static void RunCardinalToOrdinal()
{
 for (int number = 1; number <= 40; number++)
 {
 Write($"{CardinalToOrdinal(number)} ");
 }
 WriteLine();
}

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[116]

From the preceding code, note the following:

 ° The CardinalToOrdinal function has one input: a parameter of
the int type named number, and one output: a return value of the
string type.

 ° A switch statement is used to handle the special cases of 11, 12, and
13.

 ° A nested switch statement then handles all other cases: if the last
digit is 1, then use st as the suffix, if the last digit is 2, then use nd as
the suffix, if the last digit is 3, then use rd as the suffix, and if the last
digit is anything else, then use th as the suffix.

 ° The RunCardinalToOrdinal function uses a for statement to loop
from 1 to 40, calling the CardinalToOrdinal function for each
number and writing the returned string to the console, separated
by a space character.

6. In the Main method, comment the RunSalesTax method call, and call the
RunCardinalToOrdinal method, as shown in the following code:
// RunTimesTable();
// RunSalesTax();
RunCardinalToOrdinal();

7. Run the console application and view the results, as shown in the following
output:

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th
29th 30th 31st 32nd 33rd 34th 35th 36th 37th 38th 39th 40th

Calculating factorials with recursion
The factorial of 5 is 120, because factorials are calculated by multiplying the starting
number by one less than itself, and then by one less again, and so on, until the
number is reduced to 1. An example can be seen in: 5 x 4 x 3 x 2 x 1 = 120.

We will write a function named Factorial; this will calculate the factorial for an
int passed to it as a parameter. We will use a clever technique called recursion,
which means a function that calls itself within its implementation, either directly
or indirectly.

More Information: Recursion is clever, but it can lead to
problems, such as a stack overflow due to too many function
calls because memory is used to store data on every function call
and it eventually uses too much.

Writing, Debugging, and Testing Functions | 04

[117]

1. Add a function named Factorial, and a function to call it, as shown in the
following code:
static int Factorial(int number)
{
 if (number < 1)
 {
 return 0;
 }
 else if (number == 1)
 {
 return 1;
 }
 else
 {
 return number * Factorial(number - 1);
 }
}

static void RunFactorial()
{
 bool isNumber;
 do
 {
 Write("Enter a number: ");

 isNumber = int.TryParse(
 ReadLine(), out int number);

 if (isNumber)
 {
 WriteLine(
 $"{number:N0}! = {Factorial(number):N0}");
 }
 else
 {
 WriteLine("You did not enter a valid number!");
 }
 }
 while (isNumber);
}

Iteration is a more practical, if less succinct, solution in languages
like C#. You can read more about this at the following link:
https://en.wikipedia.org/wiki/Recursion_(computer_
science)#Recursion_versus_iteration

https://en.wikipedia.org/wiki/Recursion_(computer_science)#Recursion_versus_iteration
https://en.wikipedia.org/wiki/Recursion_(computer_science)#Recursion_versus_iteration

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[118]

As before, there's several noteworthy elements of the above code, including
the following:

 ° If the input number is zero or negative, Factorial returns 0.
 ° If the input number is 1, Factorial returns 1, and therefore stops

calling itself. If the input number is larger than one, Factorial
multiplies the number by the result of calling itself and passing one
less than the number. This makes the function recursive.

 ° RunFactorial prompts the user to enter a number, calls the
Factorial function, and then outputs the result, formatted using the
code N0, which means number format and use thousands separators
with zero decimal places, and repeats in a loop as long as another
number is entered.

 ° In the Main method, comment the RunCardinalToOrdinal method
call, and call the RunFactorial method.

2. Run the console application.
3. Enter the numbers 3, 5, 31, and 32, and view the results, as shown in the

following output:

Enter a number: 3

3! = 6

Enter a number: 5

5! = 120

Enter a number: 31

31! = 738,197,504

Enter a number: 32

32! = -2,147,483,648

Factorials are written like this: 5!, where the exclamation mark is read as bang, so 5! =
120, that is, five bang equals one hundred and twenty. Bang is a good name for factorials
because they increase in size very rapidly, just like an explosion. As you can see in
the previous output, factorials of 32 and higher will overflow the int type because
they are so big.

Documenting functions with XML comments
By default, when calling a function like CardinalToOrdinal, Visual Studio Code
will show a tooltip with basic information, as shown in the following screenshot:

Writing, Debugging, and Testing Functions | 04

[119]

Let's improve the tooltip by adding extra information.

1. If you haven't already installed the C# XML Documentation Comments
extension, do so now. Instructions for installing extensions for Visual Studio
Code were covered in Chapter 1, Hello, C#! Welcome, .NET!.

2. On the line above the CardinalToOrdinal function, type three forward
slashes, and note the extension expands this into an XML comment and
recognizes that it has a single parameter named number.

3. Enter suitable information for the XML documentation comment, as shown
in the following code and screenshot:
/// <summary>
/// Pass a 32-bit integer and it will be converted into its
ordinal equivalent.
/// </summary>
/// <param name="number">Number is a cardinal value e.g. 1, 2, 3,
and so on.</param>
/// <returns>Number as an ordinal value e.g. 1st, 2nd, 3rd, and so
on.</returns>

4. Now, when calling the function, you will see more details, as shown in the
following screenshot:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[120]

Debugging during development
In this section, you will learn how to debug problems at development time.

Creating code with a deliberate bug
Let's explore debugging by creating a console app with a deliberate bug that we will
then use the tools to track down and fix.

1. In Chapter04, create a folder named Debugging, add it to the workspace,
and create a console application in the folder.

2. Navigate to View | Command Palette, enter and select OmniSharp: Select
Project, and then select the Debugging project.

3. In the Debugging folder, open and modify Program.cs to define a function
with a deliberate bug and call it in the Main method, as shown in the
following code:
using static System.Console;

namespace Debugging
{
 class Program
 {
 static double Add(double a, double b)
 {
 return a * b; // deliberate bug!
 }

 static void Main(string[] args)
 {

Good Practice: Add XML documentation comments to all your
functions.

Writing, Debugging, and Testing Functions | 04

[121]

 double a = 4.5; // or use var
 double b = 2.5;
 double answer = Add(a, b);
 WriteLine($"{a} + {b} = {answer}");
 ReadLine(); // wait for user to press ENTER
 }
 }
}

4. Run the console application and view the result, as shown in the following
output:
4.5 + 2.5 = 11.25

5. Press ENTER to end the console application.

But wait, there's a bug! 4.5 added to 2.5 should be 7, not 11.25!

We will use the debugging tools to hunt for and squash the bug.

Setting a breakpoint
Breakpoints allow us to mark a line of code that we want to pause at to inspect the
program state and find bugs.

1. Click the open curly brace at the beginning of the Main method.
2. Navigate to Debug | Toggle Breakpoint or press F9. A red circle will then

appear in the margin bar on the left-hand side to indicate that a breakpoint
has been set, as shown in the following screenshot:

Breakpoints can be toggled with F9. You can also left-click in the margin
to toggle the breakpoint on and off, or right-click to see more options, such
as remove, disable, or edit an existing breakpoint, or adding a breakpoint,
conditional breakpoint, or logpoint when a breakpoint does not yet exist.

3. In Visual Studio Code, go to View | Debug, or press Ctrl or Cmd + Shift + D.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[122]

4. At the top of the DEBUG window, click on the dropdown to the right of the
Start Debugging button (green triangular "play" button), and select .NET
Core Launch (console) (Debugging), as shown in the following screenshot:

5. At the top of the DEBUG window, click the Start Debugging button (green
triangular "play" button), or press F5. Visual Studio Code starts the console
application executing and then pauses when it hits the breakpoint. This is
known as break mode. The line that will be executed next is highlighted in
yellow, and a yellow block points at the line from the gray margin bar, as
shown in the following screenshot:

Navigating with the debugging toolbar
Visual Studio Code shows a floating toolbar with six buttons to make it easy to
access debugging features, as described in the following list:

• Continue/F5 (blue bar and triangle): This button will continue running the
program from the current position until it ends or hits another breakpoint.

Writing, Debugging, and Testing Functions | 04

[123]

• Step Over/F10, Step Into/F11, and Step Out/Shift + F11 (blue arrows over
blue dots): These buttons step through the code statements in various ways,
as you will see in a moment.

• Restart/Ctrl or Cmd + Shift + F5 (green circular arrow): This button will stop
and then immediately restart the program.

• Stop Debugging/Shift + F5 (red square): This button will stop the program.

Debugging windows
DEBUG view on the left-hand side allows you to monitor useful information, such
as variables, while you step through your code. It has four sections:

• VARIABLES, including Locals, which shows the name, value, and type for
any local variables automatically. Keep an eye on this window while you
step through your code.

• WATCH, which shows the value of variables and expressions that you
manually enter.

• CALL STACK, which shows the stack of function calls.
• BREAKPOINTS, which shows all your breakpoints and allows finer control

over them.
• DEBUG CONSOLE enables live interaction with your code. For example,

you can ask a question such as, "What is 1+2?" by typing 1+2 and pressing
Enter. You can also interrogate the program state, for example, by entering
the name of a variable.

Stepping through code
Let's explore some ways to step through the code.

1. Navigate to Debug | Step Into or click on the Step Into button in the toolbar
or press F11. The yellow highlight steps forward one line.

2. Navigate to Debug | Step Over or click on the Step Over button in the
toolbar or press F10. The yellow highlight steps forward one line. At the
moment, you can see that there is no difference between using Step Into or
Step Over.

3. Press F10 again so that the yellow highlight is on the line that calls the Add
method, as shown in the following screenshot:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[124]

The difference between Step Into and Step Over can be seen when you are
about to execute a method call:

 ° If you were to click on Step Into, the debugger steps into the method
so that you can step through every line in that method.

 ° If you were to click on Step Over, the whole method is executed in
one go; it does not skip over the method without executing it.

4. Click on Step Into to step inside the method.
5. Select the expression a * b, right-click the expression, and select Debug:

Add to Watch…

The expression is added to the WATCH window, showing that this operator
is multiplying a by b to give the result 11.25. We can see that this is the bug,
as shown in the following screenshot:

Writing, Debugging, and Testing Functions | 04

[125]

If you hover your mouse pointer over the a or b parameters in the code
editing window, then a tooltip appears showing the current value.

6. Fix the bug by changing * to + in both the watch expression and in the
function.

7. Stop, recompile, and restart by clicking the green circular arrow Restart
button or press Ctrl or Cmd + Shift + F5.

8. Step into the function, though take a minute to note how it now calculates
correctly, click the Continue button or press F5, and note that when writing
to the console during debugging, the output appears in the DEBUG
CONSOLE window instead of the TERMINAL window, as shown in the
following screenshot:

Customizing breakpoints
It is easy to make more complex breakpoints.

1. If you are still debugging, click the Stop button, or navigate to Debug | Stop
Debugging, or press Shift + F5.

2. In the BREAKPOINTS window, click the last button in its mini toolbar to
Remove All Breakpoints, or navigate to Debug | Remove All Breakpoints.

3. Click on the WriteLine statement.
4. Set a breakpoint by pressing F9 or navigating to Debug | Toggle

Breakpoint.
5. Right-click the breakpoint and choose Edit Breakpoint.....

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[126]

6. Enter an expression, like the answer variable must be greater than 9, and
note the expression must evaluate to true for the breakpoint to activate, as
shown in the following screenshot:

7. Start debugging and note the breakpoint is not hit.
8. Stop debugging.
9. Edit the breakpoint and change its expression to less than 9.
10. Start debugging and note the breakpoint is hit.
11. Stop debugging.
12. Edit the breakpoint and select Hit Count, then enter a number like 3,

meaning that you would have to hit the breakpoint three times before it
activates.

13. Hover your mouse over the breakpoint's red circle to see a summary, as
shown in the following screenshot:

You have now fixed a bug using some debugging tools and seen some advanced
possibilities for setting breakpoints.

Dumping variables using SharpPad

For experienced .NET developers, one of their favorite tools is LINQPad. With
complex nested objects it is convenient to be able to quickly output their values into a
tool window.

Writing, Debugging, and Testing Functions | 04

[127]

For a similar tool that works cross-platform, we will use the SharpPad extension for
Visual Studio Code.

1. In Visual Studio Code, navigate to View | Extensions.
2. Search for SharpPad and click Install.
3. In Chapter04, create a folder named Dumping, add it to the workspace, and

create a console application project in the folder.
4. In Terminal, enter the following command to add the SharpPad package to

the Dumping project:
dotnet add package SharpPad

5. Open Dumping.csproj and note the package reference, as shown highlighted
in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="SharpPad" Version="1.0.4" />
 </ItemGroup>

</Project>

6. Modify Program.cs to import the SharpPad and System.Threading.Tasks
namespaces, change the return type of the Main method to async Task,
define a complex object variable, and then dump it to the SharpPad window,
as shown in the following code:
using System;
using SharpPad;
using System.Threading.Tasks;
using static System.Console;

namespace Dumping
{

More Information: Despite its name, LINQPad is not just for
LINQ, but any C# expression, statement block, or program. If
you work on Windows, I recommend it, and you can learn more
about it at the following link: https://www.linqpad.net.

https://www.linqpad.net
https://www.linqpad.net
https://www.linqpad.net

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[128]

 class Program
 {
 static async Task Main(string[] args)
 {
 var complexObject = new
 {
 FirstName = "Petr",
 BirthDate = new DateTime(
 year: 1972, month: 12, day: 25),
 Friends = new[] { "Amir", "Geoff", "Sal" }
 };

 WriteLine(
 $"Dumping {nameof(complexObject)} to SharpPad.");

 await complexObject.Dump();
 }
 }
}

You will learn more about asynchronous tasks in Chapter 13, Improving
Performance and Scalability Using Multitasking. For now, I have just shown you
enough to be able to await the call to the asynchronous Dump method.

7. Run the application and view the result, as shown in the following
screenshot:

Logging during development and runtime
Once you believe that all the bugs have been removed from your code, you would
then compile a release version and deploy the application, so that people can use it.
But no code is ever bug free, and during runtime unexpected errors can occur.

Writing, Debugging, and Testing Functions | 04

[129]

End users are notoriously bad about remembering, admitting to, and then accurately
describing what they were doing when an error occurred, so you should not rely on
them accurately providing useful information to reproduce the problem in order to
understand what causes the problem and then fix it.

There are two types that can be used to add simple logging to your code: Debug and
Trace.

Before we delve into them in more detail, let's look at a quick overview of each one:

• Debug is used to add logging that gets written during development.
• Trace is used to add logging that gets written during both development and

runtime.

Instrumenting with Debug and Trace
You have seen the use of the Console type and its WriteLine method to provide
output to the console or TERMINAL or DEBUG CONSOLE windows in Visual
Studio Code.

We also have a pair of types named Debug and Trace that have more flexibility in
where they write out to.

The Debug and Trace classes can write to any trace listener. A trace listener is a type
that can be configured to write output anywhere you like when the Trace.WriteLine
method is called. There are several trace listeners provided by .NET Core, and you can
even make your own by inheriting from the TraceListener type.

Good Practice: Add code throughout your application to log what
is happening, and especially when exceptions occur, so that you can
review the logs and use them to trace the issue and fix the problem.

More Information: You can read more about the Debug
class at the following link: https://docs.microsoft.
com/en-us/dotnet/api/system.diagnostics.
debug?view=netcore-3.0

More Information: You can see the list of trace listeners that
derive from TraceListener at the following link: https://
docs.microsoft.com/en-us/dotnet/api/system.
diagnostics.tracelistener?view=netcore-3.0

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.debug?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.debug?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.debug?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.tracelistener?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.tracelistener?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.tracelistener?view=netcore-3.0

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[130]

Writing to the default trace listener
One trace listener, the DefaultTraceListener class, is configured automatically
and writes to Visual Studio Code's DEBUG CONSOLE window. You can configure
others manually using code.

1. In Chapter04, create a folder named Instrumenting, add it to the
workspace, and create a console application project in the folder.

2. Modify Program.cs, as shown in the following code:
using System.Diagnostics;

namespace Instrumenting
{
 class Program
 {
 static void Main(string[] args)
 {
 Debug.WriteLine("Debug says, I am watching!");
 Trace.WriteLine("Trace says, I am watching!");
 }
 }
}

3. Navigate to the DEBUG view.
4. Start debugging by launching the Instrumenting console application, and

note the DEBUG CONSOLE shows the two messages in black, mixed with
other debugging information like loaded assembly DLLs in orange, as shown
in the following screenshot:

Configuring trace listeners
Now, we will configure another trace listener that will write to a text file.

Writing, Debugging, and Testing Functions | 04

[131]

1. Modify the code to add a statement to import the System.IO namespace,
create a new text file for logging to, and enable automatic flushing of the
buffer, as shown highlighted in the following code:
using System.Diagnostics;
using System.IO;

namespace Instrumenting
{
 class Program
 {
 static void Main(string[] args)
 {
 // write to a text file in the project folder
 Trace.Listeners.Add(new TextWriterTraceListener(
 File.CreateText("log.txt")));

 // text writer is buffered, so this option calls
 // Flush() on all listeners after writing
 Trace.AutoFlush = true;

 Debug.WriteLine("Debug says, I am watching!");
 Trace.WriteLine("Trace says, I am watching!");
 }
 }
}

Any type that represents a file usually implements a buffer to improve
performance. Instead of writing immediately to the file, data is written to
an in-memory buffer and only once the buffer is full will it be written in one
chunk to the file. This behavior can be confusing while debugging because
we do not immediately see the results! Enabling AutoFlush means it calls the
Flush method automatically after every write.

2. Run the console application by entering the following command in the
Terminal window for the Instrumenting project:
dotnet run --configuration Release

3. Nothing will appear to have happened.
4. In EXPLORER, open the file named log.txt and note that it contains the

message, "Trace says, I am watching!".
5. Run the console application by entering the following command in the

Terminal window for the Instrumenting project:
dotnet run --configuration Debug

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[132]

6. In EXPLORER, open the file named log.txt and note that it contains both
the message, "Debug says, I am watching!" and "Trace says, I am watching!"

Switching trace levels
The Trace.WriteLine calls are left in your code even after release. So, it would be
great to have fine control over when they are output. This is something we can do
with a trace switch.

The value of a trace switch can be set using a number or a word. For example, the
number 3 can be replaced with the word Info, as shown in the following table:

Number Word Description

0 Off This will output nothing

1 Error This will output only errors

2 Warning This will output errors and warnings

3 Info This will output errors, warnings, and information

4 Verbose This will output all levels

Let's explore using trace switches. We will need to add some packages to enable
loading configuration settings from a JSON appsettings file. You will learn more
about this in Chapter 7, Understanding and Packaging .NET Types.

1. Navigate to the TERMINAL window.
2. Enter the following command:

dotnet add package Microsoft.Extensions.Configuration

3. Enter the following command:
dotnet add package Microsoft.Extensions.Configuration.Binder

4. Enter the following command:
dotnet add package Microsoft.Extensions.Configuration.Json

Good Practice: When running with the Debug configuration, both
Debug and Trace are active and will show their output in DEBUG
CONSOLE. When running with the Release configuration, only the
Trace output is shown. You can therefore use Debug.WriteLine
calls liberally throughout your code, knowing they will be stripped
out automatically when you build the release version of your
application.

Writing, Debugging, and Testing Functions | 04

[133]

5. Enter the following command:
dotnet add package Microsoft.Extensions.Configuration.
FileExtensions

6. Open Instrumenting.csproj and note the extra <ItemGroup> section with
the extra packages, as shown highlighted in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference
 Include="Microsoft.Extensions.Configuration"
 Version="3.0.0" />
 <PackageReference
 Include="Microsoft.Extensions.Configuration.Binder"
 Version="3.0.0" />
 <PackageReference
 Include="Microsoft.Extensions.Configuration.FileExtensions"
 Version="3.0.0" />
 <PackageReference
 Include="Microsoft.Extensions.Configuration.Json"
 Version="3.0.0" />
 </ItemGroup>

</Project>

7. Add a file named appsettings.json to the Instrumenting folder.
8. Modify appsettings.json, as shown in the following code:

{
 "PacktSwitch": {
 "Level": "Info"
 }
}

9. In Program.cs, import the Microsoft.Extensions.Configuration
namespace.

10. Add some statements to the end of the Main method to create a configuration
builder that looks in the current folder for a file named appsettings.json,
build the configuration, create a trace switch, set its level by binding to the
configuration, and then output the four trace switch levels, as shown in the
following code:
var builder = new ConfigurationBuilder()

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[134]

 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json",
 optional: true, reloadOnChange: true);

IConfigurationRoot configuration = builder.Build();

var ts = new TraceSwitch(
 displayName: "PacktSwitch",
 description: "This switch is set via a JSON config.");

configuration.GetSection("PacktSwitch").Bind(ts);

Trace.WriteLineIf(ts.TraceError, "Trace error");
Trace.WriteLineIf(ts.TraceWarning, "Trace warning");
Trace.WriteLineIf(ts.TraceInfo, "Trace information");
Trace.WriteLineIf(ts.TraceVerbose, "Trace verbose");

11. Set a breakpoint on the Bind statement.
12. Start debugging the Instrumenting console application.
13. In the VARIABLES window, expand the ts variable watch, and note that its

Level is Off and its TraceError, TraceWarning, and so on are all false.
14. Step into the call to the Bind method by clicking the Step Into button or

pressing F11 and note the ts variable watch updates to Info level.
15. Step into the four calls to Trace.WriteLineIf and note that all levels up to

Info are written to the DEBUG CONSOLE but not Verbose, as shown in the
following screenshot:

Writing, Debugging, and Testing Functions | 04

[135]

16. Stop debugging.
17. Modify appsettings.json to set a level of 2, which means warning, as

shown in the following JSON file:
{
 "PacktSwitch": {
 "Level": "2"
 }
}

18. Save the changes.
19. Run the console application by entering the following command in the

Terminal window for the Instrumenting project:
dotnet run --configuration Release

20. Open the file named log.txt and note that this time, only trace error and
warning levels are the output of the four potential trace levels, as shown in
the following text file:

Trace says, I am watching!

Trace error

Trace warning

If no argument is passed, the default trace switch level is Off (0), so none of the
switch levels are output.

Unit testing functions
Fixing bugs in code is expensive. The earlier that a bug is discovered in the
development process, the less expensive it will be to fix.

Unit testing is a good way to find bugs early in the development process. Some
developers even follow the principle that programmers should create unit tests
before they write code, and this is called Test-Driven Development (TDD).

Microsoft has a proprietary unit testing framework known as MS Test; however, we
will use the third-party framework xUnit.net.

More Information: You can learn more about TDD at the
following link: https://en.wikipedia.org/wiki/Test-
driven_development

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[136]

Creating a class library that needs testing
First, we will create a function that needs testing.

1. Inside the Chapter04 folder, create two subfolders named CalculatorLib
and CalculatorLibUnitTests, and add them each to the workspace.

2. Navigate to Terminal | New Terminal and select CalculatorLib.
3. Enter the following command in TERMINAL:

dotnet new classlib

4. Rename the file named Class1.cs to Calculator.cs.
5. Modify the file to define a Calculator class (with a deliberate bug!), as

shown in the following code:
namespace Packt
{
 public class Calculator
 {
 public double Add(double a, double b)
 {
 return a * b;
 }
 }
}

6. Enter the following command in TERMINAL:
dotnet build

7. Navigate to Terminal | New Terminal and select
CalculatorLibUnitTests.

8. Enter the following command in TERMINAL:
dotnet new xunit

9. Click on the file named CalculatorLibUnitTests.csproj, and modify
the configuration to add an item group with a project reference to the
CalculatorLib project, as shown highlighted in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 <IsPackable>false</IsPackable>
 </PropertyGroup>

 <ItemGroup>

Writing, Debugging, and Testing Functions | 04

[137]

 <PackageReference Include="Microsoft.NET.Test.Sdk"
 Version="16.2.0" />
 <PackageReference Include="xunit"
 Version="2.4.0" />
 <PackageReference Include="xunit.runner.visualstudio"
 Version="2.4.0" />
 <PackageReference Include="coverlet.collector"
 Version="1.0.1" />
 </ItemGroup>

 <ItemGroup>
 <ProjectReference
 Include="..\CalculatorLib\CalculatorLib.csproj" />
 </ItemGroup>

</Project>

10. Rename the file UnitTest1.cs to CalculatorUnitTests.cs.
11. Enter the following command in TERMINAL:

dotnet build

Writing unit tests
A well-written unit test will have three parts:

• Arrange: This part will declare and instantiate variables for input and output.
• Act: This part will execute the unit that you are testing. In our case, that

means calling the method that we want to test.
• Assert: This part will make one or more assertions about the output. An

assertion is a belief that if not true indicates a failed test. For example, when
adding 2 and 2 we would expect the result would be 4.

Now, we will write the unit tests for the Calculator class.

More Information: You can view Microsoft's NuGet feed for
the latest Microsoft.NET.Test.Sdk and other packages at
the following link: https://www.nuget.org/packages/
Microsoft.NET.Test.Sdk

https://www.nuget.org/packages/Microsoft.NET.Test.Sdk
https://www.nuget.org/packages/Microsoft.NET.Test.Sdk

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[138]

1. Open CalculatorUnitTests.cs, rename the class to
CalculatorUnitTests, import the Packt namespace, and modify
it to have two test methods for adding 2 and 2, and adding 2 and 3,
as shown in the following code:
using Packt;
using System;
using Xunit;

namespace CalculatorLibUnitTests
{
 public class CalculatorUnitTests
 {
 [Fact]
 public void TestAdding2And2()
 {
 // arrange
 double a = 2;
 double b = 2;
 double expected = 4;
 var calc = new Calculator();

 // act
 double actual = calc.Add(a, b);

 // assert
 Assert.Equal(expected, actual);
 }

 [Fact]
 public void TestAdding2And3()
 {
 // arrange
 double a = 2;
 double b = 3;
 double expected = 5;
 var calc = new Calculator();

 // act
 double actual = calc.Add(a, b);

 // assert
 Assert.Equal(expected, actual);
 }
 }
}

Writing, Debugging, and Testing Functions | 04

[139]

Running unit tests
Now we are ready to run the unit tests and see the results.

1. In the CalculatorLibUnitTest TERMINAL window, enter the following
command:
dotnet test

2. Note that the results indicate that two tests ran, one test passed, and one test
failed, as shown in the following screenshot:

3. Fix the bug in the Add method.
4. Run the unit tests again to see that the bug has now been fixed.
5. Close the workspace.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore with deeper research into the topics covered in this
chapter.

Exercise 4.1 – Test your knowledge
Answer the following questions. If you get stuck, try Googling the answers if
necessary:

1. What does the C# keyword void mean?
2. How many parameters can a method have?

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[140]

3. In Visual Studio Code, what is the difference between pressing F5, Ctrl or
Cmd + F5, Shift + F5, and Ctrl or Cmd + Shift + F5?

4. Where does the Trace.WriteLine method write its output to?
5. What are the five trace levels?
6. What is the difference between Debug and Trace?
7. When writing a unit test, what are the three A's?
8. When writing a unit test using xUnit, what attribute must you decorate the

test methods with?
9. What dotnet command executes xUnit tests?
10. What is TDD?

Exercise 4.2 – Practice writing functions with
debugging and unit testing
Prime factors are the combination of the smallest prime numbers that, when
multiplied together, will produce the original number. Consider the following
example:

• Prime factors of 4 are: 2 x 2
• Prime factors of 7 are: 7
• Prime factors of 30 are: 5 x 3 x 2
• Prime factors of 40 are: 5 x 2 x 2 x 2
• Prime factors of 50 are: 5 x 5 x 2

Create a workspace; a class library with a method named PrimeFactors that, when
passed an int variable as a parameter, returns a string showing its prime factors;
a unit tests project; and a console application to use it. To keep it simple, you can
assume that the largest number entered will be 1000.

Use the debugging tools and write unit tests to ensure that your function works
correctly with multiple inputs and returns the correct output.

Exercise 4.3 – Explore topics
Use the following links to read more about the topics covered in this chapter:

• Debugging in Visual Studio Code: https://code.visualstudio.com/
docs/editor/debugging

https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/editor/debugging

Writing, Debugging, and Testing Functions | 04

[141]

• Instructions for setting up the .NET Core debugger: https://github.com/
OmniSharp/omnisharp-vscode/blob/master/debugger.md

• System.Diagnostics Namespace: https://docs.microsoft.com/en-us/
dotnet/core/api/system.diagnostics

• Unit testing in .NET Core and .NET Standard: https://docs.microsoft.
com/en-us/dotnet/core/testing/

• xUnit.net: http://xunit.github.io/

Summary
In this chapter, you learned how to write reusable functions and then use the Visual
Studio Code debugging and diagnostic features to fix any bugs in them, and then
unit tested your code.

In the next chapter, you will learn how to build your own types using object-oriented
programming techniques.

https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md
https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md
https://docs.microsoft.com/en-us/dotnet/core/api/system.diagnostics
https://docs.microsoft.com/en-us/dotnet/core/api/system.diagnostics
https://docs.microsoft.com/en-us/dotnet/core/testing/
https://docs.microsoft.com/en-us/dotnet/core/testing/
http://xunit.github.io/

[143]

Chapter 05
Building Your Own Types

with Object-Oriented
Programming

This chapter is about making your own types using object-oriented programming
(OOP). You will learn about all the different categories of members that a type can
have, including fields to store data and methods to perform actions. You will use
OOP concepts such as aggregation and encapsulation. You will also learn about
language features such as tuple syntax support, out variables, inferred tuple names,
and default literals.

This chapter will cover the following topics:

• Talking about OOP
• Building class libraries
• Storing data with fields
• Writing and calling methods
• Controlling access with properties and indexers

Talking about object-oriented
programming
An object in the real world is a thing, such as a car or a person, whereas an object
in programming often represents something in the real world, such as a product
or bank account, but this can also be something more abstract.

In C#, we use the class (mostly) or struct (sometimes) C# keywords to define
a type of object. You will learn about the difference between classes and structs in
Chapter 6, Implementing Interfaces and Inheriting Classes. You can think of a type as
being a blueprint or template for an object.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[144]

The concepts of object-oriented programming are briefly described here:

• Encapsulation is the combination of the data and actions that are related
to an object. For example, a BankAccount type might have data, such
as Balance and AccountName, as well as actions, such as Deposit and
Withdraw. When encapsulating, you often want to control what can access
those actions and the data, for example, restricting how the internal state
of an object can be accessed or modified from the outside.

• Composition is about what an object is made of. For example, a car is
composed of different parts, such as four wheels, several seats, and an
engine.

• Aggregation is about what can be combined with an object. For example,
a person is not part of a car object, but they could sit in the driver's seat and
then becomes the car's driver. Two separate objects that are aggregated
together to form a new component.

• Inheritance is about reusing code by having a subclass derive from a base
or super class. All functionality in the base class is inherited by and becomes
available in the derived class. For example, the base or super Exception class
has some members that have the same implementation across all exceptions,
and the sub or derived SqlException class inherits those members and has
extra members only relevant to when an SQL database exception occurs like
a property for the database connection.

• Abstraction is about capturing the core idea of an object and ignoring the
details or specifics. C# has an abstract keyword which formalizes the
concept. If a class is not explicitly abstract then it can be described as being
concrete. Base or super classes are often abstract, for example, the super class
Stream is abstract and its sub classes like FileStream and MemoryStream
are concrete. Abstraction is a tricky balance. If you make a class more
abstract, more classes would be able to inherit from it, but at the same time
there will be less functionality to share.

• Polymorphism is about allowing a derived class to override an inherited
action to provide custom behavior.

Building class libraries
Class library assemblies group types together into easily deployable units (DLL
files). Apart from when you learned about unit testing, you have only created
console applications to contain your code. To make the code that you write reusable
across multiple projects, you should put it in class library assemblies, just like
Microsoft does.

Building Your Own Types with Object-Oriented Programming | 05

[145]

Creating a class library
The first task is to create a reusable .NET Standard class library.

1. In your existing Code folder, create a folder named Chapter05, with
a subfolder named PacktLibrary.

2. In Visual Studio Code, navigate to File | Save Workspace As…, enter the
name Chapter05, select the Chapter05 folder, and click Save.

3. Navigate to File | Add Folder to Workspace…, select the PacktLibrary
folder, and click Add.

4. In TERMINAL, enter the following command: dotnet new classlib.

Defining a class
The next task is to define a class that will represent a person.

1. In EXPLORER, rename the file named Class1.cs to Person.cs.
2. Click Person.cs to open it and change the class name to Person.
3. Change the namespace to Packt.Shared.

Your class file should now look like the following code:

using System;

namespace Packt.Shared
{
 public class Person
 {
 }
}

Good Practice: Put types that you might reuse in a .NET Standard
2.0 class library to enable them to be reused in .NET Core, .NET
Framework, and Xamarin projects.

Good Practice: We're doing this because it is important to put your
classes in a logically named namespace. A better namespace name
would be domain-specific, for example, System.Numerics for
types related to advanced numbers, but in this case the types we
will create are Person, BankAccount, and WondersOfTheWorld
and they do not have a normal domain.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[146]

Note that the C# keyword public is applied before class. This keyword is called an
access modifier, and it allows for all the other code to access this class.

If you do not explicitly apply the public keyword, then it would only be accessible
within the assembly that defined it. This is because the implicit access modifier for
a class is internal. We need this class to be accessible outside the assembly, so we
must make sure it is public.

Understanding members
This type does not yet have any members encapsulated within it. We will create
some over the following pages. Members can be fields, methods, or specialized
versions of both. You'll find a description of them below:

• Fields are used to store data. There are also three specialized categories
of field, as shown in the following bullets:

 ° Constant: The data never changes. The compiler literally copies the
data into any code that reads it.

 ° Read-only: The data cannot change after the class is instantiated, but
the data can be calculated or loaded from an external source at the
time of instantiation.

 ° Event: The data references one or more methods that you want to
execute when something happens, such as clicking on a button, or
responding to a request from other code. Events will be covered in
Chapter 6, Implementing Interfaces and Inheriting Classes.

• Methods are used to execute statements. You saw some examples when
you learned about functions in Chapter 4, Writing, Debugging, and Testing
Functions. There are also four specialized categories of method:

 ° Constructor: The statements execute when you use the new keyword
to allocate memory and instantiate a class.

 ° Property: The statements execute when you get or set data. The
data is commonly stored in a field, but could be stored externally, or
calculated at runtime. Properties are the preferred way to encapsulate
fields unless the memory address of the field needs to be exposed.

 ° Indexer: The statements execute when you get or set data using array
syntax [].

 ° Operator: The statements execute when you use an operator like +
and / on operands of your type.

Building Your Own Types with Object-Oriented Programming | 05

[147]

Instantiating a class
In this section, we will make an instance of the Person class, which is described as
instantiating a class.

Referencing an assembly
Before we can instantiate a class, we need to reference the assembly that contains it.

1. Create a subfolder under Chapter05 named PeopleApp.
2. In Visual Studio Code, navigate to File | Add Folder to Workspace…, select

the PeopleApp folder, and click Add.
3. Navigate to Terminal | New Terminal and select PeopleApp.
4. In TERMINAL, enter the following command: dotnet new console.
5. In EXPLORER, click on the file named PeopleApp.csproj.
6. Add a project reference to PacktLibrary, as shown highlighted in the

following markup:
<Project Sdk="Microsoft.NET.Sdk>

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference Include="../PacktLibrary/PacktLibrary.
csproj" />
 </ItemGroup>

</Project>

7. In TERMINAL, enter a command to compile the PeopleApp project and its
dependency PacktLibrary project, as shown in the following command:
dotnet build.

Importing a namespace to use a type
Now, we are ready to write statements to work with the Person class.

1. In Visual Studio Code, in the PeopleApp folder, open Program.cs.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[148]

2. At the top of the Program.cs file, enter statements to import the namespace
for our People class and statically import the Console class, as shown in the
following code:
using Packt.Shared;
using static System.Console;

3. In the Main method, enter statements to:
 ° Create an instance of the Person type.
 ° Output the instance using a textual description of itself.

The new keyword allocates memory for the object and initializes any internal
data. We could use Person in place of the var keyword, but the use of var
involves less typing and is still just as clear, as shown in the following code:
var bob = new Person();
WriteLine(bob.ToString());

You might be wondering, "Why does the bob variable have a method named
ToString? The Person class is empty!" Don't worry, we're about to find out!

4. Run the application, by entering dotnet run in TERMINAL, and then view
the result, as shown in the following output:
Packt.Shared.Person

Managing multiple files
If you have multiple files that you want to work with at the same time, then you can
put them side-by-side as you edit them.

1. In EXPLORER, expand the two projects.
2. Open both Person.cs and Program.cs.
3. Click, hold, and drag the edit window tab for one of your open files to

arrange them so that you can see both Person.cs and Program.cs at the
same time.

You can click on the Split Editor Right button or press Cmd + \ so that you have two
files open side by side vertically.

Understanding objects
Although our Person class did not explicitly choose to inherit from a type, all types
ultimately inherit directly or indirectly from a special type named System.Object.

Building Your Own Types with Object-Oriented Programming | 05

[149]

The implementation of the ToString method in the System.Object type simply
outputs the full namespace and type name.

Back in the original Person class, we could have explicitly told the compiler that
Person inherits from the System.Object type, as shown in the following code:

public class Person : System.Object

When class B inherits from class A, we say that A is the base or super class and B is
the derived or subclass. In this case, System.Object is the base or super class and
Person is the derived or subclass.

You can also use the C# alias keyword object:

public class Person : object

Inheriting from System.Object
Let's make our class explicitly inherit from object and then review what members
all objects have.

1. Modify your Person class to explicitly inherit from object.
2. Click inside the object keyword and press F12, or right-click on the object

keyword and choose Go to Definition.

You will see the Microsoft-defined System.Object type and its members. This is
something you don't need to understand the details of yet, but notice that it has
a method named ToString, as shown in the following screenshot:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[150]

Storing data within fields
In this section, we will be defining a selection of fields in the class in order to store
information about a person.

Defining fields
Let's say that we have decided that a person is composed of a name and a date of
birth. We will encapsulate these two values inside a person, and the values will be
visible outside it.

1. Inside the Person class, write statements to declare two public fields for
storing a person's name and date of birth, as shown in the following code:
public class Person : object
{
 // fields
 public string Name;
 public DateTime DateOfBirth;
}

You can use any type for a field, including arrays and collections such as lists and
dictionaries. These would be used if you needed to store multiple values in one
named field. In this example, a person only has one name and one date of birth.

Understanding access modifiers
Part of encapsulation is choosing how visible the members are.

Note that, like we did with the class, we explicitly applied the public keyword to
these fields. If we hadn't, then they would be implicitly private to the class, which
means they are accessible only inside the class.

There are four access modifier keywords, and two combinations of access modifier
keywords that you can apply to a class member, such as a field or method, as shown
in the following table:

Good Practice: Assume other programmers know that if inheritance
is not specified, the class will inherit from System.Object.

Building Your Own Types with Object-Oriented Programming | 05

[151]

Access Modifier Description

private Member is accessible inside the type only. This is the default.

internal Member is accessible inside the type and any type in the same
assembly.

protected Member is accessible inside the type and any type that inherits from
the type.

public Member is accessible everywhere.

internal
protected

Member is accessible inside the type, any type in the same
assembly, and any type that inherits from the type. Equivalent
to a fictional access modifier named internal_or_protected.

private
protected

Member is accessible inside the type, or any type that inherits from
the type and is in the same assembly. Equivalent to a fictional access
modifier named internal_and_protected. This combination is
only available with C# 7.2 or later.

Setting and outputting field values
Now we will use those fields in the console app.

1. At the top of Program.cs, make sure the System namespace is imported.
2. Inside the Main method, change the statements to set the person's name and

date of birth, and then output those fields nicely formatted, as shown in the
following code:
var bob = new Person();
bob.Name = "Bob Smith";
bob.DateOfBirth = new DateTime(1965, 12, 22);

WriteLine(
 format: "{0} was born on {1:dddd, d MMMM yyyy}",
 arg0: bob.Name,
 arg1: bob.DateOfBirth);

Good Practice: Explicitly apply one of the access modifiers to all
type members, even if you want to use the implicit access modifier
for members, which is private. Additionally, fields should usually
be private or protected, and you should then create public
properties to get or set the field values. This is because it controls
access.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[152]

We could have used string interpolation too, but for long strings it will wrap
over multiple lines, which can be harder to read in a printed book. In the
code examples in this book, remember that {0} is a placeholder for arg0, and
so on.

3. Run the application and view the result, as shown in the following output:
Bob Smith was born on Wednesday, 22 December 1965

The format code for arg1 is made of several parts. dddd means the name
of the day of the week. d means the number of the day of the month. MMMM
means the name of the month. Lower case 'm's are used for minutes in time
values. yyyy means the full number of the year. yy would mean the two-digit
year.
You can also initialize fields using a shorthand object initializer syntax using
curly braces. Let's see how.

4. Add the following code underneath the existing code to create another new
person. Notice the different format code for the date of birth when writing to
the console:
var alice = new Person
{
 Name = "Alice Jones",
 DateOfBirth = new DateTime(1998, 3, 7)
};

WriteLine(
 format: "{0} was born on {1:dd MMM yy}",
 arg0: alice.Name,
 arg1: alice.DateOfBirth);

5. Run the application and view the result, as shown in the following output:

Bob Smith was born on Wednesday, 22 December 1965

Alice Jones was born on 07 Mar 98

Storing a value using an enum type
Sometimes, a value needs to be one of a limited set of options. For example, there are
seven ancient wonders of the world, and a person may have one favorite. In other
times, a value needs to be a combination of a limited set of options. For example, a
person may have a bucket list of ancient world wonders they want to visit.

We are able to store this data by defining an enum type.

Building Your Own Types with Object-Oriented Programming | 05

[153]

An enum type is a very efficient way of storing one or more choices because,
internally, it uses integer values in combination with a lookup table of string
descriptions.

1. Add a new class to the class library by selecting PacktLibrary, clicking
on the New File button in the mini toolbar, and entering the name
WondersOfTheAncientWorld.cs.

2. Modify the WondersOfTheAncientWorld.cs file, as shown in the following
code:
namespace Packt.Shared
{
 public enum WondersOfTheAncientWorld
 {
 GreatPyramidOfGiza,
 HangingGardensOfBabylon,
 StatueOfZeusAtOlympia,
 TempleOfArtemisAtEphesus,
 MausoleumAtHalicarnassus,
 ColossusOfRhodes,
 LighthouseOfAlexandria
 }
}

3. In the Person class, add the following statement to your list of fields:
public WondersOfTheAncientWorld FavoriteAncientWonder;

4. In the Main method of Program.cs, add the following statements:
bob.FavoriteAncientWonder =
 WondersOfTheAncientWorld.StatueOfZeusAtOlympia;

WriteLine(format:
 "{0}'s favorite wonder is {1}. It's integer is {2}.",
 arg0: bob.Name,
 arg1: bob.FavoriteAncientWonder,
 arg2: (int)bob.FavoriteAncientWonder);

5. Run the application and view the result, as shown in the following output:

Bob Smith's favorite wonder is StatueOfZeusAtOlympia. Its
integer is 2.

The enum value is internally stored as an int for efficiency. The int values are
automatically assigned starting at 0, so the third world wonder in our enum has a
value of 2. You can assign int values that are not listed in the enum. They will output
as the int value instead of a name since a match will not be found.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[154]

Storing multiple values using an enum type
For the bucket list, we could create a collection of instances of the enum, and
collections will be explained later in this chapter, but there is a better way. We can
combine multiple choices into a single value using flags.

1. Modify the enum by decorating it with the [System.Flags] attribute.
2. Explicitly set byte value for each wonder that represent different bit

columns, as shown in the following code:
namespace Packt.Shared
{
 [System.Flags]
 public enum WondersOfTheAncientWorld : byte
 {
 None = 0b_0000_0000, // i.e. 0
 GreatPyramidOfGiza = 0b_0000_0001, // i.e. 1
 HangingGardensOfBabylon = 0b_0000_0010, // i.e. 2
 StatueOfZeusAtOlympia = 0b_0000_0100, // i.e. 4
 TempleOfArtemisAtEphesus = 0b_0000_1000, // i.e. 8
 MausoleumAtHalicarnassus = 0b_0001_0000, // i.e. 16
 ColossusOfRhodes = 0b_0010_0000, // i.e. 32
 LighthouseOfAlexandria = 0b_0100_0000 // i.e. 64
 }
}

We are assigning explicit values for each choice that would not overlap when
looking at the bits stored in memory. We should also decorate the enum type
with the System.Flags attribute so that when the value is returned it can
automatically match with multiple values as a comma-separated string
instead of returning an int value. Normally, an enum type uses an int
variable internally, but since we don't need values that big, we can reduce
memory requirements by 75%, that is, 1 byte per value instead of 4 bytes, by
telling it to use a byte variable.
If we want to indicate that our bucket list includes the Hanging Gardens and
Mausoleum at Halicarnassus ancient world wonders, then we would want the
16 and 2 bits set to 1. In other words, we would store the value 18:

64 32 16 8 4 2 1 0
0 0 1 0 0 1 0 0

In the Person class, add the following statement to your list of fields:
public WondersOfTheAncientWorld BucketList;

Building Your Own Types with Object-Oriented Programming | 05

[155]

3. In the Main method of PeopleApp, add the following statements to set the
bucket list using the | operator (logical OR) to combine the enum values.
We could also set the value using the number 18 cast into the enum type, as
shown in the comment, but we shouldn't because that would make the code
harder to understand:
bob.BucketList =
 WondersOfTheAncientWorld.HangingGardensOfBabylon
 | WondersOfTheAncientWorld.MausoleumAtHalicarnassus;

// bob.BucketList = (WondersOfTheAncientWorld)18;

WriteLine($"{bob.Name}'s bucket list is {bob.BucketList}");

4. Run the application and view the result, as shown in the following output:

Bob Smith's bucket list is HangingGardensOfBabylon,
MausoleumAtHalicarnassus

Storing multiple values using collections
Let's now add a field to store a person's children. This is an example of aggregation
because children are instances of a class that is related to the current person but are
not part of the person itself. We will use a generic List<T> collection type.

1. Import the System.Collections.Generic namespace at the top of the
Person.cs class file, as shown in the following code:
using System.Collections.Generic;

You will learn more about collections in Chapter 8, Working with Common
.NET Types. For now, just follow along.

2. Declare a new field in the Person class, as shown in the following code:

public List<Person> Children = new List<Person>();

List<Person> is read aloud as "list of Person ," for example, "the type of the
property named Children is a list of Person instances." We must ensure the
collection is initialized to a new instance of a list of Person before we can add items
to it otherwise the field will be null and it will throw runtime exceptions.

Good Practice: Use the enum values to store combinations of
discreet options. Derive an enum type from byte if there are up to
eight options, from short if there are up to 16 options, from int
if there are up to 32 options, and from long if there are up to 64
options.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[156]

The angle brackets in the List<T> type is a feature of C# called generics that was
introduced in 2005 with C# 2.0. It's just a fancy term for making a collection strongly
typed, that is, the compiler knows more specifically what type of object can be stored
in the collection. Generics improve the performance and correctness of your code.

Strongly typed is different from statically typed. The old System.Collection
types are statically typed to contain weakly typed System.Object items. The newer
System.Collection.Generic types are statically typed to contain strongly typed <T>
instances. Ironically, the term generics means we can use a more specific static type!

1. In the Main method, add statements to add two children for Bob and then
show how many children he has and what their names are, as shown in the
following code:
bob.Children.Add(new Person { Name = "Alfred" });
bob.Children.Add(new Person { Name = "Zoe" });

WriteLine(
 $"{bob.Name} has {bob.Children.Count} children:");

for (int child = 0; child < bob.Children.Count; child++)
{
 WriteLine($" {bob.Children[child].Name}");
}

We could also use a foreach statement. As an extra challenge, change the
for statement to output the same information using foreach.

2. Run the application and view the result, as shown in the following output:

Bob Smith has 2 children:

 Alfred

 Zoe

Making a field static
The fields that we have created so far have all been instance members, meaning that
a different value of each field exists for each instance of the class that is created. The
bob variable has a different Name value to alice.

Sometimes, you want to define a field that only has one value that is shared across all
instances. These are called static members because fields are not the only members
that can be static.

Let's see what can be achieved using static fields.

Building Your Own Types with Object-Oriented Programming | 05

[157]

1. In the PacktLibrary project, add a new class file named BankAccount.cs.
2. Modify the class to give it three fields, two instance fields and one static field,

as shown in the following code:
namespace Packt.Shared
{
 public class BankAccount
 {
 public string AccountName; // instance member
 public decimal Balance; // instance member
 public static decimal InterestRate; // shared member
 }
}

Each instance of BankAccount will have its own AccountName and Balance
values, but all instances will share a single InterestRate value.

3. In Program.cs and its Main method, add statements to set the shared interest
rate and then create two instances of the BankAccount type, as shown in the
following code:
BankAccount.InterestRate = 0.012M; // store a shared value

var jonesAccount = new BankAccount();
jonesAccount.AccountName = "Mrs. Jones";
jonesAccount.Balance = 2400;

WriteLine(format: "{0} earned {1:C} interest.",
 arg0: jonesAccount.AccountName,
 arg1: jonesAccount.Balance * BankAccount.InterestRate);

var gerrierAccount = new BankAccount();
gerrierAccount.AccountName = "Ms. Gerrier";
gerrierAccount.Balance = 98;

WriteLine(format: "{0} earned {1:C} interest.",
 arg0: gerrierAccount.AccountName,
 arg1: gerrierAccount.Balance * BankAccount.InterestRate);

:C is a format code that tells .NET to use the currency format for the
numbers. In Chapter 8, Working with Common .NET Types, you will learn how
to control the culture that determines the currency symbol. For now, it will
use the default for your operating system installation. I live in London, UK,
hence my output shows British Pounds (£).

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[158]

4. Run the application and view the additional output:

Mrs. Jones earned £28.80 interest.

Ms. Gerrier earned £1.18 interest.

Making a field constant
If the value of a field will never ever change, you can use the const keyword and
assign a literal value at compile time.

1. In the Person class, add the following code:
// constants
public const string Species = "Homo Sapien";

2. In the Main method, add a statement to write Bob's name and species to the
console, as shown in the following code:
WriteLine($"{bob.Name} is a {Person.Species}");

To get the value of a constant field, you must write the name of the class, not
the name of an instance of the class.

3. Run the application and view the result, as shown in the following output:

Bob Smith is a Homo Sapien

Examples of the const fields in Microsoft types include System.Int32.MaxValue
and System.Math.PI because neither value will ever change, as you can see in the
following screenshot:

Building Your Own Types with Object-Oriented Programming | 05

[159]

Making a field read-only
A better choice for fields that should not change is to mark them as read-only.

1. Inside the Person class, add a statement to declare an instance read-only field
to store a person's home planet, as shown in the following code:
// read-only fields
public readonly string HomePlanet = "Earth";

You can also declare static readonly fields whose value would be shared
across all instances of the type.

2. Inside the Main method, add a statement to write Bob's name and home
planet to the console, as shown in the following code:
WriteLine($"{bob.Name} was born on {bob.HomePlanet}");

3. Run the application and view the result, as shown in the following output:

Bob Smith was born on Earth

Initializing fields with constructors
Fields often need to be initialized at runtime. You do this in a constructor that will be
called when you make an instance of the class using the new keyword. Constructors
execute before any fields are set by the code that is using the type.

1. Inside the Person class, add the following highlighted code after the existing
read-only HomePlanet field:
// read-only fields

Good Practice: Constants should be avoided for two important
reasons: the value must be known at compile time, and it must
be expressible as a literal string, Boolean, or number value. Every
reference to the const field is replaced with the literal value
at compile time, which will, therefore, not be reflected if the
value changes in a future version and you do not recompile any
assemblies that reference it to get the new value.

Good Practice: Use read-only fields over the const fields for two
important reasons: the value can be calculated or loaded at runtime
and can be expressed using any executable statement. So, a read-
only field can be set using a constructor or a field assignment. Every
reference to the field is a live reference, so any future changes will
be correctly reflected by calling code.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[160]

public readonly string HomePlanet = "Earth";
public readonly DateTime Instantiated;

// constructors
public Person()
{
 // set default values for fields
 // including read-only fields
 Name = "Unknown";
 Instantiated = DateTime.Now;
}

2. Inside the Main method, add statements to instantiate a new person and then
output its initial field values, as shown in the following code:
var blankPerson = new Person();

WriteLine(format:
 "{0} of {1} was created at {2:hh:mm:ss} on a {2:dddd}.",
 arg0: blankPerson.Name,
 arg1: blankPerson.HomePlanet,
 arg2: blankPerson.Instantiated);

3. Run the application and view the result, as shown in the following output:
Unknown of Earth was created at 11:58:12 on a Sunday

You can have multiple constructors in a type. This is especially useful to
encourage developers to set initial values for fields.

4. In the Person class, add statements to define a second constructor that allows
a developer to set initial values for the person's name and home planet, as
shown in the following code:
public Person(string initialName, string homePlanet)
{
 Name = initialName;
 HomePlanet = homePlanet;
 Instantiated = DateTime.Now;
}

5. Inside the Main method, add the following code:
var gunny = new Person("Gunny", "Mars");

WriteLine(format:
 "{0} of {1} was created at {2:hh:mm:ss} on a {2:dddd}.",
 arg0: gunny.Name,

Building Your Own Types with Object-Oriented Programming | 05

[161]

 arg1: gunny.HomePlanet,
 arg2: gunny.Instantiated);

6. Run the application and view the result:

Gunny of Mars was created at 11:59:25 on a Sunday

Setting fields with default literals
A language feature introduced in C# 7.1 was default literals. Back in Chapter 2,
Speaking C#, you learned about the default(type) keyword.

As a reminder, if you had some fields in a class that you wanted to initialize to their
default type values in a constructor, you have been able to use default(type) since
C# 2.0.

1. In the PacktLibrary folder, add a new file named ThingOfDefaults.cs.
2. In the ThingOfDefaults.cs file, add statements to declare a class with four

fields of various types and set them to their default values in a constructor,
as shown in the following code:
using System;
using System.Collections.Generic;

namespace Packt.Shared
{
 public class ThingOfDefaults
 {
 public int Population;
 public DateTime When;
 public string Name;
 public List<Person> People;

 public ThingOfDefaults()
 {
 Population = default(int); // C# 2.0 and later
 When = default(DateTime);
 Name = default(string);
 People = default(List<Person>);
 }
 }
}

You might think that the compiler ought to be able to work out what type
we mean without being explicitly told, and you'd be right, but for the first
15 years of the C# compiler's life, it didn't. Finally, with the C# 7.1 and later
compilers it does.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[162]

3. Simplify the statements setting the defaults, as shown highlighted in the
following code:

using System;
using System.Collections.Generic;

namespace Packt.Shared
{
 public class ThingOfDefaults
 {
 public int Population;
 public DateTime When;
 public string Name;
 public List<Person> People;

 public ThingOfDefaults()
 {
 Population = default; // C# 7.1 and later
 When = default;
 Name = default;
 People = default;
 }
 }
}

Constructors are a special category of method. Let's look at methods in more detail.

Writing and calling methods
Methods are members of a type that execute a block of statements.

Returning values from methods
Methods can return a single value or return nothing.

• A method that performs some actions but does not return a value indicates
this with the void type before the name of the method.

• A method that performs some actions and returns a value indicates this with
the type of the return value before the name of the method.

For example, you will create two methods:

• WriteToConsole: This will perform an action (writing some text to the
console), but it will return nothing from the method, indicated by the void
keyword.

Building Your Own Types with Object-Oriented Programming | 05

[163]

• GetOrigin: This will return a string value, indicated by the string keyword.

Let's write the code.

1. Inside the Person class, statically import System.Console.
2. Add statements to define the two methods, as shown in the following code:

// methods
public void WriteToConsole()
{
 WriteLine($"{Name} was born on a {DateOfBirth:dddd}.");
}

public string GetOrigin()
{
 return $"{Name} was born on {HomePlanet}.";
}

3. Inside the Main method, add statements to call the two methods, as shown in
the following code:
bob.WriteToConsole();
WriteLine(bob.GetOrigin());

4. Run the application and view the result, as shown in the following output:

Bob Smith was born on a Wednesday.

Bob Smith was born on Earth.

Combining multiple returned values using
tuples
Each method can only return a single value that has a single type. That type could
be a simple type, such as string in the previous example, a complex type, such as
Person, or a collection type, such as List<Person>.

Imagine that we want to define a method named GetTheData that returns
both a string value and an int value. We could define a new class named
TextAndNumber with a string field and an int field, and return an instance of that
complex type, as shown in the following code:

public class TextAndNumber
{
 public string Text;
 public int Number;

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[164]

}

public class Processor
{
 public TextAndNumber GetTheData()
 {
 return new TextAndNumber
 {
 Text = "What's the meaning of life?",
 Number = 42
 };
 }
}

But defining a class just to combine two values together is unnecessary, because in
modern versions of C# we can use tuples. I pronounce them as tuh-ples but I have
heard other developers pronounce them as too-ples. To-may-toe, to-mah-toe, po-tay-
toe, po-tah-toe, I guess.

Tuples have been a part of some languages such as F# since their first version, but
.NET only added support for them in .NET 4.0 with the System.Tuple type.

It was only in C# 7.0 that C# added language syntax support for tuples and at the
same time, .NET added a new System.ValueTuple type that is more efficient in
some common scenarios than the old .NET 4.0 System.Tuple type, and the C# tuple
uses the more efficient one.

System.ValueTuple is not part of .NET Standard 1.6, and therefore not available by
default in .NET Core 1.0 or 1.1 projects. System.ValueTuple is built in with .NET
Standard 2.0, and therefore, .NET Core 2.0 and later.

Let's explore tuples.

1. In the Person class, add statements to define a method that returns a string
and int tuple, as shown in the following code:
public (string, int) GetFruit()
{
 return ("Apples", 5);
}

2. In the Main method, add statements to call the GetFruit method and then
output the tuple's fields, as shown in the following code:
(string, int) fruit = bob.GetFruit();
WriteLine($"{fruit.Item1}, {fruit.Item2} there are.");

Building Your Own Types with Object-Oriented Programming | 05

[165]

3. Run the application and view the result, as shown in the following output:

Apples, 5 there are.

Naming the fields of a tuple
To access the fields of a tuple, the default names are Item1, Item2, and so on.

You can explicitly specify the field names.

1. In the Person class, add statements to define a method that returns a tuple
with named fields, as shown in the following code:
public (string Name, int Number) GetNamedFruit()
{
 return (Name: "Apples", Number: 5);
}

2. In the Main method, add statements to call the method and output the tuple's
named fields, as shown in the following code:
var fruitNamed = bob.GetNamedFruit();
WriteLine($"There are {fruitNamed.Number} {fruitNamed.Name}.");

3. Run the application and view the result, as shown in the following output:

There are 5 Apples.

Inferring tuple names
If you are constructing a tuple from another object, you can use a feature introduced
in C# 7.1 called tuple name inference.

1. In the Main method, create two tuples, made of a string and int value each,
as shown in the following code:
var thing1 = ("Neville", 4);
WriteLine($"{thing1.Item1} has {thing1.Item2} children.");

var thing2 = (bob.Name, bob.Children.Count);
WriteLine($"{thing2.Name} has {thing2.Count} children.");

In C# 7.0, both things would use the Item1 and Item2 naming schemes. In C# 7.1
and later, the second thing can infer the names Name and Count.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[166]

Deconstructing tuples
You can also deconstruct tuples into separate variables. The deconstructing
declaration has the same syntax as named field tuples, but without a variable name
for the tuple, as shown in the following code:

// store return value in a tuple variable with two fields
(string name, int age) tupleWithNamedFields = GetPerson();
// tupleWithNamedFields.name
// tupleWithNamedFields.age

// deconstruct return value into two separate variables
(string name, int age) = GetPerson();
// name
// age

This has the effect of splitting the tuple into its parts and assigning those parts to
new variables.

1. In the Main method, add the following code:
(string fruitName, int fruitNumber) = bob.GetFruit();
WriteLine($"Deconstructed: {fruitName}, {fruitNumber}");

2. Run the application and view the result, as shown in the following output:

Deconstructed: Apples, 5

Defining and passing parameters to methods
Methods can have parameters passed to them to change their behavior. Parameters
are defined a bit like variable declarations, but inside the parentheses of the method.

1. In the Person class, add statements to define two methods, the first without
parameters and the second with one parameter, as shown in the following
code:
public string SayHello()
{
 return $"{Name} says 'Hello!'";
}

More Information: Deconstruction is not just for tuples.
Any type can be deconstructed if it has a Deconstruct
method. You can read about this at the following link:
https://docs.microsoft.com/en-us/dotnet/csharp/
tuples#deconstruction

https://docs.microsoft.com/en-us/dotnet/csharp/tuples#deconstruction
https://docs.microsoft.com/en-us/dotnet/csharp/tuples#deconstruction

Building Your Own Types with Object-Oriented Programming | 05

[167]

public string SayHelloTo(string name)
{
 return $"{Name} says 'Hello {name}!'";
}

2. In the Main method, add statements to call the two methods and write the
return value to the console, as shown in the following code:
WriteLine(bob.SayHello());
WriteLine(bob.SayHelloTo("Emily"));

3. Run the application and view the result:

Bob Smith says 'Hello!'

Bob Smith says 'Hello Emily!'

When typing a statement that calls a method, IntelliSense shows a tooltip with the
name and type of any parameters, and the return type of the method, as shown in
the following screenshot:

Overloading methods
Instead of having two different method names, we could give both methods the
same name. This is allowed because the methods each have a different signature.

A method signature is a list of parameter types that can be passed when calling the
method (as well as the type of the return value).

1. In the Person class, change the name of the SayHelloTo method to
SayHello.

2. In Main, change the method call to use the SayHello method, and note that
the quick info for the method tells you that it has one additional overload,
1/2, as well as 2/2, as shown in the following screenshot:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[168]

Passing optional parameters and naming
arguments
Another way to simplify methods is to make parameters optional. You make a
parameter optional by assigning a default value inside the method parameter list.
Optional parameters must always come last in the list of parameters.

We will now create a method with three optional parameters.

1. In the Person class, add statements to define the method, as shown in the
following code:
public string OptionalParameters(
 string command = "Run!",
 double number = 0.0,
 bool active = true)
{
 return string.Format(
 format: "command is {0}, number is {1}, active is {2}",
 arg0: command, arg1: number, arg2: active);
}

2. In the Main method, add a statement to call the method and write its return
value to the console, as shown in the following code:
WriteLine(bob.OptionalParameters());

Good Practice: Use overloaded methods to simplify your class by
making it appear to have fewer methods.

More Information: There is one exception to optional
parameters always coming last. C# has a params keyword that
allows you to pass a comma-separated list of parameters of any
length as an array. You can read about params at the following
link: https://docs.microsoft.com/en-us/dotnet/
csharp/language-reference/keywords/params

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/params
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/params

Building Your Own Types with Object-Oriented Programming | 05

[169]

3. Watch IntelliSense appear as you type the code. You will see a tooltip,
showing the three optional parameters with their default values, as shown
in the following screenshot:

4. Run the application and view the result, as shown in the following output:
command is Run!, number is 0, active is True

5. In the Main method, add a statement to pass a string value for the command
parameter and a double value for the number parameter, as shown in the
following code:
WriteLine(bob.OptionalParameters("Jump!", 98.5));

6. Run the application and see the result, as shown in the following output:
command is Jump!, number is 98.5, active is True

The default values for command and number have been replaced, but the
default for active is still true.
Optional parameters are often combined with naming parameters when you
call the method, because naming a parameter allows the values to be passed
in a different order than how they were declared.

7. In the Main method, add a statement to pass a string value for the command
parameter and a double value for the number parameter but using named
parameters, so that the order they are passed through can be swapped
around, as shown in the following code:
WriteLine(bob.OptionalParameters(
 number: 52.7, command: "Hide!"));

8. Run the application and view the result, as shown in the following output:
command is Hide!, number is 52.7, active is True

You can even use named parameters to skip over optional parameters.

9. In the Main method, add a statement to pass a string value for the command
parameter using positional order, skip the number parameter, and use the
named active parameter, as shown in the following code:
WriteLine(bob.OptionalParameters("Poke!", active: false));

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[170]

10. Run the application and view the result, as shown in the following output:

command is Poke!, number is 0, active is False

Controlling how parameters are passed
When a parameter is passed into a method, it can be passed in one of three ways:

• By value (this is the default): Think of these as being in-only.
• By reference as a ref parameter: Think of these as being in-and-out.
• As an out parameter: Think of these as being out-only.

Let's see some examples of passing parameters in and out.

1. In the Person class, add statements to define a method with three
parameters, one in parameter, one ref parameter, and one out parameter, as
shown in the following method:
public void PassingParameters(int x, ref int y, out int z)
{
 // out parameters cannot have a default
 // AND must be initialized inside the method
 z = 99;

 // increment each parameter
 x++;
 y++;
 z++;
}

2. In the Main method, add statements to declare some int variables and pass
them into the method, as shown in the following code:
int a = 10;
int b = 20;
int c = 30;

WriteLine($"Before: a = {a}, b = {b}, c = {c}");

bob.PassingParameters(a, ref b, out c);

WriteLine($"After: a = {a}, b = {b}, c = {c}");

3. Run the application and view the result, as shown in the following output:

Before: a = 10, b = 20, c = 30

After: a = 10, b = 21, c = 100

Building Your Own Types with Object-Oriented Programming | 05

[171]

When passing a variable as a parameter by default, its current value gets
passed, not the variable itself. Therefore, x is a copy of the a variable. The
a variable retains its original value of 10. When passing a variable as a ref
parameter, a reference to the variable gets passed into the method.
Therefore, y is a reference to b. The b variable gets incremented when the
y parameter gets incremented. When passing a variable as an out parameter,
a reference to the variable gets passed into the method.
Therefore, z is a reference to c. The c variable gets replaced by whatever
code executes inside the method. We could simplify the code in the Main
method by not assigning the value 30 to the c variable, since it will always
be replaced anyway.
In C# 7.0 and later, we can simplify code that uses the out variables.

4. In the Main method, add statements to declare some more variables including
an out parameter named f declared inline, as shown in the following code:
int d = 10;
int e = 20;

WriteLine(
 $"Before: d = {d}, e = {e}, f doesn't exist yet!");

// simplified C# 7.0 syntax for the out parameter
bob.PassingParameters(d, ref e, out int f);

WriteLine($"After: d = {d}, e = {e}, f = {f}");

In C# 7.0 and later, the ref keyword is not just for passing parameters into a
method: it can also be applied to the return value. This allows an external variable to
reference an internal variable and modify its value after the method call. This might
be useful in advanced scenarios, for example, passing around placeholders into big
data structures, but it's beyond the scope of this book.

Splitting classes using partial
When working on large projects with multiple team members, it is useful to be able
to split the definition of a complex class across multiple files. You do this using the
partial keyword.

Imagine we want to add statements to the Person class that are automatically
generated by a tool like an object-relational mapper that reads schema information
from a database. If the class is defined as partial, then we can split the class into an
auto-generated code file and a manually edited code file.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[172]

1. In the Person class, add the partial keyword, as shown highlighted in the
following code:
namespace Packt.Shared
{
 public partial class Person
 {

2. In EXPLORER, click on the New File button in the PacktLibrary folder, and
enter a name of PersonAutoGen.cs.

3. Add statements to the new file, as shown in the following code:

namespace Packt.Shared
{
 public partial class Person
 {
 }
}

The rest of the code we write for this chapter will be written in the
PersonAutoGen.cs file.

Controlling access with properties and
indexers
Earlier, you created a method named GetOrigin that returned a string containing
the name and origin of the person. Languages such as Java do this a lot. C# has a
better way: properties.

A property is simply a method (or a pair of methods) that acts and looks like a field
when you want to get or set a value, thereby simplifying the syntax.

Defining readonly properties
A readonly property only has a get implementation.

1. In the PersonAutoGen.cs file, in the Person class, add statements to define
three properties:

 ° The first property will perform the same role as the GetOrigin
method using the property syntax that works with all versions of C#
(although, it uses the C# 6 and later string interpolation syntax).

 ° The second property will return a greeting message using the
C# 6 and, later, the lambda expression (=>) syntax.

 ° The third property will calculate the person's age.

Building Your Own Types with Object-Oriented Programming | 05

[173]

Here's the code:

// a property defined using C# 1 - 5 syntax
public string Origin
{
 get
 {
 return $"{Name} was born on {HomePlanet}";
 }
}

// two properties defined using C# 6+ lambda expression
syntax
public string Greeting => $"{Name} says 'Hello!'";

public int Age => System.DateTime.Today.Year -
DateOfBirth.Year;

2. In the Main method, add statements to get the properties, as shown in the
following code:
var sam = new Person
{
 Name = "Sam",
 DateOfBirth = new DateTime(1972, 1, 27)
};

WriteLine(sam.Origin);
WriteLine(sam.Greeting);
WriteLine(sam.Age);

3. Run the application and view the result, as shown in the following output:

Sam was born on Earth

Sam says 'Hello!'

47

More Information: Obviously, this isn't the best way to
calculate age, but we aren't learning how to calculate ages from
dates of birth. If you need to do that properly, you can read a
discussion at the following link: https://stackoverflow.
com/questions/9/how-do-i-calculate-someones-age-
in-c.

https://stackoverflow.com/questions/9/how-do-i-calculate-someones-age-in-c
https://stackoverflow.com/questions/9/how-do-i-calculate-someones-age-in-c

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[174]

The output shows 47 because I ran the console application on 25th September 2019
when Sam was 47 years old.

Defining settable properties
To create a settable property, you must use the older syntax and provide a pair of
methods—not just a get part, but also a set part.

1. In the PersonAutoGen.cs file, add statements to define a string property
that has both a get and set method (also known as getter and setter), as
shown in the following code:
public string FavoriteIceCream { get; set; } // auto-syntax

Although you have not manually created a field to store the person's favorite
ice cream, it is there, automatically created by the compiler for you.
Sometimes, you need more control over what happens when a property
is set. In this scenario, you must use a more detailed syntax and manually
create a private field to store the value for the property.

2. In the PersonAutoGen.cs file, add statements to define a string field and
string property that has both a get and set, as shown in the following
code:
private string favoritePrimaryColor;

public string FavoritePrimaryColor
{
 get
 {
 return favoritePrimaryColor;
 }
 set
 {
 switch (value.ToLower())
 {
 case "red":
 case "green":
 case "blue":
 favoritePrimaryColor = value;
 break;
 default:
 throw new System.ArgumentException(
 $"{value} is not a primary color. " +
 "Choose from: red, green, blue.");

Building Your Own Types with Object-Oriented Programming | 05

[175]

 }
 }
}

3. In the Main method, add statements to set Sam's favorite ice cream and color,
and then write them to the console, as shown in the following code:
sam.FavoriteIceCream = "Chocolate Fudge";

WriteLine($"Sam's favorite ice-cream flavor is {sam.
FavoriteIceCream}.");

sam.FavoritePrimaryColor = "Red";

WriteLine($"Sam's favorite primary color is {sam.
FavoritePrimaryColor}.");

4. Run the application and view the result, as shown in the following
output:

Sam's favorite ice-cream flavor is Chocolate Fudge.

Sam's favorite primary color is Red.

If you try to set the color to any value other than red, green, or blue, then the code
will throw an exception. The calling code could then use a try statement to display
the error message.

Defining indexers
Indexers allow the calling code to use the array syntax to access a property. For
example, the string type defines an indexer so that the calling code can access
individual characters in the string individually.

We will define an indexer to simplify access to the children of a person.

Good Practice: Use properties instead of fields when you want to
validate what value can be stored, when you want to data bind in
XAML which we will cover in Chapter 20, Building Windows Desktop
Apps, and when you want to read and write to fields without using
methods.

More Information: You can read more about encapsulation
of fields using properties at the following link: https://
stackoverflow.com/questions/1568091/why-use-
getters-and-setters-accessors

https://stackoverflow.com/questions/1568091/why-use-getters-and-setters-accessors
https://stackoverflow.com/questions/1568091/why-use-getters-and-setters-accessors
https://stackoverflow.com/questions/1568091/why-use-getters-and-setters-accessors

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[176]

1. In the PersonAutoGen.cs file, add statements to define an indexer to get and
set a child using the index of the child, as shown in the following code:
// indexers
public Person this[int index]
{
 get
 {
 return Children[index];
 }
 set
 {
 Children[index] = value;
 }
}

You can overload indexers so that different types can be used for their
parameters. For example, as well as passing an int value, you could also
pass a string value.

2. In the Main method, add the following code. After adding to the
children, we will access the first and second child using the longer Children
field and the shorter indexer syntax:
sam.Children.Add(new Person { Name = "Charlie" });
sam.Children.Add(new Person { Name = "Ella" });

WriteLine($"Sam's first child is {sam.Children[0].Name}");
WriteLine($"Sam's second child is {sam.Children[1].Name}");
WriteLine($"Sam's first child is {sam[0].Name}");
WriteLine($"Sam's second child is {sam[1].Name}");

3. Run the application and view the result, as shown in the following
output:

Sam's first child is Charlie

Sam's second child is Ella

Sam's first child is Charlie

Sam's second child is Ella

Good Practice: Only use indexers if it makes sense to use the square
bracket, also known as array syntax. As you can see from the
preceding example, indexers rarely add much value.

Building Your Own Types with Object-Oriented Programming | 05

[177]

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with deeper research.

Exercise 5.1 – Test your knowledge
Answer the following questions:

1. What are the six access modifiers and what do they do?
2. What is the difference between the static, const, and readonly keywords?
3. What does a constructor do?
4. Why should you apply the [Flags] attribute to an enum type when you want

to store combined values?
5. Why is the partial keyword useful?
6. What is a tuple?
7. What does the C# ref keyword do?
8. What does overloading mean?
9. What is the difference between a field and a property?
10. How do you make a method parameter optional?

Exercise 5.2 – Explore topics
Use the following links to read more about this chapter's topics:

• Fields (C# programming guide): https://docs.microsoft.com/en-us/
dotnet/articles/csharp/programming-guide/classes-and-structs/
fields

• Access modifiers (C# programming guide): https://docs.microsoft.
com/en-us/dotnet/articles/csharp/language-reference/keywords/
access-modifiers

• Constructors (C# programming guide): https://docs.microsoft.com/
en-us/dotnet/articles/csharp/programming-guide/classes-and-
structs/constructors

• Methods (C# programming guide): https://docs.microsoft.com/en-us/
dotnet/articles/csharp/methods

• Properties (C# programming guide): https://docs.microsoft.com/en-
us/dotnet/articles/csharp/properties

https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/fields
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/fields
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/fields
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/access-modifiers
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/access-modifiers
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/access-modifiers
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/articles/csharp/methods
https://docs.microsoft.com/en-us/dotnet/articles/csharp/methods
https://docs.microsoft.com/en-us/dotnet/articles/csharp/properties
https://docs.microsoft.com/en-us/dotnet/articles/csharp/properties

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[178]

Summary
In this chapter, you learned about making your own types using OOP. You learned
about some of the different categories of members that a type can have, including
fields to store data and methods to perform actions, and you used OOP concepts,
such as aggregation and encapsulation.

In the next chapter, you will take these concepts further by defining delegates and
events, implementing interfaces, and inheriting from existing classes.

[179]

Chapter 06
Implementing Interfaces

and Inheriting Classes
This chapter is about deriving new types from existing ones using object-oriented
programming (OOP). You will learn about defining operators and local functions for
performing simple actions, delegates and events for exchanging messages between
types, implementing interfaces for common functionality, generics, the difference
between reference and value types, inheriting from a base class to create a derived
class to reuse functionality, overriding a type member, using polymorphism, creating
extension methods, and casting between classes in an inheritance hierarchy.

This chapter covers the following topics:

• Setting up a class library and console application
• Simplifying methods
• Raising and handling events
• Implementing interfaces
• Making types more reusable with generics
• Managing memory with reference and value types
• Inheriting from classes
• Casting within inheritance hierarchies
• Inheriting and extending .NET types

Setting up a class library and console
application
We will start by defining a workspace with two projects like the one created
in Chapter 5, Building Your Own Types with Object-Oriented Programming. If you
completed all the exercises in that chapter, then you can open the Chapter05
workspace and continue working with its projects.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[180]

Otherwise, follow the instructions given in this section:

1. In your existing Code folder, create a folder named Chapter06 with two
subfolders named PacktLibrary and PeopleApp, as shown in the following
hierarchy:

• Chapter06

 ° PacktLibrary

 ° PeopleApp

2. Start Visual Studio Code.
3. Navigate to File | Save As Workspace…, enter the name Chapter06, and

click Save.
4. Navigate to File | Add Folder to Workspace…, select the PacktLibrary

folder, and click Add.
5. Navigate to File | Add Folder to Workspace…, select the PeopleApp folder,

and click Add.
6. Navigate to Terminal | New Terminal and select PacktLibrary.
7. In TERMINAL, enter the following command:

dotnet new classlib

8. Navigate to Terminal | New Terminal and select PeopleApp.
9. In TERMINAL, enter the following command:

dotnet new console

10. In the EXPLORER pane, in the PacktLibrary project, rename the file named
Class1.cs to Person.cs.

11. Modify the file contents, as shown in the following code:
using System;

namespace Packt.Shared
{
 public class Person
 {
 }
}

12. In the EXPLORER pane, expand the folder named PeopleApp and click on
the file named PeopleApp.csproj.

13. Add a project reference to PacktLibrary, as shown in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

Implementing Interfaces and Inheriting Classes | 06

[181]

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference
 Include="..\PacktLibrary\PacktLibrary.csproj" />
 </ItemGroup>

</Project>

14. In the TERMINAL window for the PeopleApp folder, enter the
dotnet build command, and note the output indicating that both projects
have been built successfully.

15. Add statements to the Person class to define three fields and a method, as
shown in the following code:

using System;
using System.Collections.Generic;
using static System.Console;

namespace Packt.Shared
{
 public class Person
 {
 // fields
 public string Name;
 public DateTime DateOfBirth;
 public List<Person> Children = new List<Person>();

 // methods
 public void WriteToConsole()
 {
 WriteLine($"{Name} was born on a {DateOfBirth:dddd}.");
 }
 }
}

Simplifying methods
We might want two instances of Person to be able to procreate. We can implement
this by writing methods. Instance methods are actions that an object does to itself;
static methods are actions the type does.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[182]

Which you choose depends on what makes most sense for the action.

Implementing functionality using methods
Let's start by implementing some functionality by using methods.

1. Add one instance method and one static method to the Person class that will
allow two Person objects to procreate, as shown in the following code:
// static method to "multiply"
public static Person Procreate(Person p1, Person p2)
{
 var baby = new Person
 {
 Name = $"Baby of {p1.Name} and {p2.Name}"
 };

 p1.Children.Add(baby);
 p2.Children.Add(baby);

 return baby;
}

// instance method to "multiply"
public Person ProcreateWith(Person partner)
{
 return Procreate(this, partner);
}

Note the following:
 ° In the static method named Procreate, the Person objects to

procreate are passed as parameters named p1 and p2.
 ° A new Person class named baby is created with a name made of

a combination of the two people who have procreated.
 ° The baby object is added to the Children collection of both parents

and then returned. Classes are reference types, meaning a reference
to the baby object stored in memory is added, not a clone of the baby.

Good Practice: Having both the static and instance methods to
perform similar actions often makes sense. For example, string
has both a Compare static method and a CompareTo instance
method. This puts the choice of how to use the functionality in
the hands of the programmers using your type, giving them more
flexibility.

Implementing Interfaces and Inheriting Classes | 06

[183]

 ° In the instance method named ProcreateWith, the Person object
to procreate with is passed as a parameter named partner, and it,
along with this, is passed to the static Procreate method to reuse
the method implementation. this is a keyword that references the
current instance of the class.

2. In the PeopleApp project, at the top of the Program.cs file, import the
namespace for our class and statically import the Console type, as shown
highlighted in the following code:
using System;
using Packt.Shared;
using static System.Console;

3. In the Main method, create three people and have them procreate with each
other, noting that to add a double-quote character into a string, you must
prefix it with a backslash character, like this: \", as shown in the following
code:
var harry = new Person { Name = "Harry" };
var mary = new Person { Name = "Mary" };
var jill = new Person { Name = "Jill" };

// call instance method
var baby1 = mary.ProcreateWith(harry);

// call static method
var baby2 = Person.Procreate(harry, jill);

WriteLine($"{harry.Name} has {harry.Children.Count} children.");
WriteLine($"{mary.Name} has {mary.Children.Count} children.");
WriteLine($"{jill.Name} has {jill.Children.Count} children.");

WriteLine(
 format: "{0}'s first child is named \"{1}\".",
 arg0: harry.Name,
 arg1: harry.Children[0].Name);

4. Run the application and view the result, as shown in the following output:

Harry has 2 children.

Good Practice: A method that creates a new object, or modifies an
existing object, should return a reference to that object so that the
caller can see the results.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[184]

Mary has 1 children.

Jill has 1 children.

Harry's first child is named "Baby of Mary and Harry".

Implementing functionality using operators
The System.String class has a static method named Concat that concatenates two
string values and returns the result, as shown in the following code:

string s1 = "Hello ";
string s2 = "World!";
string s3 = string.Concat(s1, s2);
WriteLine(s3); // => Hello World!

Calling a method like Concat works, but it might be more natural for a programmer to
use the + symbol to add two string values together, as shown in the following code:

string s1 = "Hello ";
string s2 = "World!";
string s3 = s1 + s2;
WriteLine(s3); // => Hello World!

A well-known biblical phrase is Go forth and multiply, meaning to procreate. Let's
write code so that the * (multiply) symbol will allow two Person objects to procreate.

We do this by defining a static operator for a symbol like *. The syntax is rather
like a method, because in effect, an operator is a method, but uses a symbol instead
of a method name, which makes the syntax more concise.

1. In the PacktLibrary project, in the Person class, create a static operator
for the * symbol, as shown in the following code:
// operator to "multiply"
public static Person operator *(Person p1, Person p2)
{
 return Person.Procreate(p1, p2);
}

More Information: The * symbol is just one of many that you
can implement as an operator. The complete list of symbols
is listed at this link: https://docs.microsoft.com/en-
us/dotnet/csharp/programming-guide/statements-
expressions-operators/overloadable-operators

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators

Implementing Interfaces and Inheriting Classes | 06

[185]

2. In the Main method, after calling the static Procreate method, use the *
operator to make another baby, as shown in the following highlighted code:
// call static method
var baby2 = Person.Procreate(harry, jill);

// call an operator
var baby3 = harry * mary;

3. Run the application and view the result, as shown in the following output:

Harry has 3 children.

Mary has 2 children.

Jill has 1 children.

Harry's first child is named "Baby of Mary and Harry".

Implementing functionality using local
functions
A language feature introduced in C# 7.0 is the ability to define a local function.

Local functions are the method equivalent of local variables. In other words, they are
methods that are only accessible from within the containing method in which they
have been defined. In other languages, they are sometimes called nested or inner
functions.

Local functions can be defined anywhere inside a method: the top, the bottom,
or even somewhere in the middle!

We will use a local function to implement a factorial calculation.

1. In the Person class, add statements to define a Factorial function that uses
a local function inside itself to calculate the result, as shown in the following
code:
// method with a local function
public static int Factorial(int number)

Good Practice: Unlike methods, operators do not appear in
IntelliSense lists for a type. For every operator you define, make a
method as well, because it may not be obvious to a programmer that
the operator is available. The implementation of the operator can
then call the method, reusing the code you have written. A second
reason for providing a method is that operators are not supported
by every language compiler.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[186]

{
 if (number < 0)
 {
 throw new ArgumentException(
 $"{nameof(number)} cannot be less than zero.");
 }
 return localFactorial(number);

 int localFactorial(int localNumber) // local function
 {
 if (localNumber < 1) return 1;
 return localNumber * localFactorial(localNumber - 1);
 }
}

2. In Program.cs, in the Main method, add a statement to call the Factorial
function and write the return value to the console, as shown in the following
code:
WriteLine($"5! is {Person.Factorial(5)}");

3. Run the application and view the result, as shown in the following output:

5! is 120

Raising and handling events
Methods are often described as actions that an object can perform, either on itself or to
related objects. For example, List can add an item to itself or clear itself, and File can
create or delete a file in the filesystem.

Events are often described as actions that happen to an object. For example, in a
user interface, Button has a Click event, click being something that happens to a
button. Another way of thinking of events is that they provide a way of exchanging
messages between two objects.

Events are built on delegates, so let's start by having a look at how delegates work.

Calling methods using delegates
You have already seen the most common way to call or execute a method: use the .
operator to access the method using its name. For example, Console.WriteLine tells
the Console type to access its WriteLine method.

Implementing Interfaces and Inheriting Classes | 06

[187]

The other way to call or execute a method is to use a delegate. If you have used
languages that support function pointers, then think of a delegate as being a type-
safe method pointer. In other words, a delegate contains the memory address of a
method that matches the same signature as the delegate so that it can be called safely
with the correct parameter types.

For example, imagine there is a method in the Person class that must have a string
type passed as its only parameter, and it returns an int type, as shown in the
following code:

public int MethodIWantToCall(string input)
{
 return input.Length; // it doesn't matter what this does
}

I can call this method on an instance of Person named p1 like this:

int answer = p1.MethodIWantToCall("Frog");

Alternatively, I can define a delegate with a matching signature to call the method
indirectly. Note that the names of the parameters do not have to match. Only the
types of parameters and return values must match, as shown in the following code:

delegate int DelegateWithMatchingSignature(string s);

Now, I can create an instance of the delegate, point it at the method, and finally, call
the delegate (which calls the method!), as shown in the following code:

// create a delegate instance that points to the method
var d = new DelegateWithMatchingSignature(p1.MethodIWantToCall);

// call the delegate, which calls the method
int answer2 = d("Frog");

You are probably thinking, "What's the point of that?" Well, it provides flexibility.

For example, we could use delegates to create a queue of methods that need to be
called in order. Queuing actions that need to be performed is common in services to
provide improved scalability.

Another example is to allow multiple actions to perform in parallel. Delegates have
built-in support for asynchronous operations that run on a different thread, and that
can provide improved responsiveness. You will learn how to do this in Chapter 13,
Improving Performance and Scalability Using Multitasking.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[188]

The most important example is that delegates allow us to implement events
for sending messages between different objects that do not need to know about
each other.

Delegates and events are two of the most confusing features of C# and can take a few
attempts to understand, so don't worry if you feel lost!

Defining and handling delegates
Microsoft has two predefined delegates for use as events. Their signatures are
simple, yet flexible, as shown in the following code:

public delegate void EventHandler(
 object sender, EventArgs e);

public delegate void EventHandler<TEventArgs>(
 object sender, TEventArgs e);

1. Add statements to the Person class and note the following points, as shown
in the following code:

 ° It defines an EventHandler delegate field named Shout.
 ° It defines an int field to store AngerLevel.
 ° It defines a method named Poke.
 ° Each time a person is poked, their AngerLevel increments. Once

their AngerLevel reaches three, they raise the Shout event, but only
if there is at least one event delegate pointing at a method defined
somewhere else in the code; that is, it is not null.

// event delegate field
public EventHandler Shout;

// data field
public int AngerLevel;

// method
public void Poke()
{
 AngerLevel++;
 if (AngerLevel >= 3)

Good Practice: When you want to define an event in your own
types, you should use one of these two predefined delegates.

Implementing Interfaces and Inheriting Classes | 06

[189]

 {
 // if something is listening...
 if (Shout != null)
 {
 // ...then call the delegate
 Shout(this, EventArgs.Empty);
 }
 }
}

Checking whether an object is null before calling one of its methods is very
common. C# 6.0 and later allows null checks to be simplified inline, as
shown in the following code:

Shout?.Invoke(this, EventArgs.Empty);

2. In Program, add a method with a matching signature that gets a reference to
the Person object from the sender parameter and outputs some information
about them, as shown in the following code:
private static void Harry_Shout(object sender, EventArgs e)
{
 Person p = (Person)sender;
 WriteLine($"{p.Name} is this angry: {p.AngerLevel}.");
}

Microsoft's convention for method names that handle events is
ObjectName_EventName.

3. In the Main method, add a statement to assign the method to the delegate
field, as shown in the following code:
harry.Shout = Harry_Shout;

4. Add statements to call the Poke method four times, after assigning the
method to the Shout event, as shown highlighted in the following code:
harry.Shout = Harry_Shout;

harry.Poke();
harry.Poke();
harry.Poke();
harry.Poke();

Delegates are multicast, meaning that you can assign multiple delegates to a
single delegate field. Instead of the = assignment, we could have used the +=
operator so we could add more methods to the same delegate field. When the
delegate is called, all the assigned methods are called, although you have no
control over the order that they are called.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[190]

5. Run the application and view the result, as shown in the following output,
and note that Harry says nothing the first two times he is poked, and only
gets angry enough to shout once he's been poked at least three times:

Harry is this angry: 3.

Harry is this angry: 4.

Defining and handling events
You've now seen how delegates implement the most important functionality of
events: the ability to define a signature for a method that can be implemented by
a completely different piece of code, and then call that method and any others that
are hooked up to the delegate field.

But what about events? There is less to them than you might think.

When assigning a method to a delegate field, you should not use the simple
assignment operator as we did in the preceding example, and as shown in the
following code:

harry.Shout = Harry_Shout;

If the Shout delegate field was already referencing one or more methods, by
assigning a method, it would replace all the others. With delegates that are used for
events, we usually want to make sure that a programmer only ever uses either the +=
operator or the -= operator to assign and remove methods:

1. To enforce this, add the event keyword to the delegate field declaration,
as shown in the following code:
public event EventHandler Shout;

2. In TERMINAL, enter the command: dotnet build, and note the compiler
error message, as shown in the following output:
Program.cs(41,13): error CS0079: The event 'Person.Shout' can
only appear on the left hand side of += or -=

This is (almost) all that the event keyword does! If you will never have more
than one method assigned to a delegate field, then you do not need "events".

3. Modify the method assignment to use +=, as shown in the following code:
harry.Shout += Harry_Shout;

4. Run the application and note that it has the same behavior as before.

Implementing Interfaces and Inheriting Classes | 06

[191]

Implementing interfaces
Interfaces are a way of connecting different types together to make new things.
Think of them like the studs on top of LEGO™ bricks, which allow them to "stick"
together, or electrical standards for plugs and sockets.

If a type implements an interface, then it is making a promise to the rest of .NET that
it supports a certain feature.

Common interfaces
Here are some common interfaces that your types might need to implement:

Interface Method(s) Description

IComparable CompareTo(other)
This defines a comparison method that
a type implements to order or sort its
instances.

IComparer
Compare(

 first, second)

This defines a comparison method that
a secondary type implements to order
or sort instances of a primary type.

IDisposable Dispose()
This defines a disposal method to release
unmanaged resources more efficiently
than waiting for a finalizer.

IFormattable
ToString(

 format, culture)

This defines a culture-aware method to
format the value of an object into a string
representation.

IFormatter

Serialize(

 stream,
object) and
Deserialize(stream)

This defines methods to convert an object
to and from a stream of bytes for storage
or transfer.

IFormat
Provider

GetFormat(type) This defines a method to format inputs
based on a language and region.

More Information: You can define your own custom EventArgs-
derived types so that you can pass additional information into an
event handler method. You can read more at the following link:
https://docs.microsoft.com/en-us/dotnet/standard/
events/how-to-raise-and-consume-events

https://docs.microsoft.com/en-us/dotnet/standard/events/how-to-raise-and-consume-events
https://docs.microsoft.com/en-us/dotnet/standard/events/how-to-raise-and-consume-events

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[192]

Comparing objects when sorting
One of the most common interfaces that you will want to implement is IComparable.
It allows arrays and collections of any type that implements it to be sorted.

1. In the Main method, add statements that create an array of Person instances
and writes the items to the console, and then attempts to sort the array and
writes the items to the console again, as shown in the following code:
Person[] people =
{
 new Person { Name = "Simon" },
 new Person { Name = "Jenny" },
 new Person { Name = "Adam" },
 new Person { Name = "Richard" }
};

WriteLine("Initial list of people:");
foreach (var person in people)
{
 WriteLine($"{person.Name}");
}

WriteLine("Use Person's IComparable implementation to
sort:");
Array.Sort(people);
foreach (var person in people)
{
 WriteLine($"{person.Name}");
}

2. Run the application, and you will see the following runtime error:
Unhandled Exception: System.InvalidOperationException: Failed
to compare two elements in the array. --->
System.ArgumentException: At least one object must implement
IComparable.

As the error explains, to fix the problem, our type must implement
IComparable.

3. In the PacktLibrary project, in the Person class, after the class name, add a
colon and enter IComparable<Person>, as shown in the following code:
public class Person : IComparable<Person>

Visual Studio Code will draw a red squiggle under the new code to warn you
that you have not yet implemented the method you have promised to. It can
write the skeleton implementation for you if you click on the light bulb and
choose the Implement interface option.

Implementing Interfaces and Inheriting Classes | 06

[193]

Interfaces can be implemented implicitly and explicitly. Implicit
implementations are simpler. Explicit implementations are only necessary if
a type must have multiple methods with the same name and signature. For
example, both IGamePlayer and IKeyHolder might have a method called
Lose with the same parameters. In a type that must implement both interfaces,
only one implementation of Lose can be the implicit method. If both interfaces
can share the same implementation, that works, but if not then the other Lose
method will have to be implemented differently and called explicitly.

4. Scroll down to find the method that was written for you and delete the
statement that throws the NotImplementedException error.

5. Add a statement to call the CompareTo method of the Name field, which uses
the string type's implementation of CompareTo, as shown highlighted in the
following code:
public int CompareTo(Person other)
{
 return Name.CompareTo(other.Name);
}

We have chosen to compare two Person instances by comparing their Name
fields. Person instances will, therefore, be sorted alphabetically by their
name.
For simplicity I have not added null checks throughout these examples.

6. Run the application, and note that this time it works as expected, as shown in
the following output:

Initial list of people:

Simon

Jenny

Adam

Richard

Use Person's IComparable implementation to sort:

Adam

Jenny

Richard

Simon

More Information: You can read more about explicit interface
implementations at the following link: https://docs.
microsoft.com/en-us/dotnet/csharp/programming-
guide/interfaces/explicit-interface-implementation

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/explicit-interface-implementation
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/explicit-interface-implementation
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/explicit-interface-implementation

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[194]

Comparing objects using a separate class
Sometimes, you won't have access to the source code for a type, and it might not
implement the IComparable interface. Luckily, there is another way to sort instances
of a type. You can create a separate type that implements a slightly different
interface, named IComparer.

1. In the PacktLibrary project, add a new class named PersonComparer that
implements the IComparer interface that will compare two people, that is,
two Person instances by comparing the length of their Name field, or if the
names are the same length, then by comparing the names alphabetically, as
shown in the following code:
using System.Collections.Generic;

namespace Packt.Shared
{
 public class PersonComparer : IComparer<Person>
 {
 public int Compare(Person x, Person y)
 {
 // Compare the Name lengths...
 int result = x.Name.Length
 .CompareTo(y.Name.Length);

 /// ...if they are equal...
 if (result == 0)
 {
 // ...then compare by the Names...
 return x.Name.CompareTo(y.Name);
 }
 else
 {
 // ...otherwise compare by the lengths.
 return result;
 }
 }
 }
}

Good Practice: If anyone will want to sort an array or collection of
instances of your type, then implement the IComparable interface.

Implementing Interfaces and Inheriting Classes | 06

[195]

2. In PeopleApp, in the Program class, in the Main method, add statements
to sort the array using this alternative implementation, as shown in the
following code:
WriteLine("Use PersonComparer's IComparer implementation to
sort:");
Array.Sort(people, new PersonComparer());
foreach (var person in people)
{
 WriteLine($"{person.Name}");
}

3. Run the application and view the result, as shown in the following output:
Initial list of people:

Simon

Jenny

Adam

Richard

Use Person's IComparable implementation to sort:

Adam

Jenny

Richard

Simon

Use PersonComparer's IComparer implementation to sort:

Adam

Jenny

Simon

Richard

This time, when we sort the people array, we explicitly ask the sorting algorithm to
use the PersonComparer type instead, so that the people are sorted with the shortest
names first, and when the lengths of two or more names are equal, to sort them
alphabetically.

Defining interfaces with default
implementations
A language feature introduced in C# 8.0 is default implementations for an interface.

1. In the PacktLibrary project, add a new file named IPlayable.cs. If you
have installed C# Extensions, then you can right-click the PacktLibrary
folder and choose Add C# Interface.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[196]

2. Modify the statements to define a public IPlayable interface with two
methods to Play and Pause, as shown in the following code:
using static System.Console;

namespace Packt.Shared
{
 public interface IPlayable
 {
 void Play();

 void Pause();
 }
}

3. In the PacktLibrary project, add a new file named DvdPlayer.cs. If you
have installed C# Extensions, then you can right-click the PacktLibrary
folder and choose Add C# Class.

4. Modify the statements in the file to implement the IPlayable interface, as
shown in the following code:
using static System.Console;

namespace Packt.Shared
{
 public class DvdPlayer : IPlayable
 {
 public void Pause()
 {
 WriteLine("DVD player is pausing.");
 }

 public void Play()
 {
 WriteLine("DVD player is playing.");
 }
 }
}

This is useful, but what if we decide to add a third method, Stop? Before C#
8.0 this would be impossible once at least one type implements the original
interface. One of the main points of an interface is that it is a fixed contract.
C# 8.0 allows an interface to add new members after release as long as
they have a default implementation. C# purists do not like the idea, but for
practical reasons it is useful, and other languages such as Java and Swift
enable similar techniques.

Implementing Interfaces and Inheriting Classes | 06

[197]

Support for default interface implementations requires some fundamental
changes to the underlying platform, so they are only supported with C# 8.0
if the target framework is either .NET Core 3.0 or .NET Standard 2.1. they are
therefore not supported by .NET Framework.

5. Modify the IPlayable interface to add a Stop method with a default
implementation, as shown highlighted in the following code:
using static System.Console;

namespace Packt.Shared
{
 public interface IPlayable
 {
 void Play();

 void Pause();

 void Stop()
 {
 WriteLine("Default implementation of Stop.");
 }
 }
}

6. In Terminal, compile the PeopleApp project by entering the following
command: dotnet build, and note the compiler errors, as shown in the
following output:
IPlayable.cs(12,10): error CS8370: Feature 'default interface
implementation' is not available in C# 7.3. Please use
language version 8.0 or greater.
[/Users/markjprice/Code/Chapter06/PacktLibrary/PacktLibrary.cs
proj]

IPlayable.cs(12,10): error CS8701: Target runtime doesn't
support default interface implementation.
[/Users/markjprice/Code/Chapter06/PacktLibrary/PacktLibrary.cs
proj]

More Information: You can read about the design decisions
around default interface implementations at the following link:
https://docs.microsoft.com/en-us/dotnet/csharp/
language-reference/proposals/csharp-8.0/default-
interface-methods

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/default-interface-methods
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/default-interface-methods
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/default-interface-methods
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/default-interface-methods

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[198]

7. Open PacktLibrary.csproj and modify the target framework to use .NET
Standard 2.1, as shown in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard2.1</TargetFramework>
 </PropertyGroup>

</Project>

8. In Terminal, compile the PeopleApp project by entering the following
command: dotnet build, and note the projects compile successfully.

Making types safely reusable with
generics
In 2005, with C# 2.0 and .NET Framework 2.0, Microsoft introduced a feature named
generics, which enables your types to be more safely reusable and more efficient. It
does this by allowing a programmer to pass types as parameters, similar to how you
can pass objects as parameters.

First, let's look at an example of a non-generic type, so that you can understand the
problem that generics is designed to solve.

1. In the PacktLibrary project, add a new class named Thing, as shown in the
following code, and note the following:

 ° Thing has an object field named Data.
 ° Thing has a method named Process that accepts an object input

parameter and returns a string value.

using System;

namespace Packt.Shared
{
 public class Thing
 {
 public object Data = default(object);

More Information: You can read a tutorial about updating
interfaces with default interface members at the following link:
https://docs.microsoft.com/en-us/dotnet/csharp/
tutorials/default-interface-members-versions

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/default-interface-members-versions
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/default-interface-members-versions
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/default-interface-members-versions

Implementing Interfaces and Inheriting Classes | 06

[199]

 public string Process(object input)
 {
 if (Data == input)
 {
 return "Data and input are the same.";
 }
 else
 {
 return "Data and input are NOT the same.";
 }
 }
 }
}

2. In the PeopleApp project, add some statements to the end of Main, as shown
in the following code:
var t1 = new Thing();
t1.Data = 42;
WriteLine($"Thing with an integer: {t1.Process(42)}");

var t2 = new Thing();
t2.Data = "apple";
WriteLine($"Thing with a string: {t2.Process("apple")}");

3. Run the application and view the result, as shown in the following output:

Thing with an integer: Data and input are NOT the same.

Thing with a string: Data and input are the same.

Thing is currently flexible, because any type can be set for the Data field and input
parameter. But there is no type checking, so inside the Process method we cannot
safely do much and the results are sometimes wrong; for example, when passing int
values into an object parameter!

Working with generic types
We can solve this problem using generics:

1. In the PacktLibrary project, add a new class named GenericThing, as
shown in the following code:
using System;

namespace Packt.Shared

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[200]

{
 public class GenericThing<T> where T : IComparable
 {
 public T Data = default(T);

 public string Process(T input)
 {
 if (Data.CompareTo(input) == 0)
 {
 return "Data and input are the same.";
 }
 else
 {
 return "Data and input are NOT the same.";
 }
 }
 }
}

Note the following:

 ° GenericThing has a generic type parameter named T, which
can be any type that implements IComparable, so it must have a
method named CompareTo that returns 0 if two objects are equal.
By convention, name the type parameter T if there is only one type
parameter.

 ° GenericThing has a T field named Data.
 ° GenericThing has a method named Process that accepts a T input

parameter, and returns a string value.

2. In the PeopleApp project, add some statements to the end of Main, as shown
in the following code:
var gt1 = new GenericThing<int>();
gt1.Data = 42;
WriteLine($"GenericThing with an integer:
{gt1.Process(42)}");

var gt2 = new GenericThing<string>();
gt2.Data = "apple";
WriteLine($"GenericThing with a string:
{gt2.Process("apple")}");

Implementing Interfaces and Inheriting Classes | 06

[201]

Note the following:

 ° When instantiating an instance of a generic type, the developer
must pass a type parameter. In this example, we pass int as the
type parameter for gt1 and string as the type parameter for gt2,
so wherever T appears in the GenericThing class, it is replaced with
int and string.

 ° When setting the Data field and passing the input parameter, the
compiler enforces the use of an int value, such as 42, for the gt1
variable, and a string value, such as "apples", for the gt2 variable.

3. Run the application, view the result, and note the logic of the Process
method correctly works for GenericThing for both int and string values,
as shown in the following output:

Thing with an integer: Data and input are NOT the same.

Thing with a string: Data and input are the same.

GenericThing with an integer: Data and input are the same.

GenericThing with a string: Data and input are the same.

Working with generic methods
Generics can be used for methods as well as types, even inside a non-generic type:

1. In PacktLibrary, add a new class named Squarer, with a generic method
named Square, as shown in the following code:
using System;
using System.Threading;

namespace Packt.Shared
{
 public static class Squarer
 {
 public static double Square<T>(T input)
 where T : IConvertible
 {
 // convert using the current culture
 double d = input.ToDouble(
 Thread.CurrentThread.CurrentCulture);

 return d * d;
 }
 }
}

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[202]

Note the following:

 ° The Squarer class is non-generic.

 ° The Square method is generic, and its type parameter T must
implement IConvertible, so the compiler will make sure that it has
a ToDouble method.

 ° T is used as the type for the input parameter.

 ° ToDouble requires a parameter that implements IFormatProvider to
understand the format of numbers for a language and region. We can
pass the CurrentCulture property of the current thread to specify
the language and region used by your computer. You will learn
about cultures in Chapter 8, Working with Common .NET Types.

 ° The return value is the input parameter multiplied by itself, that is,
squared.

2. In PeopleApp, in the Program class, at the bottom of the Main method, add
the following code. Note that when calling a generic method, you can specify
the type parameter to make it clearer, as shown in the first example, although
the compiler can work it out on its own, as shown in the second example:
string number1 = "4";
WriteLine("{0} squared is {1}",
 arg0: number1,
 arg1: Squarer.Square<string>(number1));

byte number2 = 3;
WriteLine("{0} squared is {1}",
 arg0: number2,
 arg1: Squarer.Square(number2));

3. Run the application and view the result, as shown in the following output:

4 squared is 16

3 squared is 9

Managing memory with reference and
value types
There are two categories of memory: stack memory and heap memory. With
modern operating systems, the stack and heap can be anywhere in physical or
virtual memory.

Implementing Interfaces and Inheriting Classes | 06

[203]

Stack memory is faster to work with (because it is managed directly by the CPU
and because it uses a first-in, first-out mechanism, it is more likely to have the data
in its L1 or L2 cache) but limited in size, while heap memory is slower but much
more plentiful. For example, on my macOS, in Terminal, I can enter the command:
ulimit -a to discover that stack size is limited to 8,192 KB and other memory is
"unlimited." This is why it is so easy to get a "stack overflow."

There are two C# keywords that you can use to create object types: class and
struct. Both can have the same members, such as fields and methods. The
difference between the two is how memory is allocated.

When you define a type using class, you are defining a reference type. This means
that the memory for the object itself is allocated on the heap, and only the memory
address of the object (and a little overhead) is stored on the stack.

When you define a type using struct, you are defining a value type. This means
that the memory for the object itself is allocated on the stack.

If a struct uses field types that are not of the struct type, then those fields will be
stored on the heap, meaning the data for that object is stored in both the stack and
the heap!

These are the most common struct types:

• Numbers: byte, sbyte, short, ushort, int, uint, long, ulong, float,
double, and decimal

• Miscellaneous: char and bool
• System.Drawing: Color, Point, and Rectangle

Almost all the other types are class types, including string.

Apart from the difference in where in memory the data for a type is stored, the other
major difference is that you cannot inherit from a struct.

Working with struct types
Let's explore working with value types:

1. Add a file named DisplacementVector.cs to the PacktLibrary project.

More Information: If you are interested in the technical details
of the internal memory layout of types in .NET, you can read
the article at the following link: https://adamsitnik.com/
Value-Types-vs-Reference-Types/

https://adamsitnik.com/Value-Types-vs-Reference-Types/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[204]

2. Modify the file, as shown in the following code, and note the following:
 ° The type is declared using struct instead of class.
 ° It has two int fields, named X and Y.
 ° It has a constructor for setting initial values for X and Y.
 ° It has an operator for adding two instances together that returns a

new instance of the type with X added to X, and Y added to Y.

namespace Packt.Shared
{
 public struct DisplacementVector
 {
 public int X;
 public int Y;

 public DisplacementVector(int initialX, int initialY)
 {
 X = initialX;
 Y = initialY;
 }

 public static DisplacementVector operator +(
 DisplacementVector vector1,
 DisplacementVector vector2)
 {
 return new DisplacementVector(
 vector1.X + vector2.X,
 vector1.Y + vector2.Y);
 }
 }
}

3. In the PeopleApp project, in the Program class, in the Main method, add
statements to create two new instances of DisplacementVector, add them
together, and output the result, as shown in the following code:
var dv1 = new DisplacementVector(3, 5);
var dv2 = new DisplacementVector(-2, 7);
var dv3 = dv1 + dv2;
WriteLine($"({dv1.X}, {dv1.Y}) + ({dv2.X}, {dv2.Y}) =
({dv3.X}, {dv3.Y})");

4. Run the application and view the result, as shown in the following output:

(3, 5) + (-2, 7) = (1, 12)

Implementing Interfaces and Inheriting Classes | 06

[205]

Releasing unmanaged resources
In the previous chapter, we saw that constructors can be used to initialize fields and
that a type may have multiple constructors. Imagine that a constructor allocates an
unmanaged resource; that is, anything that is not controlled by .NET, such as a file or
mutex under the control of the operating system. The unmanaged resource must be
manually released because .NET cannot do it for us.

For this topic, I will show some code examples, but you do not need to create them in
your current project.

Each type can have a single finalizer that will be called by the .NET runtime when
the resources need to be released. A finalizer has the same name as a constructor; that
is, the type name, but it is prefixed with a tilde, ~, as shown in the following code:

public class Animal
{
 public Animal()
 {
 // allocate any unmanaged resources
 }

 ~Animal() // Finalizer aka destructor
 {
 // deallocate any unmanaged resources
 }
}

Do not confuse a finalizer (also known as a destructor) with a deconstruct method.
A destructor releases resources; that is, it destroys an object. A deconstruct method
returns an object split up into its constituent parts and uses the C# deconstruction
syntax, for example, when working with tuples.

The preceding code example is the minimum you should do when working with
unmanaged resources. But the problem with only providing a finalizer is that the
.NET garbage collector requires two garbage collections to completely release the
allocated resources for this type.

Good Practice: If the total bytes used by all the fields in your type
is 16 bytes or less, your type only uses struct types for its fields,
and you will never want to derive from your type, then Microsoft
recommends that you use struct. If your type uses more than
16 bytes of stack memory, if it uses class types for its fields, or if you
might want to inherit from it, then use class.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[206]

Though optional, it is recommended to also provide a method to allow a developer
who uses your type to explicitly release resources so that the garbage collector can
release an unmanaged resource, such as a file, immediately and deterministically,
and then release the managed memory part of the object in a single collection.

There is a standard mechanism to do this by implementing the IDisposable
interface, as shown in the following example:

public class Animal : IDisposable
{
 public Animal()
 {
 // allocate unmanaged resource
 }

 ~Animal() // Finalizer
 {
 if (disposed) return;
 Dispose(false);
 }

 bool disposed = false; // have resources been released?

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (disposed) return;

 // deallocate the *unmanaged* resource
 // ...

 if (disposing)
 {
 // deallocate any other *managed* resources
 // ...
 }

 disposed = true;
 }
}

Implementing Interfaces and Inheriting Classes | 06

[207]

There are two Dispose methods, public and private:

• The public Dispose method will be called by a developer using your type.
When called, both unmanaged and managed resources need to be deallocated.

• The private Dispose method with a bool parameter is used internally to
implement the deallocation of resources. It needs to check the disposing
parameter and disposed flag because if the finalizer has already run, then
only unmanaged resources need to be deallocated.

The call to GC.SuppressFinalize(this) is what notifies the garbage collector that it
no longer needs to run the finalizer, and removes the need for a second collection.

Ensuring that Dispose is called
When someone uses a type that implements IDisposable, they can ensure that
the public Dispose method is called with the using statement, as shown in the
following code:

using (Animal a = new Animal())
{
 // code that uses the Animal instance
}

The compiler converts your code into something like the following, which
guarantees that even if an exception occurs, the Dispose method will still be called:

Animal a = new Animal();
try
{
 // code that uses the Animal instance
}
finally
{
 if (a != null) a.Dispose();
}

You will see practical examples of releasing unmanaged resources with
IDisposable, the using statements, and the try...finally blocks in Chapter 9,
Working with Files, Streams, and Serialization.

Inheriting from classes
The Person type we created earlier implicitly derived (inherited) from
System.Object. Now, we will create a class that inherits from Person:

1. Add a new class named Employee to the PacktLibrary project.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[208]

2. Modify its statements, as shown in the following code:
using System;

namespace Packt.Shared
{
 public class Employee : Person
 {
 }
}

3. Add statements to the Main method to create an instance of the Employee
class, as shown in the following code:
Employee john = new Employee
{
 Name = "John Jones",
 DateOfBirth = new DateTime(1990, 7, 28)
};
john.WriteToConsole();

4. Run the console application and view the result, as shown in the following
output:
John Jones was born on a Saturday

Note that the Employee class has inherited all the members of Person.

Extending classes
Now, we will add some employee-specific members to extend the class.

1. In the Employee class, add the following code to define two properties:
public string EmployeeCode { get; set; }
public DateTime HireDate { get; set; }

2. Back in the Main method, add statements to set John's employee code and
hire date, as shown in the following code:
john.EmployeeCode = "JJ001";
john.HireDate = new DateTime(2014, 11, 23);
WriteLine($"{john.Name} was hired on
{john.HireDate:dd/MM/yy}");

Implementing Interfaces and Inheriting Classes | 06

[209]

3. Run the console application and view the result, as shown in the following
output:

John Jones was hired on 23/11/14

Hiding members
So far, the WriteToConsole method is being inherited from Person, and it only
outputs the employee's name and date of birth. We might want to change what this
method does for an employee:

1. In the Employee class, add the following highlighted code to redefine the
WriteToConsole method:
using System;
using static System.Console;

namespace Packt.Shared
{
 public class Employee : Person
 {
 public string EmployeeCode { get; set; }

 public DateTime HireDate { get; set; }

 public void WriteToConsole()
 {
 WriteLine(format:
 "{0} was born on {1:dd/MM/yy} and hired on {2:dd/MM/yy}",
 arg0: Name,
 arg1: DateOfBirth,
 arg2: HireDate));
 }
 }
}

2. Run the application and view the result, as shown in the following output:

John Jones was born on 28/07/90 and hired on 01/01/01

John Jones was hired on 23/11/14

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[210]

The Visual Studio Code C# extension warns you that your method now hides the
method by drawing a squiggle under the method name, the PROBLEMS window
includes more details, and the compiler would output the warning when you build
and run the console application, as shown in the following screenshot:

As the warning describes, you can remove this by applying the new keyword to the
method, to indicate that you are deliberately replacing the old method, as shown
highlighted in the following code:

public new void WriteToConsole()

Overriding members
Rather than hiding a method, it is usually better to override it. You can only override
if the base class chooses to allow overriding, by applying the virtual keyword:

1. In the Main method, add a statement to write the value of the john variable
to the console as a string, as shown in the following code:
WriteLine(john.ToString());

2. Run the application and note that the ToString method is inherited from
System.Object so the implementation returns the namespace and type
name, as shown in the following output:
Packt.Shared.Employee

3. Override this behavior for the Person class by adding a ToString method
to output the name of the person as well as the type name, as shown in the
following code:
// overridden methods
public override string ToString()
{
 return $"{Name} is a {base.ToString()}";
}

Implementing Interfaces and Inheriting Classes | 06

[211]

The base keyword allows a subclass to access members of its super class; that
is, the base class that it inherits or derives from.

4. Run the application and view the result. Now, when the ToString
method is called, it outputs the person's name, as well as the base class's
implementation of ToString, as shown in the following output:

John Jones is a Packt.Shared.Employee

Preventing inheritance and overriding
You can prevent someone from inheriting from your class by applying the sealed
keyword to its definition. No one can inherit from Scrooge McDuck, as shown in the
following code:

public sealed class ScroogeMcDuck
{
}

An example of sealed in .NET Core is the string class. Microsoft has implemented
some extreme optimizations inside the string class that could be negatively affected
by your inheritance; so, Microsoft prevents that.

You can prevent someone from further overriding a virtual method in your class
by applying the sealed keyword to the method. No one can change the way Lady
Gaga sings, as shown in the following code:

using static System.Console;

namespace Packt.Shared
{
 public class Singer
 {
 // virtual allows this method to be overridden
 public virtual void Sing()
 {
 WriteLine("Singing...");
 }

Good Practice: Many real-world APIs, for example, Microsoft's
Entity Framework Core, Castle's DynamicProxy, and Episerver's
content models, require the properties that you define in your
classes to be marked as virtual so that they can be overridden.
Unless you have a good reason not to, mark your method and
property members as virtual.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[212]

 }

 public class LadyGaga : Singer
 {
 // sealed prevents overriding the method in subclasses
 public sealed override void Sing()
 {
 WriteLine("Singing with style...");
 }
 }
}

You can only seal an overridden method.

Understanding polymorphism
You have now seen two ways to change the behavior of an inherited method. We can
hide it using the new keyword (known as non-polymorphic inheritance), or we can
override it (known as polymorphic inheritance).

Both ways can access members of the base class by using the base keyword, so what
is the difference?

It all depends on the type of the variable holding a reference to the object. For
example, a variable of the Person type can hold a reference to a Person class, or any
type that derives from Person:

1. In the Employee class, add statements to override the ToString method
so it writes the employee's name and code to the console, as shown in the
following code:
public override string ToString()
{
 return $"{Name}'s code is {EmployeeCode}";
}

2. In the Main method, write statements to create a new employee named Alice,
store it in a variable of type Person, and call both variables' WriteToConsole
and ToString methods, as shown in the following code:
Employee aliceInEmployee = new Employee
 { Name = "Alice", EmployeeCode = "AA123" };

Person aliceInPerson = aliceInEmployee;

aliceInEmployee.WriteToConsole();

Implementing Interfaces and Inheriting Classes | 06

[213]

aliceInPerson.WriteToConsole();

WriteLine(aliceInEmployee.ToString());

WriteLine(aliceInPerson.ToString());

3. Run the application and view the result, as shown in the following output:

Alice was born on 01/01/01 and hired on 01/01/01

Alice was born on a Monday

Alice's code is AA123

Alice's code is AA123

When a method is hidden with new, the compiler is not smart enough to know that
the object is an Employee, so it calls the WriteToConsole method in Person.

When a method is overridden with virtual and override, the compiler is smart
enough to know that although the variable is declared as a Person class, the object
itself is an Employee class and, therefore, the Employee implementation of ToString
is called.

The access modifiers and the effect they have is summarized in the following table:

Variable type Access modifier Method executed In class

Person WriteToConsole Person

Employee new WriteToConsole Employee

Person virtual ToString Employee

Employee override ToString Employee

In my opinion, polymorphism is literally academic to most programmers. If you
get the concept, that's cool; but, if not, I suggest that you don't worry about it. Some
people like to make others feel inferior by saying understanding polymorphism is
important, but IMHO it's not. You can have a successful career with C# and never
need to be able to explain polymorphism, just as a racing car driver doesn't need to
be able to explain the engineering behind fuel injection.

Casting within inheritance hierarchies
Casting between types is subtly different from converting between types.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[214]

Implicit casting
In the previous example, you saw how an instance of a derived type can be stored in
a variable of its base type (or its base's base type, and so on). When we do this, it is
called implicit casting.

Explicit casting
Going the other way is an explicit cast, and you must use parentheses around the
type you want to cast into as a prefix to do it:

1. In the Main method, add a statement to assign the aliceInPerson variable to
a new Employee variable, as shown in the following code:
Employee explicitAlice = aliceInPerson;

2. Visual Studio Code displays a red squiggle and a compile error, as shown in
the following screenshot:

3. Change the statement to prefix the assigned variable named with a cast to the
Employee type, as shown in the following code:

Employee explicitAlice = (Employee)aliceInPerson;

Avoiding casting exceptions
The compiler is now happy; but, because aliceInPerson might be a different
derived type, like Student instead of Employee, we need to be careful. In a real
application with more complex code, the current value of this variable could
have been set to a Student instance and then this statement would throw an
InvalidCastException error.

We can handle this by writing a try statement, but there is a better way. We can
check the type of an object using the is keyword:

Implementing Interfaces and Inheriting Classes | 06

[215]

1. Wrap the explicit cast statement in an if statement, as shown in the
following code:
if (aliceInPerson is Employee)
{
 WriteLine($"{nameof(aliceInPerson)} IS an Employee");

 Employee explicitAlice = (Employee)aliceInPerson;
 // safely do something with explicitAlice
}

2. Run the application and view the result, as shown in the following output:
aliceInPerson IS an Employee

Alternatively, you can use the as keyword to cast. Instead of throwing an
exception, the as keyword returns null if the type cannot be cast.

3. Add the following statements to the end of the Main method:
Employee aliceAsEmployee = aliceInPerson as Employee;

if (aliceAsEmployee != null)
{
 WriteLine($"{nameof(aliceInPerson)} AS an Employee");
 // do something with aliceAsEmployee
}

Since accessing a null variable can throw a NullReferenceException error,
you should always check for null before using the result.

4. Run the application and view the result, as shown in the following output:

aliceInPerson AS an Employee

Inheriting and extending .NET types
.NET has prebuilt class libraries containing hundreds of thousands of types. Rather
than creating your own completely new types, you can often get a head start by
deriving from one of Microsoft's types to inherit some or all of its behavior and then
overriding or extending it.

Good Practice: Use the is and as keywords to avoid throwing
exceptions when casting between derived types. If you
don't do this, you must write try...catch statements for
InvalidCastException.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[216]

Inheriting exceptions
As an example of inheritance, we will derive a new type of exception:

1. In the PacktLibrary project, add a new class named PersonException, with
three constructors, as shown in the following code:
using System;

namespace Packt.Shared
{
 public class PersonException : Exception
 {
 public PersonException() : base() { }

 public PersonException(string message) : base(message) { }

 public PersonException(
 string message, Exception innerException)
 : base(message, innerException) { }
 }
}

Unlike ordinary methods, constructors are not inherited, so we must
explicitly declare and explicitly call the base constructor implementations in
System.Exception to make them available to programmers who might want
to use those constructors with our custom exception.

2. In the Person class, add statements to define a method that throws an
exception if a date/time parameter is earlier than a person's date of birth, as
shown in the following code:
public void TimeTravel(DateTime when)
{
 if (when <= DateOfBirth)
 {
 throw new PersonException("If you travel back in time to
a date earlier than your own birth, then the universe will
explode!");
 }
 else
 {
 WriteLine($"Welcome to {when:yyyy}!");
 }
}

Implementing Interfaces and Inheriting Classes | 06

[217]

3. In the Main method, add statements to test what happens when employee
John Jones tries to time travel too far back, as shown in the following code:
try
{
 e1.TimeTravel(new DateTime(1999, 12, 31));
 e1.TimeTravel(new DateTime(1950, 12, 25));
}
catch (PersonException ex)
{
 WriteLine(ex.Message);
}

4. Run the application and view the result, as shown in the following output:

Welcome to 1999!

If you travel back in time to a date earlier than your own
birth, then the universe will explode!

Extending types when you can't inherit
Earlier, we saw how the sealed modifier can be used to prevent inheritance.

Microsoft has applied the sealed keyword to the System.String class so that no
one can inherit and potentially break the behavior of strings.

Can we still add new methods to strings? Yes, if we use a language feature named
extension methods, which was introduced with C# 3.0.

Using static methods to reuse functionality
Since the first version of C#, we've been able to create static methods to reuse
functionality, such as the ability to validate that a string contains an email address.
This implementation will use a regular expression that you will learn more about in
Chapter 8, Working with Common .NET Types:

1. In the PacktLibrary project, add a new class named StringExtensions, as
shown in the following code, and note the following:

 ° The class imports a namespace for handling regular expressions.

Good Practice: When defining your own exceptions, give them the
same three constructors that explicitly call the built-in ones.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[218]

 ° The IsValidEmail static method uses the Regex type to check for
matches against a simple email pattern that looks for valid characters
before and after the @ symbol.

using System.Text.RegularExpressions;

namespace Packt.Shared
{
 public class StringExtensions
 {
 public static bool IsValidEmail(string input)
 {
 // use simple regular expression to check
 // that the input string is a valid email
 return Regex.IsMatch(input,
@"[a-zA-Z0-9\.-_]+@[a-zA-Z0-9\.-_]+");
 }
 }
}

2. Add statements to the bottom of the Main method to validate two examples
of email addresses, as shown in the following code:
string email1 = "pamela@test.com";
string email2 = "ian&test.com";

WriteLine(
 "{0} is a valid e-mail address: {1}",
 arg0: email1,
 arg1: StringExtensions.IsValidEmail(email1));

WriteLine(
 "{0} is a valid e-mail address: {1}",
 arg0: email2,
 arg1: StringExtensions.IsValidEmail(email2));

3. Run the application and view the result, as shown in the following output:

pamela@test.com is a valid e-mail address: True

ian&test.com is a valid e-mail address: False

This works, but extension methods can reduce the amount of code we must type and
simplify the usage of this function.

Implementing Interfaces and Inheriting Classes | 06

[219]

Using extension methods to reuse functionality
It is easy to make static methods into extension methods for their usage:

1. In the StringExtensions class, add the static modifier before the class,
and add the this modifier before the string type, as highlighted in the
following code:
public static class StringExtensions
{
 public static bool IsValidEmail(this string input)
 {

These two changes tell the compiler that it should treat the method as one
that extends the string type.

2. Back in the Program class, add some new statements to use the extension
method for string values:
WriteLine(
 "{0} is a valid e-mail address: {1}",
 arg0: email1,
 arg1: email1.IsValidEmail());

WriteLine(
 "{0} is a valid e-mail address: {1}",
 arg0: email2,
 arg1: email2.IsValidEmail());

Note the subtle simplification in the syntax. The older, longer syntax still
works too.

3. The IsValidEmail extension method now appears to be an instance
method just like all the actual instance methods of the string type, such as
IsNormalized and Insert, as shown in the following screenshot:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[220]

Extension methods cannot replace or override existing instance methods, so you
cannot, for example, redefine the Insert method. The extension method will appear
as an overload in IntelliSense, but an instance method will be called in preference to
an extension method with the same name and signature.

Although extension methods might not seem to give a big benefit, in Chapter 12,
Querying and Manipulating Data Using LINQ, you will see some extremely powerful
uses of extension methods.

Practicing and exploring
Test your knowledge and understanding by answering some questions. Get some
hands-on practice and explore with deeper research into this chapter's topics.

Exercise 6.1 – Test your knowledge
Answer the following questions:

1. What is a delegate?
2. What is an event?
3. How are a base class and a derived class related?
4. What is the difference between is and as operators?
5. Which keyword is used to prevent a class from being derived from,

or a method from being further overridden?
6. Which keyword is used to prevent a class from being instantiated with the

new keyword?
7. Which keyword is used to allow a member to be overridden?
8. What's the difference between a destructor and a deconstruct method?
9. What are the signatures of the constructors that all exceptions should

have?
10. What is an extension method and how do you define one?

Exercise 6.2 – Practice creating an inheritance
hierarchy
Explore inheritance hierarchies by following these steps:

1. Add a new console application named Exercise02 to your workspace.

Implementing Interfaces and Inheriting Classes | 06

[221]

2. Create a class named Shape with properties named Height, Width, and Area.
3. Add three classes that derive from it—Rectangle, Square, and

Circle—with any additional members you feel are appropriate and that
override and implement the Area property correctly.

4. In Program.cs, in the Main method, add statements to create one
instance of each shape, as shown in the following code:
var r = new Rectangle(3, 4.5);
WriteLine($"Rectangle H: {r.Height}, W: {r.Width}, Area:
{r.Area}");

var s = new Square(5);
WriteLine($"Square H: {s.Height}, W: {s.Width}, Area:
{s.Area}");

var c = new Circle(2.5);
WriteLine($"Circle H: {c.Height}, W: {c.Width}, Area:
{c.Area}");

5. Run the console application and ensure that the result looks like the
following output:

Rectangle H: 3, W: 4.5, Area: 13.5

Square H: 5, W: 5, Area: 25

Circle H: 5, W: 5, Area: 19.6349540849362

Exercise 6.3 – Explore topics
Use the following links to read more about the topics covered in this chapter:

• Operator (C# reference): https://docs.microsoft.com/en-us/dotnet/
articles/csharp/language-reference/keywords/operator

• Delegates: https://docs.microsoft.com/en-us/dotnet/articles/
csharp/tour-of-csharp/delegates

• Events (C# programming guide): https://docs.microsoft.com/en-us/
dotnet/articles/csharp/language-reference/keywords/event

• Interfaces: https://docs.microsoft.com/en-us/dotnet/articles/
csharp/tour-of-csharp/interfaces

• Generics (C# Programming Guide): https://docs.microsoft.com/en-
us/dotnet/csharp/programming-guide/generics

• Reference Types (C# Reference): https://docs.microsoft.com/en-us/
dotnet/articles/csharp/language-reference/keywords/reference-
types

https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/operator
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/operator
https://docs.microsoft.com/en-us/dotnet/articles/csharp/tour-of-csharp/delegates
https://docs.microsoft.com/en-us/dotnet/articles/csharp/tour-of-csharp/delegates
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/event
https://docs.microsoft.com/en-us/dotnet/articles/csharp/tour-of-csharp/interfaces
https://docs.microsoft.com/en-us/dotnet/articles/csharp/tour-of-csharp/interfaces
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/reference-types
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/reference-types
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/reference-types

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[222]

• Value Types (C# Reference): https://docs.microsoft.com/en-us/
dotnet/articles/csharp/language-reference/keywords/value-types

• Inheritance (C# Programming Guide): https://docs.microsoft.com/
en-us/dotnet/articles/csharp/programming-guide/classes-and-
structs/inheritance

• Finalizers (C# Programming Guide): https://docs.microsoft.com/
en-us/dotnet/articles/csharp/programming-guide/classes-and-
structs/destructors

Summary
In this chapter, you learned about local functions and operators, delegates and
events, implementing interfaces, generics, and deriving types using inheritance
and OOP. You also learned about base and derived classes, how to override a type
member, use polymorphism, and cast between types.

In the next chapter, you will learn about .NET Core 3.0 and .NET Standard 2.1, and
the types that they provide you with to implement common functionality such as file
handling, database access, encryption, and multitasking.

https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/destructors

[223]

Chapter 07
Understanding and

Packaging .NET Types
This chapter is about how .NET Core implements the types that are defined in
the .NET Standard. Over the course of this chapter, you'll learn how C# keywords
are related to .NET types, and about the relationship between namespaces and
assemblies. You'll also become familiar with how to package and publish your .NET
Core apps and libraries for use cross-platform, how to use existing .NET Framework
libraries in .NET Standard libraries, and the possibility of porting .NET Framework
code bases to .NET Core.

This chapter covers the following topics:

• Introducing .NET Core 3.0
• Understanding .NET Core components
• Publishing your applications for deployment
• Decompiling assemblies
• Packaging your libraries for NuGet distribution
• Porting from .NET Framework to .NET Core

Introducing .NET Core 3.0
This part of the book is about the functionality in the APIs provided by .NET Core
3.0, and how to reuse functionality across all the different .NET platforms using
.NET Standard. .NET Core 2.0 and later's support for a minimum of .NET Standard
2.0 is important because it provides many of the APIs that were missing from the
first version of .NET Core. The 15 years' worth of libraries and applications that
.NET Framework developers had available to them that are relevant for modern
development have now been migrated to .NET Core and can run cross-platform
on macOS and Linux variants, as well as on Windows. For example, API support
increased by 142% from .NET Core 1.1 to .NET Core 2.0.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[224]

.NET Standard 2.1 adds about 3,000 new APIs. Some of those APIs need runtime
changes that would break backwards compatibility, so .NET Framework 4.8 only
implements .NET Standard 2.0. .NET Core 3.0, Xamarin, Mono, and Unity implement
.NET Standard 2.1.

To summarize the progress that .NET Core has made over the past three years I have
compared the major .NET Core versions with the equivalent .NET Framework
versions in the following list:

• .NET Core 1.0: much smaller API compared to .NET Framework 4.6.1, which
was the current version in March 2016.

• .NET Core 2.0: reached API parity with .NET Framework 4.7.1 for modern
APIs because they both implement .NET Standard 2.0.

• .NET Core 3.0: larger API compared to .NET Framework for modern
APIs because .NET Framework 4.8 does not implement .NET Standard 2.1.

.NET Core 1.0

.NET Core 1.0 was released in June 2016 and focused on implementing an API
suitable for building modern cross-platform apps, including web and cloud
applications and services for Linux using ASP.NET Core.

.NET Core 1.1

.NET Core 1.1 was released in November 2016 and focused on fixing bugs, increasing
the number of Linux distributions supported, supporting .NET Standard 1.6, and
improving performance, especially with ASP.NET Core for web apps and services.

More Information: The full list of .NET Standard 2.1 APIs and
a comparison with .NET Standard 2.0 are documented at the
following link: https://github.com/dotnet/standard/
blob/master/docs/versions/netstandard2.1.md

More Information: You can search and browse all .NET APIs at
the following link: https://docs.microsoft.com/en-us/
dotnet/api/

More Information: You can read the .NET Core 1.0 announcement
at the following link: https://blogs.msdn.microsoft.com/
dotnet/2016/06/27/announcing-net-core-1-0/

https://github.com/dotnet/standard/blob/master/docs/versions/netstandard2.1.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard2.1.md
https://docs.microsoft.com/en-us/dotnet/api/
https://docs.microsoft.com/en-us/dotnet/api/
https://blogs.msdn.microsoft.com/dotnet/2016/06/27/announcing-net-core-1-0/
https://blogs.msdn.microsoft.com/dotnet/2016/06/27/announcing-net-core-1-0/

Understanding and Packaging .NET Types | 07

[225]

.NET Core 2.0

.NET Core 2.0 was released in August 2017 and focused on implementing

.NET Standard 2.0, the ability to reference .NET Framework libraries, and more
performance improvements. .NET Core for UWP apps was released with Windows
10 Fall Creators Update in October 2017.

The third edition of this book was published in November 2017, so it covered up to
.NET Core 2.0 and .NET Core for UWP apps. This fourth edition covers some of the
new APIs added in later versions up to .NET Core 3.0.

.NET Core 2.1

.NET Core 2.1 was released in May 2018 and focused on an extendable tooling
system, adding new types like Span<T>, new APIs for cryptography and
compression, a Windows Compatibility Pack with an additional 20,000 APIs to
help port old Windows applications, Entity Framework Core value conversions,
LINQ GroupBy conversions, data seeding, query types, and even more performance
improvements, including the topics listed in the following table:

Feature Chapter Topic

Spans, indexes, ranges 8 Working with spans, indexes, and ranges

Brotli compression 9 Compressing with the Brotli algorithm

Cryptography 10 What's new in cryptography?

Lazy loading 11 Enabling lazy loading

Data seeding 11 Understanding data seeding

More Information: You can read the .NET Core 1.1
announcement at the following link: https://blogs.msdn.
microsoft.com/dotnet/2016/11/16/announcing-net-
core-1-1/

More Information: You can read the .NET Core 2.0
announcement at the following link: https://blogs.msdn.
microsoft.com/dotnet/2017/08/14/announcing-net-
core-2-0/

https://blogs.msdn.microsoft.com/dotnet/2016/11/16/announcing-net-core-1-1/
https://blogs.msdn.microsoft.com/dotnet/2016/11/16/announcing-net-core-1-1/
https://blogs.msdn.microsoft.com/dotnet/2017/08/14/announcing-net-core-2-0/
https://blogs.msdn.microsoft.com/dotnet/2017/08/14/announcing-net-core-2-0/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[226]

.NET Core 2.2

.NET Core 2.2 was released in December 2018 and focused on diagnostic improvements
for the runtime, optional tiered compilation, and adding new features to ASP.NET
Core and Entity Framework Core like spatial data support using types from the
NetTopologySuite (NTS) library, query tags, and collections of owned entities.

.NET Core 3.0

.NET Core 3.0 was released in September 2019 and focused on adding support for
building Windows desktop applications using Windows Forms (2001), Windows
Presentation Foundation (WPF; 2006), and Entity Framework 6.3, side-by-side
and app-local deployments, a fast JSON reader, serial port access and other PIN
access for Internet of Things (IoT) solutions, and tiered compilation on by default,
including the topics listed in the following table:

Feature Chapter Topic

Embedding .NET Core in app 7 Publishing your applications for deployment
Index and Range 8 Working with spans, indexes, and ranges
System.Text.Json 9 High-performance JSON processing
Async streams 13 Working with async streams

More Information: You can read the .NET Core 2.1
announcement at the following link: https://blogs.msdn.
microsoft.com/dotnet/2018/05/30/announcing-net-
core-2-1/

More Information: You can read the .NET Core 2.2
announcement at the following link: https://blogs.msdn.
microsoft.com/dotnet/2018/12/04/announcing-net-
core-2-2/

More Information: You can read the .NET Core 3.0
announcement at the following link: https://devblogs.
microsoft.com/dotnet/announcing-net-core-3-0/

https://blogs.msdn.microsoft.com/dotnet/2018/05/30/announcing-net-core-2-1/
https://blogs.msdn.microsoft.com/dotnet/2018/05/30/announcing-net-core-2-1/
https://blogs.msdn.microsoft.com/dotnet/2018/05/30/announcing-net-core-2-1/
https://blogs.msdn.microsoft.com/dotnet/2018/12/04/announcing-net-core-2-2/
https://blogs.msdn.microsoft.com/dotnet/2018/12/04/announcing-net-core-2-2/
https://blogs.msdn.microsoft.com/dotnet/2018/12/04/announcing-net-core-2-2/
https://devblogs.microsoft.com/dotnet/announcing-net-core-3-0/
https://devblogs.microsoft.com/dotnet/announcing-net-core-3-0/

Understanding and Packaging .NET Types | 07

[227]

Understanding .NET Core components
.NET Core is made up of several pieces, which are as follows:

• Language compilers: These turn your source code written with languages
such as C#, F#, and Visual Basic into intermediate language (IL) code stored
in assemblies. With C# 6.0 and later, Microsoft switched to an open source
rewritten compiler known as Roslyn that is also used by Visual Basic. You
can read more about Roslyn at the following link: https://github.com/
dotnet/roslyn

• Common Language Runtime (CoreCLR): This runtime loads assemblies,
compiles the IL code stored in them into native code instructions for your
computer's CPU, and executes the code within an environment that manages
resources such as threads and memory.

• Base Class Libraries (BCL) of assemblies in NuGet packages (CoreFX):
These are prebuilt assemblies of types packaged and distributed using NuGet
for performing common tasks when building applications.

• You can use them to quickly build anything you want rather like combining
LEGO™ pieces. .NET Core 2.0 implemented .NET Standard 2.0, which is a
superset of all previous versions of .NET Standard, and lifted .NET Core up
to parity with .NET Framework and Xamarin. .NET Core 3.0 implements
.NET Standard 2.1, which adds new capabilities and enables performance
improvements beyond those available in .NET Framework.

Understanding assemblies, packages, and
namespaces
An assembly is where a type is stored in the filesystem. Assemblies are a mechanism
for deploying code. For example, the System.Data.dll assembly contains types for
managing data. To use types in other assemblies, they must be referenced.

Assemblies are often distributed as NuGet packages, which can contain multiple
assemblies and other resources. You will also hear about metapackages and
platforms, which are combinations of NuGet packages.

More Information: You can read the announcement of .NET
Standard 2.1 at the following link: https://blogs.msdn.
microsoft.com/dotnet/2018/11/05/announcing-net-
standard-2-1/

https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://blogs.msdn.microsoft.com/dotnet/2018/11/05/announcing-net-standard-2-1/
https://blogs.msdn.microsoft.com/dotnet/2018/11/05/announcing-net-standard-2-1/
https://blogs.msdn.microsoft.com/dotnet/2018/11/05/announcing-net-standard-2-1/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[228]

A namespace is the address of a type. Namespaces are a mechanism to uniquely
identify a type by requiring a full address rather than just a short name. In the real
world, Bob of 34 Sycamore Street is different from Bob of 12 Willow Drive.

In .NET, the IActionFilter interface of the System.Web.Mvc namespace is different
from the IActionFilter interface of the System.Web.Http.Filters namespace.

Understanding dependent assemblies
If an assembly is compiled as a class library and provides types for other assemblies
to use, then it has the file extension .dll (dynamic link library), and it cannot be
executed standalone.

Likewise, if an assembly is compiled as an application, then it has the file extension
.exe (executable) and can be executed standalone. Before .NET Core 3.0, console
apps were compiled to .dll files and had to be executed by the dotnet run
command or a host executable.

Any assembly can reference one or more class library assemblies as dependencies,
but you cannot have circular references. So, assembly B cannot reference assembly
A, if assembly A already references assembly B. The compiler will warn you if you
attempt to add a dependency reference that would cause a circular reference.

Understanding the Microsoft .NET Core App
platform
By default, console applications have a dependency reference on the Microsoft .NET
Core App platform. This platform contains thousands of types in NuGet packages
that almost all applications would need, such as the int and string types.

When using .NET Core, you reference the dependency assemblies, NuGet packages,
and platforms that your application needs in a project file.

Let's explore the relationship between assemblies and namespaces.

1. In Visual Studio Code, create a folder named Chapter07 with a subfolder
named AssembliesAndNamespaces, and enter dotnet new console to
create a console application.

Good Practice: Circular references are often a warning sign of poor
code design. If you are sure that you need a circular reference,
then use an interface to solve it, as explained in the Stack Overflow
answer at the following link: https://stackoverflow.com/
questions/6928387/how-to-solve-circular-reference

https://stackoverflow.com/questions/6928387/how-to-solve-circular-reference
https://stackoverflow.com/questions/6928387/how-to-solve-circular-reference

Understanding and Packaging .NET Types | 07

[229]

2. Save the current workspace as Chapter07 in the Chapter07 folder and add
the AssembliesAndNamespaces folder to the workspace.

3. Open AssembliesAndNamespaces.csproj, and note that it is a typical
project file for a .NET Core application, as shown in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>netcoreapp3.0</TargetFramework>

 </PropertyGroup>

</Project>

Although it is possible to include the assemblies that your application uses with its
deployment package, by default the project will probe for shared assemblies installed
in well-known paths.

First, it will look for the specified version of .NET Core in the current user's
.dotnet/store and .nuget folders, and then it looks in a fallback folder that
depends on your OS, as shown in the following root paths:

• Windows: C:\Program Files\dotnet\sdk
• macOS: /usr/local/share/dotnet/sdk

Most common .NET Core types are in the System.Runtime.dll assembly. You
can see the relationship between some assemblies and the namespaces that they
supply types for, and note that there is not always a one-to-one mapping between
assemblies and namespaces, as shown in the following table:

Assembly Example namespaces Example types

System.Runtime.dll System, System.Collections,
System.Collections.Generic

Int32, String,
IEnumerable<T>

System.Console.dll System Console

System.Threading.dll System.Threading Interlocked,
Monitor, Mutex

System.Xml.
XDocument.dll

System.Xml.Linq XDocument,
XElement, XNode

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[230]

Understanding NuGet packages
.NET Core is split into a set of packages, distributed using a Microsoft-supported
package management technology named NuGet. Each of these packages represents
a single assembly of the same name. For example, the System.Collections package
contains the System.Collections.dll assembly.

The following are the benefits of packages:

• Packages can ship on their own schedule.
• Packages can be tested independently of other packages.
• Packages can support different OSes and CPUs by including multiple

versions of the same assembly built for different OSes and CPUs.
• Packages can have dependencies specific to only one library.
• Apps are smaller because unreferenced packages aren't part of the

distribution.

The following table lists some of the more important packages and their important
types:

Package Important types

System.Runtime Object, String, Int32, Array

System.Collections List<T>, Dictionary<TKey, TValue>

System.Net.Http HttpClient, HttpResponseMessage

System.IO.FileSystem File, Directory

System.Reflection Assembly, TypeInfo, MethodInfo

Understanding frameworks
There is a two-way relationship between frameworks and packages. Packages define
the APIs, while frameworks group packages. A framework without any packages
would not define any APIs.

More Information: If you have a strong understanding of
interfaces and types that implement them, you might find the
following URL useful for grasping how packages, and their
APIs, relate to frameworks such as the various .NET Standard
versions: https://gist.github.com/davidfowl/8939f3055
67e1755412d6dc0b8baf1b7

https://gist.github.com/davidfowl/8939f305567e1755412d6dc0b8baf1b7
https://gist.github.com/davidfowl/8939f305567e1755412d6dc0b8baf1b7

Understanding and Packaging .NET Types | 07

[231]

.NET packages each support a set of frameworks. For example, the
System.IO.FileSystem package version 4.3.0 supports the following frameworks:

• .NET Standard, version 1.3 or later.
• .NET Framework, version 4.6 or later.
• Six Mono and Xamarin platforms (for example, Xamarin.iOS 1.0).

Importing a namespace to use a type
Let's explore how namespaces are related to assemblies and types.

1. In the AssembliesAndNamespaces project, in the Main method, enter the
following code:
var doc = new XDocument();

The XDocument type is not recognized because we have not told the compiler
what the namespace of the type is. Although this project already has a
reference to the assembly that contains the type, we also need to either prefix
the type name with its namespace or to import the namespace.

2. Click inside the XDocument class name. Visual Studio Code displays a light
bulb, showing that it recognizes the type and can automatically fix the
problem for you.

3. Click the light bulb, or in Windows, press Ctrl + . (dot), or in macOS, press
Cmd + . (dot).

4. Select using System.Xml.Linq; from the menu.

This will import the namespace by adding a using statement to the top of the file.
Once a namespace is imported at the top of a code file, then all the types within the
namespace are available for use in that code file by just typing their name without
the type name needing to be fully qualified by prefixing with its namespace.

Relating C# keywords to .NET types
One of the common questions I get from new C# programmers is, What is the
difference between string with a lowercase and String with an uppercase?

The short answer is easy: none. The long answer is that all C# type keywords
are aliases for a .NET type in a class library assembly.

More Information: You can read the details at the following
link: https://www.nuget.org/packages/System.
IO.FileSystem/

https://www.nuget.org/packages/System.IO.FileSystem/
https://www.nuget.org/packages/System.IO.FileSystem/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[232]

When you use the string keyword, the compiler turns it into a System.String
type. When you use the int type, the compiler turns it into a System.Int32 type.

1. In the Main method, declare two variables to hold string values, one using
lowercase and one using uppercase, as shown in the following code:
string s1 = "Hello";
String s2 = "World";

At the moment, they both work equally well, and literally mean the same
thing.

2. At the top of the class file, comment out the using System; statement by
prefixing the statement with //, and note the compiler error.

3. Remove the comment slashes to fix the error.

The following table shows the 16 C# type keywords along with their actual
.NET types:

Keyword .NET type Keyword .NET type

string System.String char System.Char

sbyte System.SByte byte System.Byte

short System.Int16 ushort System.UInt16

int System.Int32 uint System.UInt32

long System.Int64 ulong System.UInt64

float System.Single double System.Double

decimal System.Decimal bool System.Boolean

object System.Object dynamic System.Dynamic.DynamicObject

Other .NET programming language compilers can do the same thing. For
example, the Visual Basic .NET language has a type named Integer that is
its alias for System.Int32.

4. Right-click inside XDocument and choose Go to Definition or press F12.
5. Navigate to the top of the code file and note the assembly filename is

System.Xml.XDocument.dll but the class is in the System.Xml.Linq
namespace, as shown in the following screenshot:

Good Practice: When you have a choice, use the C# keyword
instead of the actual type because the keywords do not need the
namespace imported.

Understanding and Packaging .NET Types | 07

[233]

6. Close the [metadata] XDocument.cs tab.
7. Right-click inside string or String and choose Go to Definition or

press F12.
8. Navigate to the top of the code file and note the assembly filename is

System.Runtime.dll but the class is in the System namespace.

Sharing code cross-platform with .NET
Standard class libraries
Before .NET Standard, there were Portable Class Libraries (PCLs). With PCLs, you
could create a library of code and explicitly specify which platforms you want the
library to support, such as Xamarin, Silverlight, and Windows 8. Your library could
then use the intersection of APIs that are supported by the specified platforms.

Microsoft realized that this is unsustainable, so they created .NET Standard—a single
API that all future .NET platforms will support. There are older versions of .NET
Standard, but only .NET Standard 2.0 and later is supported by multiple .NET
platforms. For the rest of this book I will use the term .NET Standard to mean .NET
Standard 2.0 or later.

.NET Standard is similar to HTML5 in that they are both standards that a platform
should support. Just as Google's Chrome browser and Microsoft's Edge browser
implement the HTML5 standard, so .NET Core, .NET Framework, and Xamarin all
implement .NET Standard. If you want to create a library of types that will work
across variants of .NET, you can do so most easily with .NET Standard.

Your choice of which .NET Standard version to target comes down to a balance
between maximizing platform support or available functionality. A lower version
supports more platforms but has a smaller set of APIs. A higher version supports
fewer platforms but has a larger set of APIs. Generally, you should choose the lowest
version that supports all the APIs that you need.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[234]

The versions of .NET Standard and which platforms they support are summarized in
the following table:

Platform 1.1 1.2 1.3 1.4 1.5 1.6 2.0 2.1

.NET Core → → → → → 1.0, 1.1 2.0 3.0

.NET Framework 4.5 4.5.1 4.6 → → → 4.6.1 n/a

Mono → → → → → 4.6 5.4 6.2

Xamarin.iOS → → → → → 10.0 10.14 12.12

UWP → → → 10 → → 10.0.16299 n/a

We will create a class library using .NET Standard 2.0 so that it can be used across
all important .NET platforms and cross-platform on Windows, macOS, and Linux
operating systems while also having access to a wide set of .NET APIs.

1. In the Code/Chapter07 folder, create a subfolder named SharedLibrary.
2. In Visual Studio Code, add the SharedLibrary folder to the Chapter07

workspace.
3. Navigate to Terminal | New Terminal and select SharedLibrary.
4. In Terminal, enter the following command:

dotnet new classlib

5. Click on SharedLibrary.csproj and note that a class library generated
by the dotnet CLI targets .NET Standard 2.0 by default, as shown in the
following markup:

More Information: An online tool for visualizing which
platforms support which version of .NET Standard can be
found at the following link: http://immo.landwerth.net/
netstandard-versions/

Good Practice: Since many of the API additions in .NET Standard
2.1 require runtime changes, and .NET Framework is Microsoft's
legacy platform that needs to remain as unchanging as possible,
.NET Framework 4.8 will remain on .NET Standard 2.0 rather
than implement .NET Standard 2.1. If you need to support .NET
Framework customers, then you should create class libraries on
.NET Standard 2.0 even though it is not the latest and does not
support all the new features in C# 8.0 and .NET Core 3.0.

http://immo.landwerth.net/netstandard-versions/
http://immo.landwerth.net/netstandard-versions/

Understanding and Packaging .NET Types | 07

[235]

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 </PropertyGroup>

</Project>

Publishing your applications for
deployment
There are three ways to publish and deploy a .NET Core application. They are:

• Framework-dependent deployment (FDD).
• Framework-dependent executables (FDEs).
• Self-contained.

If you choose to deploy your application and its package dependencies, but not .NET
Core itself, then you rely on .NET Core already being on the target computer. This
works well for web applications deployed to a server because .NET Core and lots of
other web applications are likely already on the server.

Sometimes, you want to be able to give someone a USB stick containing your
application and know that it can execute on their computer. You want to perform
a self-contained deployment. While the size of the deployment files will be larger,
you'll know that it will work.

Creating a console application to publish
Let's explore how to publish a console application.

1. Create a new console application project named DotNetCoreEverywhere and
add it to the Chapter07 workspace.

2. In Program.cs, add a statement to output a message saying the console app
can run everywhere, as shown in the following code:
using static System.Console;

Good Practice: If you need to create a type that uses new features in
.NET Standard 2.1 then create separate class libraries: one targeting
.NET Standard 2.0 and one targeting .NET Standard 2.1. You will
see this in action in Chapter 11, Working with Databases Using Entity
Framework Core.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[236]

namespace DotNetCoreEverywhere
{
 class Program
 {
 static void Main(string[] args)
 {
 WriteLine("I can run everywhere!");
 }
 }
}

3. Open DotNetCoreEverywhere.csproj and add the runtime identifiers to
target three operating systems inside the <PropertyGroup> element, as
shown in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 <RuntimeIdentifiers>
 win10-x64;osx-x64;rhel.7.4-x64
 </RuntimeIdentifiers>
 </PropertyGroup>

</Project>

• The win10-x64 RID value means Windows 10 or Windows Server 2016.
• The osx-x64 RID value means macOS Sierra 10.12 or later.
• The rhel.7.4-x64 RID value means Red Hat Enterprise Linux (RHEL) 7.4

or later.

Understanding dotnet commands
When you install .NET Core SDK, it includes the command-line interface (CLI)
named dotnet.

Creating new projects
The dotnet CLI has commands that work on the current folder to create a new
project using templates.

More Information: You can find the currently supported
Runtime IDentifier (RID) values at the following link:
https://docs.microsoft.com/en-us/dotnet/articles/
core/rid-catalog

https://docs.microsoft.com/en-us/dotnet/articles/core/rid-catalog
https://docs.microsoft.com/en-us/dotnet/articles/core/rid-catalog

Understanding and Packaging .NET Types | 07

[237]

You can install additional templates from the following link:

https://dotnetnew.azurewebsites.net/

4. In Visual Studio Code, navigate to Terminal.
5. Enter the dotnet new -l command to list your currently installed templates,

as shown in the following screenshot:

Managing projects
The dotnet CLI has the following commands that work on the project in the current
folder, to manage the project:

• dotnet restore: This downloads dependencies for the project.
• dotnet build: This compiles the project.
• dotnet test: This runs unit tests on the project.
• dotnet run: This runs the project.
• dotnet pack: This creates a NuGet package for the project.
• dotnet publish: This compiles and then publishes the project, either with

dependencies or as a self-contained application.
• add: This adds a reference to a package or class library to the project.

More Information: You can define your own project templates,
as explained in the official documentation for the dotnet new
command at the following link: https://docs.microsoft.
com/en-us/dotnet/core/tutorials/create-custom-
template

https://dotnetnew.azurewebsites.net/
https://docs.microsoft.com/en-us/dotnet/core/tutorials/create-custom-template
https://docs.microsoft.com/en-us/dotnet/core/tutorials/create-custom-template
https://docs.microsoft.com/en-us/dotnet/core/tutorials/create-custom-template

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[238]

• remove: This removes a reference to a package or class library from the project.
• list: This lists the package or class library references for the project.

Publishing a self-contained app
Now we can publish our cross-platform console app.

1. In Visual Studio Code, navigate to Terminal, and enter the following
command to build the release version of the console application for
Windows 10:
dotnet publish -c Release -r win10-x64

Microsoft Build Engine will then compile and publish the console
application.

2. In Terminal, enter the following commands to build release versions for
macOS and RHEL:
dotnet publish -c Release -r osx-x64

dotnet publish -c Release -r rhel.7.4-x64

3. Open a macOS Finder window or Windows File Explorer, navigate to
DotNetCoreEverywhere\bin\Release\netcoreapp3.0, and note the
output folders for the three operating systems and the files, including a
Linux executable named DotNetCoreEverywhere, as shown in the following
screenshot:

If you copy any of those folders to the appropriate operating system, the console
application will run; this is because it is a self-contained deployable .NET Core
application.

Decompiling assemblies
One of the best ways to learn how to code for .NET is to see how professionals do it.

Understanding and Packaging .NET Types | 07

[239]

For learning purposes, you can decompile any .NET assembly with a tool like ILSpy.

1. If you have not already installed the ILSpy .NET Decompiler extension for
Visual Studio Code, then search for it and install it now.

2. In Visual Studio Code, navigate to View | Command Palette… or press
Cmd + Shift + P.

3. Type ilspy and then select ILSpy: Decompile IL Assembly (pick file).
4. Navigate to the Code/Chapter07/DotNetCodeEverywhere/bin /

Release/netcoreapp3.0/win10-x64 folder.
5. Select the System.IO.FileSystem.dll assembly and click Select assembly.
6. In the EXPLORER window, expand ILSPY DECOMPILED MEMBERS,

select the assembly, and note the two edit windows that open showing
assembly attributes using C# code and external DLL and assembly
references using IL code, as shown in the following screenshot:

7. In the IL code, note the reference to the System.Runtime assembly including
version number, as shown in the following code:
.assembly extern System.Runtime
{
 .publickeytoken = (
 b0 3f 5f 7f 11 d5 0a 3a
)
 .ver 4:2:1:0
}

Good Practice: You could decompile someone else's assemblies for
non-learning purposes but remember that you are viewing their
intellectual property so please respect that.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[240]

.module extern kernel32.dll means this assembly makes function
calls to Win32 APIs as you would expect from code that interacts with the
filesystem.

8. In the EXPLORER window, expand the namespaces, expand the System.
IO namespace, select Directory, and note the two edit windows that open
showing the decompiled Directory class using C# code and IL code, as
shown in the following screenshot:

9. Compare the C# source code for the GetParent method, shown in the
following code:
public static DirectoryInfo GetParent(string path)
{
 if (path == null)
 {
 throw new ArgumentNullException("path");
 }
 if (path.Length == 0)
 {
 throw new ArgumentException(SR.Argument_PathEmpty, "path");
 }
 string fullPath = Path.GetFullPath(path);
 string directoryName = Path.GetDirectoryName(fullPath);
 if (directoryName == null)
 {
 return null;
 }
 return new DirectoryInfo(directoryName);
}

Understanding and Packaging .NET Types | 07

[241]

10. With the equivalent IL source code of the GetParent method, as shown in
the following code:
.method /* 06000067 */ public hidebysig static
 class System.IO.DirectoryInfo GetParent (
 string path
) cil managed
{
 // Method begins at RVA 0x62d4
 // Code size 64 (0x40)
 .maxstack 2
 .locals /* 1100000E */ (
 [0] string,
 [1] string
)

 IL_0000: ldarg.0
 IL_0001: brtrue.s IL_000e

 IL_0003: ldstr "path" /* 700005CB */
 IL_0008: newobj instance void [System.Runtime]System.
ArgumentNullException::.ctor(string) /* 0A000035 */
 IL_000d: throw

 IL_000e: ldarg.0
 IL_000f: callvirt instance int32 [System.Runtime]System.
String::get_Length() /* 0A000022 */
 IL_0014: brtrue.s IL_0026

 IL_0016: call string System.SR::get_Argument_PathEmpty() /*
0600004C */
 IL_001b: ldstr "path" /* 700005CB */
 IL_0020: newobj instance void [System.Runtime]System.
ArgumentException::.ctor(string, string) /* 0A000036 */
 IL_0025: throw

 IL_0026: ldarg.0
 IL_0027: call string [System.Runtime.Extensions]System.
IO.Path::GetFullPath(string) /* 0A000037 */
 IL_002c: stloc.0
 IL_002d: ldloc.0
 IL_002e: call string [System.Runtime.Extensions]System.IO.Path::
GetDirectoryName(string) /* 0A000038 */
 IL_0033: stloc.1
 IL_0034: ldloc.1
 IL_0035: brtrue.s IL_0039

 IL_0037: ldnull
 IL_0038: ret

 IL_0039: ldloc.1
 IL_003a: newobj instance void System.IO.DirectoryInfo::.
ctor(string) /* 06000097 */
 IL_003f: ret
} // end of method Directory::GetParent

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[242]

11. Close the edit windows without saving changes.
12. In the EXPLORER window, in ILSPY DECOMPILED MEMBERS, right-

click the assembly and choose Unload Assembly.

Packaging your libraries for NuGet
distribution
Before we learn how to create and package our own libraries, we will review how
a project can use an existing package.

Referencing a NuGet package
Let's say that you want to add a package created by a third-party developer, for
example, Newtonsoft.Json, a popular package for working with the JavaScript
Object Notation (JSON) serialization format.

1. In Visual Studio Code, open the AssembliesAndNamespaces project.
2. Enter the following command in Terminal:

dotnet add package newtonsoft.json

3. Open AssembliesAndNamespaces.csproj, and you will see the package
reference has been added, as shown in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="newtonsoft.json"
 Version="12.0.2" />
 </ItemGroup>

</Project>

Good Practice: The IL code edit windows are not especially useful
unless you get very advanced with C# and .NET development
where knowing how the C# compiler translates your source code
into IL code can be important. The much more useful edit windows
contain the equivalent C# source code written by Microsoft experts.
You can learn a lot of good practices from seeing how professionals
implement types.

Understanding and Packaging .NET Types | 07

[243]

You might have a more recent version of the newtonsoft.json package because it
has likely been updated since this book was published.

Fixing dependencies
To consistently restore packages and write reliable code, it's important that you
fix dependencies. Fixing dependencies means you are using the same family of
packages released for a specific version of .NET Core, for example, 3.0.

To fix dependencies, every package should have a single version with no additional
qualifiers. Additional qualifiers include betas (beta1), release candidates (rc4),
and wildcards (*). Wildcards allow future versions to be automatically referenced
and used because they always represent the most recent release. But wildcards
are therefore dangerous because it could result in the use of future incompatible
packages that break your code.

If you use the dotnet add package command, then it will always use the latest
specific version of a package. But if you copy and paste configuration from a blog
article or manually add a reference yourself, you might include wildcard qualifiers.

The following dependencies are NOT fixed and should be avoided:

<PackageReference Include="System.Net.Http"
 Version="4.1.0-*" />
<PackageReference Include="Newtonsoft.Json"
 Version="12.0.3-beta1" />

Packaging a library for NuGet
Now, let's package the SharedLibrary project that you created earlier.

1. In the SharedLibrary project, rename Class1.cs to StringExtensions.cs,
and modify its contents, as shown in the following code:
using System.Text.RegularExpressions;

namespace Packt.Shared
{
 public static class StringExtensions
 {
 public static bool IsValidXmlTag(this string input)

Good Practice: Microsoft guarantees that if you fixed your
dependencies to what ships with a specific version of .NET Core, for
example, 3.0, those packages will all work together. Always fix your
dependencies.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[244]

 {
 return Regex.IsMatch(input,
 @"^<([a-z]+)([^<]+)*(?:>(.*)<\/\1>|\s+\/>)$");
 }

 public static bool IsValidPassword(this string input)
 {
 // minimum of eight valid characters
 return Regex.IsMatch(input, "^[a-zA-Z0-9_-]{8,}$");
 }

 public static bool IsValidHex(this string input)
 {
 // three or six valid hex number characters
 return Regex.IsMatch(input,
 "^#?([a-fA-F0-9]{3}|[a-fA-F0-9]{6})$");
 }
 }
}

These extension methods use regular expressions to validate the string
value. You will learn how to write regular expressions in Chapter 8, Working
with Common .NET Types.

2. Edit SharedLibrary.csproj, and modify its contents, as shown in the
following markup, and note the following:

 ° PackageId must be globally unique, so you must use a different
value if you want to publish this NuGet package to the https://
www.nuget.org/ public feed for others to reference and download.

 ° PackageLicenseExpression must be a value from the following
link: https://spdx.org/licenses/ or you could specify a custom
license.

 ° All the other elements are self-explanatory:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 <GeneratePackageOnBuild>true</GeneratePackageOnBuild>
 <PackageId>Packt.CS8.SharedLibrary</PackageId>
 <PackageVersion>1.0.0.0</PackageVersion>
 <Authors>Mark J Price</Authors>
 <PackageLicenseExpression>
 MS-PL
 </PackageLicenseExpression>
 <PackageProjectUrl>
 http://github.com/markjprice/cs8dotnetcore3
 </PackageProjectUrl>

https://www.nuget.org/
https://www.nuget.org/
https://spdx.org/licenses/
https://spdx.org/licenses/

Understanding and Packaging .NET Types | 07

[245]

 <PackageIcon>packt-cs8-sharedlibrary.png</PackageIcon>
 <PackageRequireLicenseAcceptance>true
 </PackageRequireLicenseAcceptance>
 <PackageReleaseNotes>
 Example shared library packaged for NuGet.
 </PackageReleaseNotes>
 <Description>
 Three extension methods to validate a string value.
 </Description>
 <Copyright>
 Copyright © 2019 Packt Publishing Limited
 </Copyright>
 <PackageTags>string extension packt cs8</PackageTags>
 </PropertyGroup>

 <ItemGroup>
 <None Include="packt-cs8-sharedlibrary.png">
 <Pack>True</Pack>
 <PackagePath></PackagePath>
 </None>
 </ItemGroup>

</Project>

Configuration property values that are true or false values cannot have
any whitespace so the <PackageRequireLicenseAcceptance> entry cannot
have a carriage-return and indentation as shown in the preceding markup.

3. Download the icon file and save it in the SharedLibrary folder from the
following link: https://github.com/markjprice/cs8dotnetcore3/tree/
master/Chapter07/SharedLibrary/packt-cs8-sharedlibrary.png

4. Navigate to Terminal | New Terminal and select SharedLibrary.
5. In Terminal, enter commands to build the release assembly and then

generate a NuGet package, as shown in the following commands:
dotnet build -c Release

dotnet pack -c Release

6. Start your favorite browser and navigate to the following link: https://www.
nuget.org/packages/manage/upload

7. You will need to sign in with a Microsoft account at https://www.nuget.
org/ if you want to upload a NuGet package for other developers to
reference as a dependency package.

8. Click on Browse... and select the .nupkg file that was
created by the pack command. The folder path should be
Code\Chapter07\SharedLibrary\bin\Release and the file is named
Packt.CS8.SharedLibrary.1.0.0.nupkg

https://github.com/markjprice/cs8dotnetcore3/tree/master/Chapter07/SharedLibrary/packt-cs8-sharedlibrary.png
https://github.com/markjprice/cs8dotnetcore3/tree/master/Chapter07/SharedLibrary/packt-cs8-sharedlibrary.png
https://github.com/markjprice/cs8dotnetcore3/tree/master/Chapter07/SharedLibrary/packt-cs8-sharedlibrary.png
https://www.nuget.org/packages/manage/upload
https://www.nuget.org/packages/manage/upload
https://www.nuget.org/
https://www.nuget.org/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[246]

9. Verify that the information you entered in the SharedLibrary.csproj file
has been correctly filled in, and then click on Submit.

10. Wait a few seconds, and you will see a success message showing that your
package has been uploaded, as shown in the following screenshot:

Testing your package
You will now test your uploaded package by referencing it in the
AssembliesAndNamespaces project.

1. Open AssembliesAndNamespaces.csproj.
2. Modify it to reference your package (or you could use the dotnet add

package command), as shown highlighted in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="newtonsoft.json"
 Version="12.0.2" />
 <PackageReference Include="packt.cs8.sharedlibrary"
 Version="1.0.0" />

More Information: If you get an error, then review the
project file for mistakes, or read more information about the
PackageReference format at the link: https://docs.
microsoft.com/en-us/nuget/reference/msbuild-targets

https://docs.microsoft.com/en-us/nuget/reference/msbuild-targets
https://docs.microsoft.com/en-us/nuget/reference/msbuild-targets
https://docs.microsoft.com/en-us/nuget/reference/msbuild-targets

Understanding and Packaging .NET Types | 07

[247]

 </ItemGroup>

</Project>

In the preceding markup I used my package reference. You should use your
own if you successfully uploaded it.

3. Edit Program.cs to import the Packt.Shared namespace.
4. In the Main method, prompt the user to enter some string values, and then

validate them using the extension methods in the package, as shown in the
following code:
Write("Enter a color value in hex: ");
string hex = ReadLine();

WriteLine("Is {0} a valid color value? {1}",
 arg0: hex, arg1: hex.IsValidHex());

Write("Enter a XML tag: ");
string xmlTag = ReadLine();

WriteLine("Is {0} a valid XML tag? {1}",
 arg0: xmlTag, arg1: xmlTag.IsValidXmlTag());

Write("Enter a password: ");
string password = ReadLine();

WriteLine("Is {0} a valid password? {1}",
 arg0: password, arg1: password.IsValidPassword());

5. Run the application and view the result, as shown in the following output:
Enter a color value in hex: 00ffc8

Is 00ffc8 a valid color value? True

Enter an XML tag: <h1 class="<" />

Is <h1 class="<" /> a valid XML tag? False

Enter a password: secretsauce

Is secretsauce a valid password? True

Porting from .NET Framework to .NET
Core
If you are an existing .NET Framework developer, then you may have existing
applications that you are wondering if you should port to .NET Core. You should
consider if porting is the right choice for your code, because sometimes, the best
choice is not to port.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[248]

Could you port?
.NET Core has great support for the following types of applications on Windows,
macOS, and Linux:

• ASP.NET Core MVC web applications.
• ASP.NET Core Web API web services (REST/HTTP).
• Console applications.

.NET Core has great support for the following types of applications on Windows:

• Windows Forms applications.
• Windows Presentation Foundation (WPF) applications.
• Universal Windows Platform (UWP) applications.

.NET Core does not support the following types of legacy Microsoft applications and
many others:

• ASP.NET Web Forms web applications.
• Windows Communication Foundation services.
• Silverlight applications.

Silverlight and ASP.NET Web Forms applications will never be able to be ported
to .NET Core, but existing Windows Forms and WPF applications could be ported
to .NET Core 3.0 on Windows in order to benefit from the new APIs and faster
performance. Existing ASP.NET MVC web applications and ASP.NET Web API web
services could be ported to .NET Core 3.0 on Windows, Linux, or macOS.

Should you port?
Even if you could port, should you? What benefits do you gain? Some common
benefits include the following:

More Information: UWP apps can be created using C++,
JavaScript, C#, and Visual Basic using a custom version of
.NET Core. You can read more about this at the following link:
https://docs.microsoft.com/en-us/windows/uwp/get-
started/universal-application-platform-guide

https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide

Understanding and Packaging .NET Types | 07

[249]

• Deployment to Linux or Docker for web applications and web services:
These OSes are lightweight and cost-effective as web application and web
service platforms, especially when compared to Windows Server.

• Removal of dependency on IIS and System.Web.dll: Even if you continue
to deploy to Windows Server, ASP.NET Core can be hosted on lightweight,
higher-performance Kestrel (or other) web servers.

• Command-line tools: Tools that developers and administrators use
to automate their tasks are often built as console applications. The ability
to run a single tool cross-platform is very useful.

Differences between .NET Framework and
.NET Core
There are three key differences, as shown in the following table:

.NET Core .NET Framework

Distributed as NuGet packages, so each
application can be deployed with its own
app-local copy of the version of .NET
Core that it needs.

Distributed as a system-wide, shared set of
assemblies (literally, in the Global Assembly
Cache (GAC)).

Split into small, layered components, so
a minimal deployment can be performed.

Single, monolithic deployment.

Removes older technologies, such as
ASP.NET Web Forms, and non-cross-
platform features, such as AppDomains,
.NET Remoting, and binary serialization.

As well as the technologies in .NET Core,
it retains some older technologies such as
ASP.NET Web Forms.

Understanding the .NET Portability Analyzer
Microsoft has a useful tool that you can run against your existing applications to
generate a report for porting. You can watch a demonstration of the tool at the
following link:

https://channel9.msdn.com/Blogs/Seth-Juarez/A-Brief-Look-at-the-NET-
Portability-Analyzer

https://channel9.msdn.com/Blogs/Seth-Juarez/A-Brief-Look-at-the-NET-Portability-Analyzer
https://channel9.msdn.com/Blogs/Seth-Juarez/A-Brief-Look-at-the-NET-Portability-Analyzer

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[250]

Using non-.NET Standard libraries
Most existing NuGet packages can be used with .NET Core, even if they are not
compiled for .NET Standard. If you find a package that does not officially support
.NET Standard, as shown on its nuget.org web page, you do not have to give up.
You should try it and see if it works.

For example, there is a package of custom collections for handling matrices created
by Dialect Software LLC, documented at the following link:

https://www.nuget.org/packages/DialectSoftware.Collections.Matrix/

This package was last updated in 2013, which was long before .NET Core existed, so
this package was built for .NET Framework. As long as an assembly package like this
only uses APIs available in .NET Standard, it can be used in a .NET Core project.

Let's try using it and see if it works.

1. Open AssembliesAndNamespaces.csproj.
2. Add <PackageReference> for Dialect Software's package, as shown in the

following markup:
<PackageReference Include="dialectsoftware.collections.matrix"
 Version="1.0.0" />

3. In Terminal, restore the dependent packages, as shown in the following
command:
dotnet restore

4. Open Program.cs and add statements to import the DialectSoftware.
Collections and DialectSoftware.Collections.Generics namespaces.

5. Add statements to create instances of Axis and Matrix<T>, populate them
with values, and output them, as shown in the following code:
var x = new Axis("x", 0, 10, 1);
var y = new Axis("y", 0, 4, 1);

var matrix = new Matrix<long>(new[] { x, y });
for (int i = 0; i < matrix.Axes[0].Points.Length; i++)
{
 matrix.Axes[0].Points[i].Label = "x" + i.ToString();
}

for (int i = 0; i < matrix.Axes[1].Points.Length; i++)

More Information: You can search for useful NuGet packages at
the following link: https://www.nuget.org/packages

http://nuget.org
https://www.nuget.org/packages/DialectSoftware.Collections.Matrix/
https://www.nuget.org/packages

Understanding and Packaging .NET Types | 07

[251]

{
 matrix.Axes[1].Points[i].Label = "y" + i.ToString();
}

foreach (long[] c in matrix)
{
 matrix[c] = c[0] + c[1];
}

foreach (long[] c in matrix)
{
 WriteLine("{0},{1} ({2},{3}) = {4}",
 matrix.Axes[0].Points[c[0]].Label,
 matrix.Axes[1].Points[c[1]].Label,
 c[0], c[1], matrix[c]);
}

6. Run the console application, view the output, and note the warning message:

warning NU1701: Package 'DialectSoftware.Collections.Matrix 1.0.0'
was restored using '.NETFramework,Version=v4.6.1' instead of the
project target framework '.NETCoreApp,Version=v3.0'. This package
may not be fully compatible with your project.

x0,y0 (0,0) = 0

x0,y1 (0,1) = 1

x0,y2 (0,2) = 2

x0,y3 (0,3) = 3

...and so on.

Even though this package was created before .NET Core existed, and the compiler
and runtime have no way of knowing if it will work and therefore show warnings,
because it happens to only call .NET Standard-compatible APIs, it works.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore, with deeper research into topics of this chapter.

Exercise 7.1 – Test your knowledge
Answer the following questions:

1. What is the difference between a namespace and an assembly?
2. How do you reference another project in a .csproj file?
3. What is the difference between a package and a metapackage? Give an

example of each.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[252]

4. Which .NET type does the C# float alias represent?
5. What is the difference between the packages named NETStandard.Library

and Microsoft.NETCore.App?
6. What is the difference between framework-dependent and self-contained

deployments of .NET Core applications?
7. What is a RID?
8. What is the difference between the dotnet pack and dotnet publish

commands?
9. What types of applications written for the .NET Framework can be ported to

.NET Core?
10. Can you use packages written for .NET Framework with .NET Core?

Exercise 7.2 – Explore topics
Use the following links to read in more detail the topics covered in this chapter:

• Porting to .NET Core from .NET Framework: https://docs.microsoft.
com/en-us/dotnet/articles/core/porting/

• Packages, Metapackages, and Frameworks: https://docs.microsoft.
com/en-us/dotnet/articles/core/packages

• .NET Blog: https://blogs.msdn.microsoft.com/dotnet/
• What .NET Developers ought to know to start in 2017: https://www.

hanselman.com/blog/WhatNETDevelopersOughtToKnowToStartIn2017.
aspx

• CoreFX README.md: https://github.com/dotnet/corefx/blob/
master/Documentation/README.md

• .NET Core Application Deployment: https://docs.microsoft.com/en-
us/dotnet/articles/core/deploying/

• Announcing .NET Standard 2.1: https://devblogs.microsoft.com/
dotnet/announcing-net-standard-2-1/

Summary
In this chapter, you explored the relationship between assemblies and namespaces,
and we also discussed options for porting existing .NET Framework code bases,
published your apps and libraries, and deployed your code cross-platform.

In the next chapter, you will learn about some common .NET Standard types that are
included with .NET Core.

https://docs.microsoft.com/en-us/dotnet/articles/core/porting/
https://docs.microsoft.com/en-us/dotnet/articles/core/porting/
https://docs.microsoft.com/en-us/dotnet/articles/core/packages
https://docs.microsoft.com/en-us/dotnet/articles/core/packages
https://blogs.msdn.microsoft.com/dotnet/
https://www.hanselman.com/blog/WhatNETDevelopersOughtToKnowToStartIn2017.aspx
https://www.hanselman.com/blog/WhatNETDevelopersOughtToKnowToStartIn2017.aspx
https://www.hanselman.com/blog/WhatNETDevelopersOughtToKnowToStartIn2017.aspx
https://github.com/dotnet/corefx/blob/master/Documentation/README.md
https://github.com/dotnet/corefx/blob/master/Documentation/README.md
https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/
https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/
https://devblogs.microsoft.com/dotnet/announcing-net-standard-2-1/
https://devblogs.microsoft.com/dotnet/announcing-net-standard-2-1/

[253]

Chapter 08
Working with Common

.NET Types
This chapter is about some common .NET Standard types that are included with
.NET Core. This includes types for manipulating numbers, text, collections, network
access, reflection, attributes, improving working with spans, indexes, and ranges,
and internationalization.

This chapter covers the following topics:

• Working with numbers
• Working with text
• Pattern matching with regular expressions
• Storing multiple objects in collections
• Working with spans, indexes, and ranges
• Working with network resources
• Working with types and attributes
• Internationalizing your code

Working with numbers
One of the most common types of data are numbers. The most common types
in .NET Standard for working with numbers are shown in the following table:

Namespace Example type(s) Description

System SByte, Int16, Int32,
Int64

Integers; that is, zero and positive and negative
whole numbers.

System Byte, UInt16, UInt32,
UInt64

Cardinals; that is, zero and positive whole
numbers.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[254]

System Single, Double Reals; that is, floating point numbers.

System Decimal Accurate reals; that is, for use in science,
engineering, or financial scenarios.

System
.Numerics

BigInteger, Complex,
Quaternion

Arbitrarily large integers, complex numbers,
and quaternion numbers.

Working with big integers
The largest whole number that can be stored in .NET Standard types that have a C#
alias is about eighteen and a half quintillion, stored in an unsigned long. But what if
you need to store numbers larger than that? Let's explore numerics:

1. Create a new console application named WorkingWithNumbers in a folder
named Chapter08.

2. Save the workspace as Chapter08 and add WorkingWithNumbers to it.
3. In Program.cs, add a statement to import System.Numerics, as shown

in the following code:
using System.Numerics;

4. In Main, add statements to output the largest value of ulong, and a number
with 30 digits using BigInteger, as shown in the following code:
var largest = ulong.MaxValue;

WriteLine($"{largest,40:N0}");

var atomsInTheUniverse =
 BigInteger.Parse("123456789012345678901234567890");

WriteLine($"{atomsInTheUniverse,40:N0}");

The 40 in the format code means right-align 40 characters, so both numbers
are lined up to the right-hand edge. The N0 means use thousand separators
and zero decimal places.

5. Run the console application and view the result, as shown in the following
output:

 18,446,744,073,709,551,615
123,456,789,012,345,678,901,234,567,890

More Information: You can read more about this subject at
the following link: https://docs.microsoft.com/en-us/
dotnet/standard/numerics

https://docs.microsoft.com/en-us/dotnet/standard/numerics
https://docs.microsoft.com/en-us/dotnet/standard/numerics

Working with Common .NET Types | 08

[255]

Working with complex numbers
A complex number can be expressed as a + bi, where a and b are real numbers, and
i is the imaginary unit, where i2 = −1. If the real part is zero, it is a pure imaginary
number. If the imaginary part is zero, it is a real number.

Complex numbers have practical applications in many STEM (science, technology,
engineering, and mathematics) fields of study. Additionally, they are added by
separately adding the real and imaginary parts of the summands; consider this:

(a + bi) + (c + di) = (a + c) + (b + d)i

Let's explore complex numbers:

1. In Main, add statements to add two complex numbers, as shown in the
following code:
var c1 = new Complex(4, 2);
var c2 = new Complex(3, 7);
var c3 = c1 + c2;
WriteLine($"{c1} added to {c2} is {c3}");

2. Run the console application and view the result, as shown in the following
output:

(4, 2) added to (3, 7) is (7, 9)

Quaternions are a number system that extends complex numbers. They form
a four-dimensional associative normed division algebra over the real numbers, and
therefore also a domain.

Huh? Yes, I know. I don't understand that either. Don't worry; we're not going
to write any code using them! Suffice to say, they are good at describing spatial
rotations, so video game engines use them, as do many computer simulations and
flight control systems.

Working with text
One of the other most common types of data for variables is text. The most
common types in .NET Standard for working with text are shown in the
following table:

Namespace Type Description

System Char Storage for a single text character

System String Storage for multiple text characters

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[256]

System.Text StringBuilder Efficiently manipulates strings

System.Text
.RegularExpressions

Regex Efficiently pattern-matches strings

Getting the length of a string
Let's explore some common tasks when working with text, for example, sometimes
you need to find out the length of a piece of text stored in a string variable:

1. Create a new console application project named WorkingWithText in the
Chapter08 folder and add it to the Chapter08 workspace.

2. Navigate to View | Command Palette, enter and select OmniSharp: Select
Project, and select WorkingWithText.

3. In the WorkingWithText project, in Program.cs, in Main, add statements
to define a variable to store the name of the city London, and then write its
name and length to the console, as shown in the following code:
string city = "London";
WriteLine($"{city} is {city.Length} characters long.");

4. Run the console application and view the result, as shown in the following
output:

London is 6 characters long.

Getting the characters of a string
The string class uses an array of char internally to store the text. It also has an
indexer, which means that we can use the array syntax to read its characters:

1. Add a statement to write the characters at the first and third position in the
string variable, as shown in the following code:
WriteLine($"First char is {city[0]} and third is {city[2]}.");

2. Run the console application and view the result, as shown in the following
output:

First char is L and third is n.

Array indexes start at zero, so the third character is at index 2.

Working with Common .NET Types | 08

[257]

Splitting a string
Sometimes, you need to split some text wherever there is a character, such as
a comma:

1. Add statements to define a single string variable containing comma-
separated city names, then use the Split method and specify that you want
to treat commas as the separator, and then enumerate the returned array of
string values, as shown in the following code:
string cities = "Paris,Berlin,Madrid,New York";

string[] citiesArray = cities.Split(',');

foreach (string item in citiesArray)
{
 WriteLine(item);
}

2. Run the console application and view the result, as shown in the following
output:

Paris

Berlin

Madrid

New York

Later in this chapter you will learn how to handle more complex scenarios, for
example, what if a string variable contains film titles, as shown in the following
example: ""Monsters, Inc.","I, Tonya","Lock, Stock and Two
Smoking Barrels"".

Getting part of a string
Sometimes, you need to get part of some text. The IndexOf method has nine
overloads that return the index position of a specified char or string. The
Substring method has two overloads, as shown in the following list:

• Substring(startIndex, length): returns a substring starting
at startIndex and containing the next length characters.

• Substring(startIndex): returns a substring starting at startIndex
and containing all characters up to the end of the string.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[258]

Let's explore a simple example:

1. Add statements to store a person's full name in a string variable with a
space character between the first and last name, find the position of the space,
and then extract the first name and last name as two parts so that they can be
recombined in a different order, as shown in the following code:
string fullName = "Alan Jones";

int indexOfTheSpace = fullName.IndexOf(' ');

string firstName = fullName.Substring(
 startIndex: 0, length: indexOfTheSpace);

string lastName = fullName.Substring(
 startIndex: indexOfTheSpace + 1);

WriteLine($"{lastName}, {firstName}");

2. Run the console application and view the result, as shown in the following
output:

Jones, Alan

If the format of the initial full name was different, for example, "LastName,
FirstName", then the code would need to be different. As an optional exercise,
try writing some statements that would change the input "Jones, Alan" into
"Alan Jones".

Checking a string for content
Sometimes, you need to check whether a piece of text starts or ends with some
characters or contains some characters. You can achieve this with methods named
StartsWith, EndsWith, and Contains:

1. Add statements to store a string value and then check if it starts with or
contains a couple of different string values, as shown in the following code:
string company = "Microsoft";
bool startsWithM = company.StartsWith("M");
bool containsN = company.Contains("N");
WriteLine($"Starts with M: {startsWithM}, contains an N:
{containsN}");

2. Run the console application and view the result, as shown in the following
output:

Starts with M: True, contains an N: False

Working with Common .NET Types | 08

[259]

Joining, formatting, and other string members
There are many other string members, as shown in the following table:

Member Description

Trim, TrimStart, and
TrimEnd

These trim whitespace characters such as space, tab, and
carriage-return from the beginning and/or end of the
string variable.

ToUpper and ToLower These convert all the characters in the string variable into
uppercase or lowercase.

Insert and Remove These insert or remove some text in the string variable.
Replace This replaces some text with other text.

string.Concat This concatenates two string variables. The + operator
calls this method when used between string variables.

string.Join This concatenates one or more string variables with
a character in between each one.

string.IsNullOrEmpty This checks whether a string variable is null or empty
("").

string.
IsNullOrWhitespace

This checks whether a string variable is null or
whitespace; that is, a mix of any number of horizontal and
vertical spacing characters, for example, tab, space, carriage
return, line feed, and so on.

string.Empty This can be used instead of allocating memory each time
you use a literal string value using an empty pair of
double quotes ("").

string.Format An older, alternative method to string interpolation to
output formatted string variables, which uses positioned
instead of named parameters.

Some of the preceding methods are static methods. This means that the method can
only be called from the type, not from a variable instance. In the preceding table, I
indicated the static methods by prefixing them with string. like string.Format.

Let's explore some of these methods:

1. Add statements to take an array of string values and combine them back
together into a single string variable with separators using the Join
method, as shown in the following code:
string recombined = string.Join(" => ", citiesArray);
WriteLine(recombined);

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[260]

2. Run the console application and view the result, as shown in the following
output:
Paris => Berlin => Madrid => New York

3. Add statements to use positioned parameters and interpolated string
formatting syntax to output the same three variables twice, as shown in the
following code:
string fruit = "Apples";
decimal price = 0.39M;
DateTime when = DateTime.Today;

WriteLine($"{fruit} cost {price:C} on {when:dddd}.");

WriteLine(string.Format("{0} cost {1:C} on {2:dddd}.",
 fruit, price, when));

4. Run the console application and view the result, as shown in the following
output:

Apples cost £0.39 on Thursdays.

Apples cost £0.39 on Thursdays.

Building strings efficiently
You can concatenate two strings to make a new string variable using the
String.Concat method or simply using the + operator. But both of these choices are
bad practice because .NET must create a completely new string variable in memory.

This might not be noticeable if you are only adding two string values, but if you
concatenate inside a loop with many iterations, it can have a significant negative
impact on performance and memory use.

In Chapter 13, Improving Performance and Scalability Using Multitasking, you will learn
how to concatenate string variables efficiently using the StringBuilder type.

Pattern matching with regular
expressions
Regular expressions are useful for validating input from the user. They are very
powerful and can get very complicated. Almost all programming languages have
support for regular expressions and use a common set of special characters to
define them:

Working with Common .NET Types | 08

[261]

5. Create a new console application project named
WorkingWithRegularExpressions, add it to the workspace, and select it as
the active project for OmniSharp.

6. At the top of the file, import the following namespace:

using System.Text.RegularExpressions;

Checking for digits entered as text
1. In the Main method, add statements to prompt the user to enter their age and

then check that it is valid using a regular expression that looks for a digit
character, as shown in the following code:
Write("Enter your age: ");
string input = ReadLine();

var ageChecker = new Regex(@"\d");

if (ageChecker.IsMatch(input))
{
 WriteLine("Thank you!");
}
else
{
 WriteLine($"This is not a valid age: {input}");
}

The @ character switches off the ability to use escape characters in the string.
Escape characters are prefixed with a backslash. For example, \t means a tab
and \n means a new line.
When writing regular expressions, we need to disable this feature. To
paraphrase the television show The West Wing, "Let backslash be backslash."
Once escape characters are disabled with @, then they can be interpreted by a
regular expression. For example, \d means digit. You will learn more regular
expressions that are prefixed with a backslash later in this topic.

2. Run the console application, enter a whole number such as 34 for the age,
and view the result, as shown in the following output:
Enter your age: 34

Thank you!

3. Run the console application again, enter carrots, and view the result,
as shown in the following output:
Enter your age: carrots

This is not a valid age: carrots

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[262]

4. Run the console application again, enter bob30smith, and view the result,
as shown in the following output:
Enter your age: bob30smith

Thank you!

The regular expression we used is \d, which means one digit. However,
it does not specify what can be entered before and after that one digit. This
regular expression could be described in English as "Enter any characters
you want as long as you enter at least one digit character."

5. Change the regular expression to ^\d$, as shown in the following code:
var ageChecker = new Regex(@"^\d$");

6. Rerun the application. Now, it rejects anything except a single digit.
We want to allow one or more digits. To do this, we add a + after the \d
expression to modify the meaning to one or more.

7. Change the regular expression, as shown in the following code:
var ageChecker = new Regex(@"^\d+$");

8. Run the application and see how the regular expression now only allows
zero or positive whole numbers of any length.

Understanding the syntax of a regular
expression
Here are some common regular expression symbols that you can use in regular
expressions:

Symbol Meaning Symbol Meaning

^ Start of input $ End of input

\d A single digit \D A single NON-digit

\w Whitespace \W NON-whitespace

[A-Za-z0-9] Range(s) of characters \^ ^ (caret) character

[aeiou] Set of characters [^aeiou] NOT in a set of characters

. Any single character \. . (dot) character

Working with Common .NET Types | 08

[263]

In addition, here are some regular expression quantifiers that affect the previous
symbols in a regular expression:

Symbol Meaning Symbol Meaning
+ One or more ? One or none
{3} Exactly three {3,5} Three to five
{3,} At least three {,3} Up to three

Examples of regular expressions
Here are some examples of regular expressions with a description of their meaning:

Expression Meaning

\d A single digit somewhere in the input

a The character a somewhere in the input

Bob The word Bob somewhere in the input

^Bob The word Bob at the start of the input

Bob$ The word Bob at the end of the input

^\d{2}$ Exactly two digits

^[0-9]{2}$ Exactly two digits

^[A-Z]{4,}$ At least four uppercase English letters in the ASCII character set
only

^[A-Za-z]{4,}$ At least four upper or lowercase English letters in the ASCII
character set only

^[A-Z]{2}\d{3}$ Two uppercase English letters in the ASCII character set and three
digits only

^[A-Za-z
\u00c0-\u017e]
+$

At least one uppercase or lowercase English letter
in the ASCII character set or European letters in the
Unicode character set, as shown in the following list:
ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞß
àáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿıŒœŠšŸŽž

More Information: To specify a Unicode character, use \u
followed by four characters specifying the number of the
character. For example, \u00c0 is the À character. You can
learn more at the following link: https://www.regular-
expressions.info/unicode.html

https://www.regular-expressions.info/unicode.html
https://www.regular-expressions.info/unicode.html

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[264]

^d.g$ The letter d, then any character, and then the letter g, so it would
match both dig and dog or any single character between the d and
g

^d\.g$ The letter d, then a dot (.), and then the letter g, so it would match
d.g only

Splitting a complex comma-separated string
Earlier in this chapter you learned how to split a simple comma-separated string
variable. But what about the following example of film titles?

"Monsters, Inc.","I, Tonya","Lock, Stock and Two Smoking Barrels"

The string value uses double-quotes around each film title. We can use these to
identify whether we need to split on a comma (or not). The Split method is not
powerful enough so we can use a regular expression instead.

To include double-quotes inside a string value, we prefix them with a backslash:

1. Add statements to store a complex comma-separated string variable,
and then split it in a dumb way using the Split method, as shown in the
following code:
string films = "\"Monsters, Inc.\",\"I, Tonya\",\"Lock, Stock and
Two Smoking Barrels\"";

string[] filmsDumb = films.Split(',');

WriteLine("Dumb attempt at splitting:");
foreach (string film in filmsDumb)
{
 WriteLine(film);
}

2. Add statements to define a regular expression to split and write the film titles
in a smart way, as shown in the following code:
var csv = new Regex(
 "(?:^|,)(?=[^\"]|(\")?)\"?((?(1)[^\"]*|[^,\"]*))\"?(?=,|$)");

MatchCollection filmsSmart = csv.Matches(films);

WriteLine("Smart attempt at splitting:");

Good Practice: Use regular expressions to validate input from the
user. The same regular expressions can be reused in other languages
such as JavaScript.

Working with Common .NET Types | 08

[265]

foreach (Match film in filmsSmart)
{
 WriteLine(film.Groups[2].Value);
}

3. Run the console application and view the result, as shown in the following
output:

Dumb attempt at splitting:

"Monsters

 Inc."

"I

 Tonya"

"Lock

 Stock and Two Smoking Barrels"

Smart attempt at splitting:

Monsters, Inc.

I, Tonya

Lock, Stock and Two Smoking Barrels

Storing multiple objects in collections
Another of the most common types of data is collections. If you need to store
multiple values in a variable, then you can use a collection.

A collection is a data structure in memory that can manage multiple items in
different ways, although all collections have some shared functionality.

The most common types in .NET Standard for working with collections are shown in
the following table:

Namespace Example type(s) Description

System
.Collections

IEnumerable,
IEnumerable<T>

Interfaces and base classes used by
collections.

More Information: Regular expressions are a massive topic.
Books more than an inch thick have been written about them.
You can read more about them at the following link: https://
www.regular-expressions.info

https://www.regular-expressions.info
https://www.regular-expressions.info

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[266]

System
.Collections
.Generic

List<T>,
Dictionary<T>,
Queue<T>,
Stack<T>

Introduced in C# 2.0 with .NET
Framework 2.0. These collections allow
you to specify the type you want to store
using a generic type parameter (which is
safer, faster, and more efficient).

System
.Collections
.Concurrent

BlockingCollection,
ConcurrentDictionary,
ConcurrentQueue

These collections are safe to use in
multithreaded scenarios.

System
.Collections
.Immutable

ImmutableArray,
ImmutableDictionary,
ImmutableList,
ImmutableQueue

Designed for scenarios where the contents
of the original collection will never
change, although they can create modified
collections as a new instance.

Common features of all collections
All collections implement the ICollection interface; this means that they must have
a Count property to tell you how many objects are in them.

For example, if we had a collection named passengers, we could do this:

int howMany = passengers.Count;

All collections implement the IEnumerable interface, which means that they must
have a GetEnumerator method that returns an object that implements IEnumerator;
this means that the returned object must have a MoveNext method and a Current
property so that they can be iterated using the foreach statement.

For example, to perform an action on each object in the passengers collection,
we could do this:

foreach (var passenger in passengers)
{
 // do something with each passenger
}

More Information: You can read more about collections at
the following link: https://docs.microsoft.com/en-us/
dotnet/standard/collections

https://docs.microsoft.com/en-us/dotnet/standard/collections
https://docs.microsoft.com/en-us/dotnet/standard/collections

Working with Common .NET Types | 08

[267]

To understand collections, it can be useful to see the most common interfaces that
collections implement, as shown in the following diagram:

Lists, that is, a type that implements IList, are ordered collections. As you can see
in the preceding diagram, IList<T> includes ICollection<T> so they must have
a Count property, and an Add method to put an item at the end of the collection,
as well as an Insert method to put an item in the list at a specified position, and
RemoveAt to remove an item at a specified position.

Understanding collection choices
There are several different choices of collection that you can use for different purposes:
lists, dictionaries, stacks, queues, sets, and many other more specialized collections.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[268]

Lists
Lists are a good choice when you want to manually control the order of items in
a collection. Each item in a list has a unique index (or position) that is automatically
assigned. Items can be any type defined by T and items can be duplicated. Indexes
are int types and start from 0, so the first item in a list is at index 0, as shown in the
following table:

Index Item

0 London

1 Paris

2 London

3 Sydney

If a new item (for example, Santiago) is inserted between London and Sydney, then
the index of Sydney is automatically incremented. Therefore, you must be aware
that an item's index can change after inserting or removing items, as shown in the
following table:

Index Item
0 London
1 Paris
2 London
3 Santiago
4 Sydney

Dictionaries
Dictionaries are a good choice when each value (or object) has a unique sub value
(or a made-up value) that can be used as a key to quickly find the value in the
collection later. The key must be unique. For example, if you are storing a list of
people, you could choose to use a government-issued identity number as the key.

Think of the key as being like an index entry in a real-world dictionary. It allows you
to quickly find the definition of a word because the words (for example, keys) are
kept sorted, and if we know we're looking for the definition of manatee, we would
jump to the middle of the dictionary to start looking, because the letter M is in the
middle of the alphabet.

Working with Common .NET Types | 08

[269]

Dictionaries in programming are similarly smart when looking something up. They
must implement the interface IDictionary<TKey, TValue>.

The key and value can be any types defined by TKey and TValue. The example
Dictionary<string, Person> uses a string as the key and a Person instance as
the value. Dictionary<string, string> uses string values for both, as shown in
the following table:

Key Value
BSA Bob Smith
MW Max Williams
BSB Bob Smith
AM Amir Mohammed

Stacks
Stacks are a good choice when you want to implement the last-in, first-out (LIFO)
behavior. With a stack, you can only directly access or remove the one item at the top
of the stack, although you can enumerate to read through the whole stack of items.
You cannot, for example, directly access the second item in a stack.

For example, word processors use a stack to remember the sequence of actions you
have recently performed, and then when you press Ctrl + Z, it will undo the last
action in the stack, and then the next to last action, and so on.

Queues
Queues are a good choice when you want to implement the first-in, first-out (FIFO)
behavior. With a queue, you can only directly access or remove the one item at the
front of the queue, although you can enumerate to read through the whole queue of
items. You cannot, for example, directly access the second item in a queue.

For example, background processes use a queue to process work items in the order
that they arrive, just like people standing in line at the post office.

Sets
Sets are a good choice when you want to perform set operations between two
collections. For example, you may have two collections of city names, and you want
to know which names appear in both sets (known as the intersect between the sets).
Items in a set must be unique.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[270]

Working with lists
Let's explore lists.

1. Create a new console application project named WorkingWithLists, add it to
the workspace, and select it as the active project for OmniSharp.

2. At the top of the file, import the following namespace:
using System.Collections.Generic;

3. In the Main method, type statements that illustrate some of the common
ways of working with lists, as shown in the following code:
var cities = new List<string>();
cities.Add("London");
cities.Add("Paris");
cities.Add("Milan");

WriteLine("Initial list");
foreach (string city in cities)
{
 WriteLine($" {city}");
}
WriteLine($"The first city is {cities[0]}.");
WriteLine($"The last city is {cities[cities.Count - 1]}.");

cities.Insert(0, "Sydney");
WriteLine("After inserting Sydney at index 0");
foreach (string city in cities)
{
 WriteLine($" {city}");
}

cities.RemoveAt(1);
cities.Remove("Milan");
WriteLine("After removing two cities");
foreach (string city in cities)
{
 WriteLine($" {city}");
}

4. Run the console application and view the result, as shown in the following
output:

Initial list
 London
 Paris
 Milan
The first city is London.
The last city is Milan.
After inserting Sydney at index 0
 Sydney

Working with Common .NET Types | 08

[271]

 London
 Paris
 Milan
After removing two cities
 Sydney
 Paris

Working with dictionaries
Let's explore dictionaries:

1. Create a new console application project named WorkingWithDictionaries,
add it to the workspace, and select it as the active project for OmniSharp.

2. Import the System.Collections.Generic namespace.
3. In the Main method, type statements that illustrate some of the common

ways of working with dictionaries, as shown in the following code:
var keywords = new Dictionary<string, string>();
keywords.Add("int", "32-bit integer data type");
keywords.Add("long", "64-bit integer data type");
keywords.Add("float", "Single precision floating point number");

WriteLine("Keywords and their definitions");
foreach (KeyValuePair<string, string> item in keywords)
{
 WriteLine($" {item.Key}: {item.Value}");
}
WriteLine($"The definition of long is {keywords["long"]}");

4. Run the console application and view the result, as shown in the following
output:

Keywords and their definitions

 int: 32-bit integer data type

 long: 64-bit integer data type

 float: Single precision floating point number

The definition of long is 64-bit integer data type

Sorting collections
A List<T> class can be sorted by manually calling its Sort method (but remember
that the indexes of each item will change). Manually sorting a list of string values
or other built-in types will work without extra effort on your part, but if you create
a collection of your own type, then that type must implement an interface named
IComparable. You learned how to do this in Chapter 6, Implementing Interfaces and
Inheriting Classes.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[272]

A Dictionary<T>, Stack<T>, or Queue<T> collection cannot be sorted because you
wouldn't usually want that functionality; for example, you would never sort a queue
of guests checking into a hotel. But sometimes, you might want to sort a dictionary
or a set.

Sometimes it would be useful to have an automatically sorted collection that is,
one that maintains the items in a sorted order as you add and remove them. There
are multiple auto-sorting collections to choose from. The differences between
these sorted collections are often subtle but can have an impact on the memory
requirements and performance of your application, so it is worth putting effort into
picking the most appropriate option for your requirements.

Some common auto-sorting collections are shown in the following table:

Collection Description

SortedDictionary<TKey,
TValue>

This represents a collection of key/value pairs that
are sorted by key.

SortedList<TKey, TValue> This represents a collection of key/value pairs
that are sorted by key, based on the associated
IComparer<TKey> implementation.

SortedSet<T> This represents a collection of unique objects that
are maintained in a sorted order.

Using specialized collections
There are a few other collections for special situations, as shown in the following
table:

Collection Description

System.Collections

.BitArray

This manages a compact array of bit values, which are
represented as Booleans, where true indicates that the
bit is on (1) and false indicates the bit is off (0).

System.Collections

.Generics.LinkedList<T>

This represents a doubly-linked list where every item
has a reference to its previous and next items. They
provide better performance compared to List<T>
for scenarios where you will frequently insert and
remove items from the middle of the list because
in a LinkedList<T> the items do not have to be
rearranged in memory.

Working with Common .NET Types | 08

[273]

Using immutable collections
Sometimes you need to make a collection immutable, meaning that its members
cannot change; that is, you cannot add or remove them.

If you import the System.Collections.Immutable namespace, then any collection
that implements IEnumerable<T> is given six extension methods to convert it into an
immutable list, dictionary, hash set, and so on:

1. In the WorkingWithLists project, in Program.cs, import the
System.Collections.Immutable namespace, and then add the following
statements to the end of the Main method, as shown in the following code:
var immutableCities = cities.ToImmutableList();
var newList = immutableCities.Add("Rio");
Write("Immutable list of cities:");
foreach (string city in immutableCities)
{
 Write($" {city}");
}
WriteLine();

Write("New list of cities:");
foreach (string city in newList)
{
 Write($" {city}");
}
WriteLine();

2. Run the console application, view the result, and note that the immutable list
of cities does not get modified when you call the Add method on it; instead,
it returns a new list with the newly added city, as shown in the following
output:

Immutable cities: Sydney Paris

New cities: Sydney Paris Rio

Working with spans, indexes, and ranges
One of Microsoft's goals with .NET Core 2.1 was to improve performance and
resource usage. A key .NET feature that enables this is the Span<T> type.

Good Practice: To improve performance, many applications store
a shared copy of commonly accessed objects in a central cache. To
safely allow multiple threads to work with those objects knowing
they won't change, you should make them immutable.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[274]

Using memory efficiently using spans
When manipulating collections of objects, you will often create new collections from
existing ones so that you can pass parts of a collection. This is not efficient because
duplicate objects are created in memory.

If you need to work with a subset of a collection, instead of replicating the subset into
a new collection, a span is like a window into a subset of the original collection. This
is more efficient in terms of memory usage and improves performance.

Before we look at spans in more detail, we need to understand some related new
objects: indexes and ranges.

Identifying positions with the Index type
C# 8.0 introduces two new features for identifying an item's index within a collection
and a range of items using two indexes. Why did I not introduce these new language
features in Part 1: C# 8.0?

Some C# language features require features of .NET, not all of which have been
available since version 1.0. The index and range language features require the Index
and Range value types that were introduced with .NET Core 3.0.

You learned in the previous topic that objects in a list can be accessed by passing an
integer into their indexer, as shown in the following code:

int index = 3;
Person p = people[index]; // fourth person in list or array
char letter = name[index]; // fourth letter in name

The Index value type is a more formal way of identifying a position, and supports
counting from the end, as shown in the following code:

// two ways to define the same index, 3 in from the start
var i1 = new Index(value: 3); // counts from the start
Index i2 = 3; // using implicit int conversion operator

// two ways to define the same index, 5 in from the end
var i3 = new Index(value: 5, fromEnd: true);
var i4 = ^5; // using the C# 8.0 caret operator

We had to explicitly define the Index type in the second statement because
otherwise, the compiler would treat it as an int. In the fourth statement, the caret ^
was enough for the compiler to understand our meaning.

More Information: You can read the official documentation for
Span<T> at the following link: https://docs.microsoft.com/
en-us/dotnet/api/system.span-1?view=netstandard-2.1

https://docs.microsoft.com/en-us/dotnet/api/system.span-1?view=netstandard-2.1
https://docs.microsoft.com/en-us/dotnet/api/system.span-1?view=netstandard-2.1

Working with Common .NET Types | 08

[275]

Identifying ranges with the Range type
The Range value type uses Index values to indicate the start and end of its range,
using its constructor, C# syntax, or its static methods, as shown in the following code:

Range r1 = new Range(start: new Index(3), end: new Index(7));
Range r2 = new Range(start: 3, end: 7); // using implicit int
conversion
Range r3 = 3..7; // using C# 8.0 syntax
Range r4 = Range.StartAt(3); // from index 3 to last index
Range r5 = 3..; // from index 3 to last index
Range r6 = Range.EndAt(3); // from index 0 to index 3
Range r7 = ..3; // from index 0 to index 3

Extension methods have been added to string values, int arrays, and spans
to make ranges easier to work with. These extension methods accept a range as
a parameter and return a Span<T>. This makes them very memory-efficient.

Using indexes and ranges
Let's explore using indexes and ranges to return spans:

1. Create a new console application named WorkingWithRanges, add it to the
workspace, and select it as the active project for OmniSharp.

2. In the Main method, type statements to compare using the string type's
Substring method with using ranges to extract parts of someone's name,
as shown in the following code:
string name = "Samantha Jones";

int indexOfSpace = name.IndexOf(' ');

string firstName = name.Substring(
 startIndex: 0,
 length: indexOfSpace);

string lastName = name.Substring(
 startIndex: name.Length - (name.Length - indexOfSpace - 1),
 length: name.Length - indexOfSpace - 1);

WriteLine($"First name: {firstName}, Last name: {lastName}");

ReadOnlySpan<char> nameAsSpan = name.AsSpan();

var firstNameSpan = nameAsSpan[0..lengthOfFirst];

var lastNameSpan = nameAsSpan[^lengthOfLast..^0];

WriteLine("First name: {0}, Last name: {1}",
 arg0: firstNameSpan.ToString(),
 arg1: lastNameSpan.ToString());

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[276]

3. Run the console application and view the result, as shown in the following
output:

First name: Samantha, Last name: Jones

First name: Samantha, Last name: Jones

Working with network resources
Sometimes you will need to work with network resources. The most common types
in .NET for working with network resources are shown in the following table:

Namespace Example type(s) Description

System.Net
Dns, Uri, Cookie,
WebClient, IPAddress

These are for working with DNS
servers, URIs, IP addresses, and
so on.

System.Net

FtpStatusCode,
FtpWebRequest,
FtpWebResponse

These are for working with FTP
servers.

System.Net

HttpStatusCode,
HttpWebRequest,
HttpWebResponse

These are for working with
HTTP servers; that is, websites
and services. Types from
System.Net.Http are easier to
use.

System.Net

.Http

HttpClient,
HttpMethod,
HttpRequestMessage,
HttpResponseMessage

These are for working with HTTP
servers; that is, websites and
services. You will learn how to use
these in Chapter 18, Building and
Consuming Web Services.

System.Net

.Mail

Attachment,
MailAddress,
MailMessage,
SmtpClient

These are for working with SMTP
servers; that is, sending email
messages.

System.Net

.NetworkInformation

IPStatus,
NetworkChange, Ping,
TcpStatistics

These are for working with low-
level network protocols.

More Information: You can read more about how spans work
internally at the following link: https://msdn.microsoft.
com/en-us/magazine/mt814808.aspx

https://msdn.microsoft.com/en-us/magazine/mt814808.aspx
https://msdn.microsoft.com/en-us/magazine/mt814808.aspx

Working with Common .NET Types | 08

[277]

Working with URIs, DNS, and IP addresses
Let's explore some common types for working with network resources:

1. Create a new console application project named WorkingWithNetwork
Resources, add it to the workspace, and select it as the active project for
OmniSharp.

2. At the top of the file, import the following namespace:
using System.Net;

3. In the Main method, type statements to prompt the user to enter a website
address, and then use the Uri type to break it down into its parts, including
scheme (HTTP, FTP, and so on), port number, and host, as shown in the
following code:
Write("Enter a valid web address: ");
string url = ReadLine();
if (string.IsNullOrWhiteSpace(url))
{
 url = "https://world.episerver.com/cms/?q=pagetype";
}

var uri = new Uri(url);

WriteLine($"URL: {url}");
WriteLine($"Scheme: {uri.Scheme}");
WriteLine($"Port: {uri.Port}");
WriteLine($"Host: {uri.Host}");
WriteLine($"Path: {uri.AbsolutePath}");
WriteLine($"Query: {uri.Query}");

For convenience, I have also allowed the user to press ENTER to use an
example URL:

4. Run the console application, enter a valid website address or press Enter, and
view the result, as shown in the following output:
Enter a valid web address:

URL: https://world.episerver.com/cms/?q=pagetype

Scheme: https

Port: 443

Host: world.episerver.com

Path: /cms/

Query: ?q=pagetype

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[278]

5. Add statements to the Main method to get the IP address for the entered
website, as shown in the following code:
IPHostEntry entry = Dns.GetHostEntry(uri.Host);
WriteLine($"{entry.HostName} has the following IP addresses:");
foreach (IPAddress address in entry.AddressList)
{
 WriteLine($" {address}");
}

6. Run the console application, enter a valid website address or press Enter, and
view the result, as shown in the following output:

world.episerver.com has the following IP addresses:

 217.114.90.249

Pinging a server
Now you will add code to ping a web server to check its health:

1. In Program.cs, add a statement to import
System.Net.NetworkInformation, as shown in the following code:
using System.Net.NetworkInformation;

2. Add statements to Main to get the IP addresses for the entered website, as
shown in the following code:
try
{
 var ping = new Ping();
 WriteLine("Pinging server. Please wait...");
 PingReply reply = ping.Send(uri.Host);

 WriteLine($"{uri.Host} was pinged and replied: {reply.
Status}.");

 if (reply.Status == IPStatus.Success)
 {
 WriteLine("Reply from {0} took {1:N0}ms",
 reply.Address, reply.RoundtripTime);
 }
}
catch (Exception ex)
{
 WriteLine($"{ex.GetType().ToString()} says {ex.Message}");
}

Working with Common .NET Types | 08

[279]

3. Run the console application, press Enter, view the result, and note that
Episerver's developer site does not respond to ping requests (this is often
done to avoid DDoS attacks), as shown in the following output on macOS:
world.episerver.com was pinged and replied: TimedOut.

Note that on Windows, you will see an exception is caught instead.

4. Run the console application again and enter http://google.com, as shown
in the following output:

Enter a valid web address: http://google.com

URL: http://google.com

Scheme: http

Port: 80

Host: google.com

Path: /

Query:

google.com has the following IP addresses:

 216.58.204.46

 2a00:1450:4009:804::200e

google.com was pinged and replied: Success.

Reply from 216.58.204.46 took 19ms

Working with types and attributes
Reflection is a programming feature that allows code to understand and manipulate
itself. An assembly is made up of up to four parts:

• Assembly metadata and manifest: Name, assembly, and file version,
referenced assemblies, and so on.

• Type metadata: Information about the types, their members, and so on.
• IL code: Implementation of methods, properties, constructors, and so on.
• Embedded Resources (optional): Images, strings, JavaScript, and so on.

The metadata comprises items of information about your code. The metadata is
applied to your code using attributes.

Attributes can be applied at multiple levels: to assemblies, to types, and to their
members, as shown in the following code:

// an assembly-level attribute

http://google.com/
http://google.com/
http://google.com/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[280]

[assembly: AssemblyTitle("Working with Reflection")]

// a type-level attribute
[Serializable]
public class Person

 // a member-level attribute
 [Obsolete("Deprecated: use Run instead.")]
 public void Walk()
 {
 // ...
 }

Versioning of assemblies
Version numbers in .NET are a combination of three numbers, with two optional
additions. If you follow the rules of semantic versioning:

• Major: Breaking changes.
• Minor: Non-breaking changes, including new features and bug fixes.
• Patch: Non-breaking bug fixes.

Optionally, a version can include these:

• Prerelease: Unsupported preview releases.
• Build number: Nightly builds.

Reading assembly metadata
Let's explore working with attributes:

Good Practice: When updating a NuGet package, you
should specify an optional flag to make sure that you only
upgrade to the highest minor to avoid breaking changes, or
to the highest patch if you are extra cautious and only want
to receive bug fixes, as shown in the following commands:
Update-Package Newtonsoft.Json -ToHighestMinor
Update-Package EPiServer.Cms -ToHighestPatch

Good Practice: Follow the rules of semantic versioning, as described
at the following link: http://semver.org

http://semver.org

Working with Common .NET Types | 08

[281]

1. Create a new console application project named WorkingWithReflection,
add it to the workspace, and select it as the active project for OmniSharp.

2. At the top of the file, import the following namespace:
using System.Reflection;

3. In the Main method, enter statements to get the console app's assembly,
output its name and location, and get all assembly-level attributes and output
their types, as shown in the following code:
WriteLine("Assembly metadata:");
Assembly = Assembly.GetEntryAssembly();
WriteLine($" Full name: {assembly.FullName}");
WriteLine($" Location: {assembly.Location}");

var attributes = assembly.GetCustomAttributes();
WriteLine($" Attributes:");
foreach (Attribute a in attributes)
{
 WriteLine($" {a.GetType()}");
}

4. Run the console application and view the result, as shown in the following
output:
Assembly metadata:

 Full name: WorkingWithReflection, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=null

 Location: /Users/markjprice/Code/Chapter08/
WorkingWithReflection/bin/Debug/netcoreapp 3.0/
WorkingWithReflection.dll

 Attributes:

 System.Runtime.CompilerServices.
CompilationRelaxationsAttribute

 System.Runtime.CompilerServices.RuntimeCompatibilityAttribute

 System.Diagnostics.DebuggableAttribute

 System.Runtime.Versioning.TargetFrameworkAttribute

 System.Reflection.AssemblyCompanyAttribute

 System.Reflection.AssemblyConfigurationAttribute

 System.Reflection.AssemblyFileVersionAttribute

 System.Reflection.AssemblyInformationalVersionAttribute

 System.Reflection.AssemblyProductAttribute

 System.Reflection.AssemblyTitleAttribute

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[282]

Now that we know some of the attributes decorating the assembly, we can
ask for them specifically.

5. Add statements to the end of the Main method to get the
AssemblyInformationalVersionAttribute and AssemblyCompany
Attribute classes, as shown in the following code:
var version = assembly.GetCustomAttribute
 <AssemblyInformationalVersionAttribute>();

WriteLine($" Version: {version.InformationalVersion}");

var company = assembly.GetCustomAttribute
 <AssemblyCompanyAttribute>();

WriteLine($" Company: {company.Company}");

6. Run the console application and view the result, as shown in the following
output:
 Version: 1.0.0
 Company: WorkingWithReflection

Hmm, let's explicitly set this information. The old .NET Framework way to
set these values was to add attributes in the C# source code file, as shown in
the following code:

[assembly: AssemblyCompany("Packt Publishing")]
[assembly: AssemblyInformationalVersion("1.3.0")]

The Roslyn compiler used by .NET Core sets these attributes automatically,
so we can't use the old way. Instead, they can be set in the project file.

7. Modify WorkingWithReflection.csproj, as shown in the following
markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 <Version>1.3.0</Version>
 <Company>Packt Publishing</Company>
 </PropertyGroup>

</Project>

8. Run the console application and view the result, as shown in the following
output:

 Version: 1.3.0

 Company: Packt Publishing

Working with Common .NET Types | 08

[283]

Creating custom attributes
You can define your own attributes by inheriting from the Attribute class:

1. Add a class file to your project named CoderAttribute.cs.
2. Define an attribute class that can decorate either classes or methods with two

properties to store the name of a coder and the date they last modified some
code, as shown in the following code:
using System;

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method,
 AllowMultiple = true)]
public class CoderAttribute : Attribute
{
 public string Coder { get; set; }
 public DateTime LastModified { get; set; }

 public CoderAttribute(string coder, string lastModified)
 {
 Coder = coder;
 LastModified = DateTime.Parse(lastModified);
 }
}

3. In the Program class, add a method named DoStuff, and decorate it with the
Coder attribute with data about two coders, as shown in the following code:
[Coder("Mark Price", "22 August 2019")]
[Coder("Johnni Rasmussen", "13 September 2019")]
public static void DoStuff()
{

}

4. In Program.cs, import System.Linq, as shown in the following code:
using System.Linq; // to use OrderByDescending

You will learn more about LINQ in Chapter 12, Querying and
Manipulating Data Using LINQ. We have imported it to use its
OrderByDescending method.

5. In the Main method, add code to get the types, enumerate their members,
read any Coder attributes on those members, and write the information
to the console, as shown in the following code:
WriteLine();
WriteLine($"* Types:");
Type[] types = assembly.GetTypes();

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[284]

foreach (Type in types)
{
 WriteLine();
 WriteLine($"Type: {type.FullName}");
 MemberInfo[] members = type.GetMembers();
 foreach (MemberInfo member in members)
 {
 WriteLine("{0}: {1} ({2})",
 arg0: member.MemberType,
 arg1: member.Name,
 arg2: member.DeclaringType.Name);

 var coders = member.GetCustomAttributes<CoderAttribute>()
 .OrderByDescending(c => c.LastModified);

 foreach (CoderAttribute coder in coders)
 {
 WriteLine("-> Modified by {0} on {1}",
 coder.Coder, coder.LastModified.ToShortDateString());
 }
 }
}

6. Run the console application and view the result, as shown in the following
output:

* Types:

Type: CoderAttribute

Method: get_Coder (CoderAttribute)

Method: set_Coder (CoderAttribute)

Method: get_LastModified (CoderAttribute)

Method: set_LastModified (CoderAttribute)

Method: Equals (Attribute)

Method: GetHashCode (Attribute)

Method: get_TypeId (Attribute)

Method: Match (Attribute)

Method: IsDefaultAttribute (Attribute)

Method: ToString (Object)

Method: GetType (Object)

Constructor: .ctor (CoderAttribute)

Property: Coder (CoderAttribute)

Property: LastModified (CoderAttribute)

Working with Common .NET Types | 08

[285]

Property: TypeId (Attribute)

Type: WorkingWithReflection.Program

Method: DoStuff (Program)

-> Modified by Johnni Rasmussen on 13/09/2019

-> Modified by Mark Price on 22/08/2019

Method: ToString (Object)

Method: Equals (Object)

Method: GetHashCode (Object)

Method: GetType (Object)

Constructor: .ctor (Program)

Type: WorkingWithReflection.Program+<>c

Method: ToString (Object)

Method: Equals (Object)

Method: GetHashCode (Object)

Method: GetType (Object)

Constructor: .ctor (<>c)

Field: <>9 (<>c)

Field: <>9__0_0 (<>c)

As an optional challenge, add statements to your console application
to filter compiler-generated types by skipping types decorated with
CompilerGeneratedAttribute.

Doing more with reflection
This is just a taster of what can be achieved with reflection. We only used reflection
to read metadata from our code. Reflection can also do the following:

• Dynamically load assemblies that are not currently referenced:
https://docs.microsoft.com/en-us/dotnet/standard/assembly/
unloadability-howto

More Information: What is the
WorkingWithReflection.Program+<>c type? It is a compiler-
generated display class. <> indicates compiler-generated and
c indicates a display class. You can read more at the following
link: http://stackoverflow.com/a/2509524/55847

https://docs.microsoft.com/en-us/dotnet/standard/assembly/unloadability-howto
https://docs.microsoft.com/en-us/dotnet/standard/assembly/unloadability-howto
http://stackoverflow.com/a/2509524/55847
http://stackoverflow.com/a/2509524/55847

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[286]

• Dynamically execute code: https://docs.microsoft.com/en-us/dotnet/
api/system.reflection.methodbase.invoke?view=netcore-3.0

• Dynamically generate new code and assemblies: https://docs.
microsoft.com/en-us/dotnet/api/system.reflection.emit.assemblyb
uilder?view=netcore-3.0

Internationalizing your code
Internationalization is the process of enabling your code to run correctly all over the
world. It has two parts: globalization and localization.

Globalization is about writing your code to accommodate multiple languages and
region combinations. The combination of a language and a region is known as a
culture. It is important for your code to know both the language and region because
the date and currency formats are different in Quebec and Paris, despite them both
using the French language.

There are International Organization for Standardization (ISO) codes for all
culture combinations. For example, in the code da-DK, da indicates the Danish
language and DK indicates the Denmark region, and in the code fr-CA, fr indicates
the French language and CA indicates the Canadian region.

ISO is not an acronym. ISO is a reference to the Greek word isos (which means equal).

Localization is about customizing the user interface to support a language, for
example, changing the label of a button to be Close (en) or Fermer (fr). Since
localization is more about the language, it doesn't always need to know about the
region, although ironically enough, standardization (en-US) and standardisation
(en-GB) suggest otherwise.

Internationalization is a huge topic on which several thousand-page books have
been written. In this section, you will get a brief introduction to the basics using the
CultureInfo type in the System.Globalization namespace:

1. Create a new console application project named Internationalization,
add it to the workspace, and select it as the active project for OmniSharp.

2. At the top of the file, import the following namespace:
using System.Globalization;

3. In the Main method, enter statements to get the current globalization and
localization cultures and write some information about them to the console,
and then prompt the user to enter a new culture code and show how that
affects the formatting of common values such as dates and currency, as
shown in the following code:

https://docs.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.invoke?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.invoke?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.assemblybuilder?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.reflection.emit.assemblybuilder?view=netcore-3.0

Working with Common .NET Types | 08

[287]

CultureInfo globalization = CultureInfo.CurrentCulture;
CultureInfo localization = CultureInfo.CurrentUICulture;

WriteLine("The current globalization culture is {0}: {1}",
 globalization.Name, globalization.DisplayName);
WriteLine("The current localization culture is {0}: {1}",
 localization.Name, localization.DisplayName);
WriteLine();

WriteLine("en-US: English (United States)");
WriteLine("da-DK: Danish (Denmark)");
WriteLine("fr-CA: French (Canada)");
Write("Enter an ISO culture code: ");
string newCulture = ReadLine();
if (!string.IsNullOrEmpty(newCulture))
{
 var ci = new CultureInfo(newCulture);
 CultureInfo.CurrentCulture = ci;
 CultureInfo.CurrentUICulture = ci;
}
WriteLine();

Write("Enter your name: ");
string name = ReadLine();
Write("Enter your date of birth: ");
string dob = ReadLine();
Write("Enter your salary: ");
string salary = ReadLine();

DateTime date = DateTime.Parse(dob);
int minutes = (int)DateTime.Today.Subtract(date).TotalMinutes;
decimal earns = decimal.Parse(salary);

WriteLine(
 "{0} was born on a {1:dddd}, is {2:N0} minutes old, and earns
{3:C}",
 name, date, minutes, earns);

When you run an application, it automatically sets its thread to use the
culture of the operating system. I am running my code in London, UK, so the
thread is set to English (United Kingdom).
The code prompts the user to enter an alternative ISO code. This allows your
applications to replace the default culture at runtime.
The application then uses standard format codes to output the day of
the week using format code dddd; the number of minutes with thousand
separators using format code N0; and the salary with the currency symbol.
These adapt automatically, based on the thread's culture.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[288]

4. Run the console application and enter en-GB for the ISO code and then enter
some sample data including a date in a format valid for British English, as
shown in the following output:

Enter an ISO culture code: en-GB

Enter your name: Alice

Enter your date of birth: 30/3/1967

Enter your salary: 23500

Alice was born on a Thursday, is 25,469,280 minutes old, and earns

£23,500.00

Rerun the application and try a different culture, such as Danish in Denmark,
as shown in the following output:

Enter an ISO culture code: da-DK

Enter your name: Mikkel

Enter your date of birth: 12/3/1980

Enter your salary: 340000

Mikkel was born on a onsdag, is 18.656.640 minutes old, and earns
340.000,00 kr.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore with deeper research into the topics in this chapter.

Exercise 8.1 – Test your knowledge
Use the web to answer the following questions:

1. What is the maximum number of characters that can be stored in a string
variable?

2. When and why should you use a SecureString class?
3. When is it appropriate to use a StringBuilder type?
4. When should you use a LinkedList<T> class?

Good Practice: Consider whether your application needs to be
internationalized and plan for that before you start coding! Write
down all the pieces of text in the user interface that will need to be
localized. Think about all the data that will need to be globalized
(date formats, number formats, and sorting text behavior).

Working with Common .NET Types | 08

[289]

5. When should you use a SortedDictionary<T> class rather than a
SortedList<T> class?

6. What is the ISO culture code for Welsh?
7. What is the difference between localization, globalization, and

internationalization?
8. In a regular expression, what does $ mean?
9. In a regular expression, how could you represent digits?
10. Why should you not use the official standard for email addresses to create a

regular expression to validate a user's email address?

Exercise 8.2 – Practice regular expressions
Create a console application named Exercise02 that prompts the user to enter
a regular expression, and then prompts the user to enter some input and compare the
two for a match until the user presses Esc, as shown in the following output:

The default regular expression checks for at least one digit.

Enter a regular expression (or press ENTER to use the default): ^[a-z]+$

Enter some input: apples

apples matches ^[a-z]+$? True

Press ESC to end or any key to try again.

Enter a regular expression (or press ENTER to use the default): ^[a-z]+$

Enter some input: abc123xyz

abc123xyz matches ^[a-z]+$? False

Press ESC to end or any key to try again.

Exercise 8.3 – Practice writing extension
methods
Create a class library named Exercise03 that defines extension methods that extend
number types such as BigInteger and int with a method named ToWords that
returns a string describing the number; for example, 18,000,000 would be eighteen
million, and 18,456,002,032,011,000,007 would be eighteen quintillion, four hundred
and fifty six quadrillion, two trillion, thirty two billion, eleven million, and seven.

More Information: You can read more about names for large
numbers at the following link: https://en.wikipedia.org/
wiki/Names_of_large_numbers

https://en.wikipedia.org/wiki/Names_of_large_numbers
https://en.wikipedia.org/wiki/Names_of_large_numbers

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[290]

Exercise 8.4 – Explore topics
Use the following links to read in more detail the topics covered in this chapter:

• .NET Core API Reference: https://docs.microsoft.com/en-us/dotnet/
api/index?view=netcore-3.0

• String Class: https://docs.microsoft.com/en-us/dotnet/api/system.
string?view=netcore-3.0

• Regex Class: https://docs.microsoft.com/en-us/dotnet/api/system.
text.regularexpressions.regex?view=netcore-3.0

• Regular expressions in .NET: https://docs.microsoft.com/en-us/
dotnet/articles/standard/base-types/regular-expressions

• Regular Expression Language - Quick Reference: https://docs.
microsoft.com/en-us/dotnet/articles/standard/base-types/quick-
ref

• Collections (C# and Visual Basic): https://docs.microsoft.com/en-us/
dotnet/api/system.collections?view=netcore-3.0

• Extending Metadata Using Attributes: https://docs.microsoft.com/en-
us/dotnet/standard/attributes/

• Globalizing and localizing .NET applications: https://docs.microsoft.
com/en-us/dotnet/standard/globalization-localization/

Summary
In this chapter, you explored some choices for types to store and manipulate
numbers and text, including regular expressions, which collections to use for
storing multiple items; worked with indexes, ranges, and spans; used some network
resources; reflected on code and attributes; and learned how to internationalize your
code. In the next chapter, we will manage files and streams, encode and decode text,
and perform serialization.

https://docs.microsoft.com/en-us/dotnet/api/index?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/index?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.string?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/regular-expressions
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/regular-expressions
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/regular-expressions
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/quick-ref
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/quick-ref
https://docs.microsoft.com/en-us/dotnet/api/system.collections?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections?view=netcore-3.0
https://docs.microsoft.com/en-us/dotnet/standard/attributes/
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/

[291]

Chapter 09
Working with Files,

Streams, and Serialization
This chapter is about reading and writing to files and streams, text encoding,
and serialization. We will be covering the following topics:

• Managing the filesystem
• Reading and writing with streams
• Encoding and decoding text
• Serializing object graphs

Managing the filesystem
Your applications will often need to perform input and output with files and
directories in different environments. The System and System.IO namespaces
contain classes for this purpose.

Handling cross-platform environments and
filesystems
Let's explore how to handle cross-platform environments like the differences
between Windows and Linux or macOS.

1. Create a new console application named WorkingWithFileSystems
in a folder named Chapter09.

2. Save the workspace as Chapter09 and add WorkingWithFileSystems to it.
3. Import the System.IO namespace, and statically import the

System.Console, System.IO.Directory, System.Environment,
and System.IO.Path types, as shown in the following code:
using System.IO; // types for managing the filesystem

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[292]

using static System.Console;
using static System.IO.Directory;
using static System.IO.Path;
using static System.Environment;

Paths are different for Windows, macOS, and Linux, so we will start by
exploring how .NET Core handles this.

4. Create a static OutputFileSystemInfo method, and write statements to
do the following:

 ° Output the path and directory separation characters
 ° Output the path of the current directory
 ° Output some special paths for system files, temporary files, and

documents

static void OutputFileSystemInfo()
{
 WriteLine("{0,-33} {1}", "Path.PathSeparator", PathSeparator);
 WriteLine("{0,-33} {1}", "Path.DirectorySeparatorChar",
 DirectorySeparatorChar);
 WriteLine("{0,-33} {1}", "Directory.GetCurrentDirectory()",
 GetCurrentDirectory());
 WriteLine("{0,-33} {1}", "Environment.CurrentDirectory",
 CurrentDirectory);
 WriteLine("{0,-33} {1}", "Environment.SystemDirectory",
 SystemDirectory);
 WriteLine("{0,-33} {1}", "Path.GetTempPath()", GetTempPath());

 WriteLine("GetFolderPath(SpecialFolder");
 WriteLine("{0,-33} {1}", " .System)",
 GetFolderPath(SpecialFolder.System));
 WriteLine("{0,-33} {1}", " .ApplicationData)",
 GetFolderPath(SpecialFolder.ApplicationData));
 WriteLine("{0,-33} {1}", " .MyDocuments)",
 GetFolderPath(SpecialFolder.MyDocuments));
 WriteLine("{0,-33} {1}", " .Personal)",
 GetFolderPath(SpecialFolder.Personal));
}

The Environment type has many other useful members, including
the GetEnvironmentVariables method and the OSVersion and
ProcessorCount properties.

5. In the Main method, call OutputFileSystemInfo, as shown in the following
code:
static void Main(string[] args)
{
 OutputFileSystemInfo();
}

Working with Files, Streams, and Serialization | 09

[293]

6. Run the console application and view the result, as shown in the following
screenshot when run on Windows:

Windows uses a backslash for the directory separator character. macOS and Linux
use a forward slash for the directory separator character.

Managing drives
To manage drives, use DriveInfo, which has a static method that returns information
about all the drives connected to your computer. Each drive has a drive type.

1. Create a WorkWithDrives method, and write statements to get all the drives
and output their name, type, size, available free space, and format, but only
if the drive is ready, as shown in the following code:
static void WorkWithDrives()
{
 WriteLine("{0,-30} | {1,-10} | {2,-7} | {3,18} | {4,18}",
 "NAME", "TYPE", "FORMAT", "SIZE (BYTES)", "FREE SPACE");

 foreach (DriveInfo drive in DriveInfo.GetDrives())
 {
 if (drive.IsReady)
 {
 WriteLine(
 "{0,-30} | {1,-10} | {2,-7} | {3,18:N0} | {4,18:N0}",
 drive.Name, drive.DriveType, drive.DriveFormat,
 drive.TotalSize, drive.AvailableFreeSpace);
 }
 else
 {
 WriteLine("{0,-30} | {1,-10}", drive.Name, drive.DriveType);
 }

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[294]

 }
}

2. In Main, comment out the previous method call, and add a call to
WorkWithDrives, as shown in the following code:
static void Main(string[] args)
{
 // OutputFileSystemInfo();
 WorkWithDrives();
}

3. Run the console application and view the result, as shown in the following
screenshot:

Managing directories
To manage directories, use the Directory, Path, and Environment static classes.

These types include many properties and methods for working with the filesystem,
as shown in the following diagram:

Good Practice: Check that a drive is ready before reading properties
such as TotalSize or you will see an exception thrown with
removable drives.

Working with Files, Streams, and Serialization | 09

[295]

When constructing custom paths, you must be careful to write your code so that it
makes no assumptions about the platform, for example, what to use for the directory
separator character.

1. Create a WorkWithDirectories method, and write statements to do the
following:

 ° Define a custom path under the user's home directory by creating an
array of strings for the directory names, and then properly combining
them with the Path type's static Combine method.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[296]

 ° Check for the existence of the custom directory path using the static
Exists method of the Directory class.

 ° Create and then delete the directory, including files and
subdirectories within it, using the static CreateDirectory and
Delete methods of the Directory class.

static void WorkWithDirectories()
{
 // define a directory path for a new folder
 // starting in the user's folder
 var newFolder = Combine(
 GetFolderPath(SpecialFolder.Personal),
 "Code", "Chapter09", "NewFolder");

 WriteLine($"Working with: {newFolder}");

 // check if it exists
 WriteLine($"Does it exist? {Exists(newFolder)}");

 // create directory
 WriteLine("Creating it...");
 CreateDirectory(newFolder);
 WriteLine($"Does it exist? {Exists(newFolder)}");

 Write("Confirm the directory exists, and then press ENTER: ");
 ReadLine();

 // delete directory
 WriteLine("Deleting it...");
 Delete(newFolder, recursive: true);
 WriteLine($"Does it exist? {Exists(newFolder)}");
}

2. In the Main method, comment out the previous method call, and add a call to
WorkWithDirectories, as shown in the following code:
static void Main(string[] args)
{
 // OutputFileSystemInfo();
 // WorkWithDrives();
 WorkWithDirectories();
}

3. Run the console application and view the result, and use your favorite file
management tool to confirm that the directory has been created before
pressing Enter to delete it, as shown in the following output:
Working with: /Users/markjprice/Code/Chapter09/NewFolder

Does it exist? False

Working with Files, Streams, and Serialization | 09

[297]

Creating it...

Does it exist? True

Confirm the directory exists, and then press ENTER:

Deleting it...

Does it exist? False

Managing files
When working with files, you could statically import the File type, just as we did
for the Directory type, but, for the next example, we will not, because it has some of
the same methods as the Directory type and they would conflict. The File type has
a short enough name not to matter in this case.

1. Create a WorkWithFiles method, and write statements to do the following:
 ° Check for the existence of a file.
 ° Create a text file.
 ° Write a line of text to the file.
 ° Close the file to release system resources and file locks (this would

normally be done inside a try-finally statement block to ensure
that the file is closed even if an exception occurs when writing to it).

 ° Copy the file to a backup.
 ° Delete the original file.
 ° Read the backup file's contents and then close it.

static void WorkWithFiles()

{

 // define a directory path to output files

 // starting in the user's folder

 var dir = Combine(

 GetFolderPath(SpecialFolder.Personal),

 "Code", "Chapter09", "OutputFiles");

 CreateDirectory(dir);

 // define file paths

 string textFile = Combine(dir, "Dummy.txt");

 string backupFile = Combine(dir, "Dummy.bak");

 WriteLine($"Working with: {textFile}");

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[298]

 // check if a file exists

 WriteLine($"Does it exist? {File.Exists(textFile)}");

 // create a new text file and write a line to it

 StreamWriter textWriter = File.CreateText(textFile);

 textWriter.WriteLine("Hello, C#!");

 textWriter.Close(); // close file and release resources

 WriteLine($"Does it exist? {File.Exists(textFile)}");

 // copy the file, and overwrite if it already exists

 File.Copy(sourceFileName: textFile,

 destFileName: backupFile, overwrite: true);

 WriteLine(

 $"Does {backupFile} exist? {File.Exists(backupFile)}");

 Write("Confirm the files exist, and then press ENTER: ");

 ReadLine();

 // delete file

 File.Delete(textFile);

 WriteLine($"Does it exist? {File.Exists(textFile)}");

 // read from the text file backup

 WriteLine($"Reading contents of {backupFile}:");

 StreamReader textReader = File.OpenText(backupFile);

 WriteLine(textReader.ReadToEnd());

 textReader.Close();

}

2. In Main, comment out the previous method call, and add a call to
WorkWithFiles.

3. Run the application and view the result, as shown in the following output:

Working with: /Users/markjprice/Code/Chapter09/OutputFiles/Dummy.
txt

Does it exist? False

Does it exist? True

Does /Users/markjprice/Code/Chapter09/OutputFiles/Dummy.bak exist?
True

Working with Files, Streams, and Serialization | 09

[299]

Confirm the files exist, and then press ENTER:

Does it exist? False

Reading contents of /Users/markjprice/Code/Chapter09/OutputFiles/
Dummy.bak:

Hello, C#!

Managing paths
Sometimes, you need to work with parts of a path; for example, you might want to
extract just the folder name, the filename, or the extension. Sometimes, you need to
generate temporary folders and filenames. You can do this with static methods of the
Path class.

1. Add the following statements to the end of the WorkWithFiles method:
// Managing paths
WriteLine($"Folder Name: {GetDirectoryName(textFile)}");
WriteLine($"File Name: {GetFileName(textFile)}");
WriteLine("File Name without Extension: {0}",
 GetFileNameWithoutExtension(textFile));
WriteLine($"File Extension: {GetExtension(textFile)}");
WriteLine($"Random File Name: {GetRandomFileName()}");
WriteLine($"Temporary File Name: {GetTempFileName()}");

2. Run the application and view the result, as shown in the following output:

Folder Name: /Users/markjprice/Code/Chapter09/OutputFiles

File Name: Dummy.txt

File Name without Extension: Dummy

File Extension: .txt

Random File Name: u45w1zki.co3

Temporary File Name:

/var/folders/tz/xx0y_wld5sx0nv0fjtq4tnpc0000gn/T/tmpyqrepP.tmp

GetTempFileName creates a zero-byte file and returns its name, ready for you to use.
GetRandomFileName just returns a filename; it doesn't create the file.

Getting file information
To get more information about a file or directory, for example, its size or when it was
last accessed, you can create an instance of the FileInfo or DirectoryInfo class.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[300]

FileInfo and DirectoryInfo both inherit from FileSystemInfo, so they both have
members such as LastAccessTime and Delete, as shown in the following diagram:

1. Let's write some code that uses a FileInfo instance for efficiently
performing multiple actions on a file. Add statements to the end of the
WorkWithFiles method to create an instance of FileInfo for the backup file
and write information about it to the console, as shown in the following code:
var info = new FileInfo(backupFile);
WriteLine($"{backupFile}:");
WriteLine($"Contains {info.Length} bytes");
WriteLine($"Last accessed {info.LastAccessTime}");
WriteLine($"Has readonly set to {info.IsReadOnly}");

2. Run the application and view the result, as shown in the following output:

/Users/markjprice/Code/Chapter09/OutputFiles/Dummy.bak:

Contains 11 bytes

Last accessed 26/11/2018 09:08:26

Has readonly set to False

Working with Files, Streams, and Serialization | 09

[301]

The number of bytes might be different on your operating system because operating
systems can use different line endings.

Controlling how you work with files
When working with files, you often need to control how they are opened. The
File.Open method has overloads to specify additional options using enum values.
The enum types are as follows:

• FileMode: This controls what you want to do with the file, like CreateNew,
OpenOrCreate, or Truncate.

• FileAccess: This controls what level of access you need, like ReadWrite.
• FileShare: This controls locks on the file to allow other processes the

specified level of access, like Read.

You might want to open a file and read from it, and allow other processes to read it
too, as shown in the following code:

FileStream file = File.Open(pathToFile,
 FileMode.Open, FileAccess.Read, FileShare.Read);

There is also an enum for attributes of a file as follows:

• FileAttributes: This is to check a FileSystemInfo-derived types
Attributes property for values like Archive and Encrypted.

You could check a file or directory's attributes, as shown in the following code:

var info = new FileInfo(backupFile);
WriteLine("Is the backup file compressed? {0}",
 info.Attributes.HasFlag(FileAttributes.Compressed));

Reading and writing with streams
A stream is a sequence of bytes that can be read from and written to. Although files
can be processed rather like arrays, with random access provided by knowing the
position of a byte within the file, it can be useful to process files as a stream in which
the bytes can be accessed in sequential order.

Streams can also be used to process terminal input and output and networking
resources such as sockets and ports that do not provide random access and cannot
seek to a position. You can write code to process some arbitrary bytes without
knowing or caring where it comes from. Your code simply reads or writes to
a stream, and another piece of code handles where the bytes are actually stored.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[302]

There is an abstract class named Stream that represents a stream. There are many
classes that inherit from this base class, including FileStream, MemoryStream,
BufferedStream, GZipStream, and SslStream, so they all work the same way.

All streams implement IDisposable, so they have a Dispose method to release
unmanaged resources.

In the following table are some of the common members of the Stream class:

Member Description

CanRead, CanWrite This determines whether you can read from and write
to the stream.

Length, Position This determines the total number of bytes and the current
position within the stream. These properties may throw
an exception for some types of stream.

Dispose() This closes the stream and releases its resources.

Flush() If the stream has a buffer, then the bytes in the buffer
are written to the stream and the buffer is cleared.

Read(), ReadAsync() This reads a specified number of bytes from the stream
into a byte array and advances the position.

ReadByte() This reads the next byte from the stream and advances
the position.

Seek() This moves the position to the specified position
(if CanSeek is true).

Write(), WriteAsync() This writes the contents of a byte array into the stream.

WriteByte() This writes a byte to the stream.

In the following table are some storage streams that represent a location where the
bytes will be stored:

Namespace Class Description

System.IO FileStream Bytes stored in the filesystem.

System.IO MemoryStream Bytes stored in memory in the current
process.

System.Net.Sockets NetworkStream Bytes stored at a network location.

In the following table are some function streams that cannot exist on their own. They
can only be "plugged onto" other streams to add functionality:

Working with Files, Streams, and Serialization | 09

[303]

Namespace Class Description

System.Security
.Cryptography

CryptoStream This encrypts and decrypts
the stream.

System.IO.
Compression

GZipStream,
DeflateStream

This compresses and
decompresses the stream.

System.Net.Security AuthenticatedStream This sends credentials across
the stream.

Although there will be occasions where you need to work with streams at a low
level, most often, you can plug helper classes into the chain to make things easier.

All the helper types for streams implement IDisposable, so they have a Dispose
method to release unmanaged resources.

In the following table are some helper classes to handle common scenarios:

Namespace Class Description

System.IO StreamReader This reads from the underlying stream as text.

System.IO StreamWriter This writes to the underlying stream as text.

System.IO BinaryReader This reads from streams as .NET types. For example,
the ReadDecimal method reads the next 16 bytes
from the underlying stream as a decimal value and
the ReadInt32 method reads the next 4 bytes as an
int value.

System.IO BinaryWriter This writes to streams as .NET types. For example, the
Write method with a decimal parameter writes 16
bytes to the underlying stream and the Write method
with an int parameter writes 4 bytes.

System.Xml XmlReader This reads from the underlying stream as XML.

System.Xml XmlWriter This writes to the underlying stream as XML.

Writing to text streams
Let's type some code to write text to a stream.

1. Create a new console application project named WorkingWithStreams, add it
to the Chapter09 workspace, and select the project as active for OmniSharp.

2. Import the System.IO and System.Xml namespaces, and statically import
the System.Console, System.Environment and System.IO.Path types.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[304]

3. Define an array of string values, perhaps containing Viper pilot call signs,
and create a WorkWithText method that enumerates the call signs, writing
each one on its own line in a single text file, as shown in the following code:
// define an array of Viper pilot call signs
static string[] callsigns = new string[] {
 "Husker", "Starbuck", "Apollo", "Boomer",
 "Bulldog", "Athena", "Helo", "Racetrack" };

static void WorkWithText()
{
 // define a file to write to
 string textFile = Combine(CurrentDirectory, "streams.txt");

 // create a text file and return a helper writer
 StreamWriter text = File.CreateText(textFile);

 // enumerate the strings, writing each one
 // to the stream on a separate line
 foreach (string item in callsigns)
 {
 text.WriteLine(item);
 }
 text.Close(); // release resources

 // output the contents of the file
 WriteLine("{0} contains {1:N0} bytes.",
 arg0: textFile,
 arg1: new FileInfo(textFile).Length);

 WriteLine(File.ReadAllText(textFile));
}

4. In Main, call the WorkWithText method.
5. Run the application and view the result, as shown in the following output:

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.txt
contains 60 bytes.

Husker

Starbuck

Apollo

Boomer

Bulldog

Athena

Helo

Racetrack

6. Open the file that was created and check that it contains the list of call signs.

Working with Files, Streams, and Serialization | 09

[305]

Writing to XML streams
There are two ways to write an XML element, as follows:

• WriteStartElement and WriteEndElement: use this pair when an element
might have child elements.

• WriteElementString: use this when an element does not have children.

Now, let's try storing the same array of string values in an XML file.

1. Create a WorkWithXml method that enumerates the call signs, writing each
one as an element in a single XML file, as shown in the following code:
static void WorkWithXml()
{
 // define a file to write to
 string xmlFile = Combine(CurrentDirectory, "streams.xml");

 // create a file stream
 FileStream xmlFileStream = File.Create(xmlFile);

 // wrap the file stream in an XML writer helper
 // and automatically indent nested elements
 XmlWriter xml = XmlWriter.Create(xmlFileStream,
 new XmlWriterSettings { Indent = true });

 // write the XML declaration
 xml.WriteStartDocument();

 // write a root element
 xml.WriteStartElement("callsigns");

 // enumerate the strings writing each one to the stream
 foreach (string item in callsigns)
 {
 xml.WriteElementString("callsign", item);
 }

 // write the close root element
 xml.WriteEndElement();

 // close helper and stream
 xml.Close();
 xmlFileStream.Close();

 // output all the contents of the file
 WriteLine("{0} contains {1:N0} bytes.",
 arg0: xmlFile,

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[306]

 arg1: new FileInfo(xmlFile).Length);

 WriteLine(File.ReadAllText(xmlFile));
}

2. In Main, comment the previous method call, and add a call to the
WorkWithXml method.

3. Run the application and view the result, as shown in the following the
output:

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.xml
contains 310 bytes.

<?xml version="1.0" encoding="utf-8"?>

<callsigns>

 <callsign>Husker</callsign>

 <callsign>Starbuck</callsign>

 <callsign>Apollo</callsign>

 <callsign>Boomer</callsign>

 <callsign>Bulldog</callsign>

 <callsign>Athena</callsign>

 <callsign>Helo</callsign>

 <callsign>Racetrack</callsign>

</callsigns>

Disposing of file resources
When you open a file to read or write to it, you are using resources outside of .NET.
These are called unmanaged resources and must be disposed of when you are done
working with them. To guarantee that they are disposed of, we can call the Dispose
method inside of a finally block.

Let's improve our previous code that works with XML to properly dispose of its
unmanaged resources.

1. Modify the WorkWithXml method, as shown highlighted in the following
code:
static void WorkWithXml()
{
 FileStream xmlFileStream = null;
 XmlWriter xml = null;

 try
 {

Working with Files, Streams, and Serialization | 09

[307]

 // define a file to write to
 string xmlFile = Combine(CurrentDirectory, "streams.xml");

 // create a file stream
 xmlFileStream = File.Create(xmlFile);

 // wrap the file stream in an XML writer helper
 // and automatically indent nested elements
 xml = XmlWriter.Create(xmlFileStream,
 new XmlWriterSettings { Indent = true });

 // write the XML declaration
 xml.WriteStartDocument();

 // write a root element
 xml.WriteStartElement("callsigns");

 // enumerate the strings writing each one to the stream
 foreach (string item in callsigns)
 {
 xml.WriteElementString("callsign", item);
 }

 // write the close root element
 xml.WriteEndElement();

 // close helper and stream
 xml.Close();
 xmlFileStream.Close();

 // output all the contents of the file
 WriteLine($"{0} contains {1:N0} bytes.",
 arg0: xmlFile,
 arg1: new FileInfo(xmlFile).Length);

 WriteLine(File.ReadAllText(xmlFile));
 }
 catch(Exception ex)
 {
 // if the path doesn't exist the exception will be caught
 WriteLine($"{ex.GetType()} says {ex.Message}");
 }
 finally
 {
 if (xml != null)
 {
 xml.Dispose();
 WriteLine("The XML writer's unmanaged resources have been
disposed.");

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[308]

 }
 if (xmlFileStream != null)
 {
 xmlFileStream.Dispose();
 WriteLine("The file stream's unmanaged resources have been
disposed.");
 }
 }
}

You could also go back and modify the other methods you previously
created but I will leave that as an optional exercise for you.

2. Run the application and view the result, as shown in the following output:

The XML writer's unmanaged resources have been disposed.

The file stream's unmanaged resources have been disposed.

You can simplify the code that needs to check for a null object and then call its
Dispose method by using the using statement.

Confusingly, there are two uses for the using keyword: importing a namespace and
generating a finally statement that calls Dispose on an object that implements
IDisposable.

The compiler changes a using statement block into a try-finally statement
without a catch statement. You can use nested try statements; so, if you do want
to catch any exceptions, you can, as shown in the following code example:

using (FileStream file2 = File.OpenWrite(
 Path.Combine(path, "file2.txt")))
{
 using (StreamWriter writer2 = new StreamWriter(file2))
 {
 try
 {
 writer2.WriteLine("Welcome, .NET Core!");
 }
 catch(Exception ex)
 {
 WriteLine($"{ex.GetType()} says {ex.Message}");
 }
 } // automatically calls Dispose if the object is not null
} // automatically calls Dispose if the object is not null

Good Practice: Before calling Dispose, check that the object is not
null.

Working with Files, Streams, and Serialization | 09

[309]

Compressing streams
XML is relatively verbose, so it takes up more space in bytes than plain text. We can
squeeze the XML using a common compression algorithm known as GZIP.

1. Import the following namespace:
using System.IO.Compression;

2. Add a WorkWithCompression method, which uses instances of GZipSteam
to create a compressed file containing the same XML elements as before
and then decompresses it while reading it and outputting to the console,
as shown in the following code:
static void WorkWithCompression()
{
 // compress the XML output
 string gzipFilePath = Combine(
 CurrentDirectory, "streams.gzip");

 FileStream gzipFile = File.Create(gzipFilePath);

 using (GZipStream compressor = new GZipStream(
 gzipFile, CompressionMode.Compress))
 {
 using (XmlWriter xmlGzip = XmlWriter.Create(compressor))
 {
 xmlGzip.WriteStartDocument();
 xmlGzip.WriteStartElement("callsigns");

 foreach (string item in callsigns)
 {
 xmlGzip.WriteElementString("callsign", item);
 }
 // the normal call to WriteEndElement is not necessary
 // because when the XmlWriter disposes, it will
 // automatically end any elements of any depth
 }
 } // also closes the underlying stream

 // output all the contents of the compressed file
 WriteLine("{0} contains {1:N0} bytes.",
 gzipFilePath, new FileInfo(gzipFilePath).Length);

 WriteLine($"The compressed contents:");
 WriteLine(File.ReadAllText(gzipFilePath));

 // read a compressed file
 WriteLine("Reading the compressed XML file:");
 gzipFile = File.Open(gzipFilePath, FileMode.Open);

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[310]

 using (GZipStream decompressor = new GZipStream(
 gzipFile, CompressionMode.Decompress))
 {
 using (XmlReader reader = XmlReader.Create(decompressor))
 {
 while (reader.Read()) // read the next XML node
 {
 // check if we are on an element node named callsign
 if ((reader.NodeType == XmlNodeType.Element)
 && (reader.Name == "callsign"))
 {
 reader.Read(); // move to the text inside element
 WriteLine($"{reader.Value}"); // read its value
 }
 }
 }
 }
}

3. In Main, leave the call to WorkWithXml, and add a call to
WorkWithCompression, as shown in the following code:
static void Main(string[] args)
{
 // WorkWithText();
 WorkWithXml();
 WorkWithCompression();
}

4. Run the console application and compare the sizes of the XML file and the
compressed XML file. It is less than half the size of the same XML without
compression, as shown in the following edited output:

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.xml
contains 310 bytes.

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.gzip
contains 150 bytes.

Compressing with the Brotli algorithm
In .NET Core 2.1, Microsoft introduced an implementation of the Brotli compression
algorithm. In performance, Brotli is similar to the algorithm used in DEFLATE and
GZIP, but the output is about 20% denser.

1. Modify the WorkWithCompression method to have an optional parameter
to indicate if Brotli should be used and to use Brotli by default, as shown
highlighted in the following code:

Working with Files, Streams, and Serialization | 09

[311]

static void WorkWithCompression(bool useBrotli = true)
{
 string fileExt = useBrotli ? "brotli" : "gzip";

 // compress the XML output
 string filePath = Combine(
 CurrentDirectory, $"streams.{fileExt}");

 FileStream file = File.Create(filePath);

 Stream compressor;

 if (useBrotli)
 {
 compressor = new BrotliStream(file, CompressionMode.Compress);
 }
 else
 {
 compressor = new GZipStream(file, CompressionMode.Compress);
 }

 using (compressor)
 {
 using (XmlWriter xml = XmlWriter.Create(compressor))
 {
 xml.WriteStartDocument();
 xml.WriteStartElement("callsigns");
 foreach (string item in callsigns)
 {
 xml.WriteElementString("callsign", item);
 }
 }
 } // also closes the underlying stream

 // output all the contents of the compressed file
 WriteLine("{0} contains {1:N0} bytes.",
 filePath, new FileInfo(filePath).Length);

 WriteLine(File.ReadAllText(filePath));

 // read a compressed file
 WriteLine("Reading the compressed XML file:");
 file = File.Open(filePath, FileMode.Open);

 Stream decompressor;

 if (useBrotli)
 {
 decompressor = new BrotliStream(

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[312]

 file, CompressionMode.Decompress);
 }
 else
 {
 decompressor = new GZipStream(
 file, CompressionMode.Decompress);
 }

 using (decompressor)
 {
 using (XmlReader reader = XmlReader.Create(decompressor))
 {
 while (reader.Read())
 {
 // check if we are on an element node named callsign
 if ((reader.NodeType == XmlNodeType.Element)
 && (reader.Name == "callsign"))
 {
 reader.Read(); // move to the text inside element
 WriteLine($"{reader.Value}"); // read its value
 }
 }
 }
 }
}

2. Modify the Main method to call WorkWithCompression twice, once with the
default using Brotli and once with GZIP, as shown in the following code:
WorkWithCompression();
WorkWithCompression(useBrotli: false);

3. Run the console application and compare the sizes of the two compressed
XML files. Brotli is more than 21% denser, as shown in the following edited
output:
/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.brotli
contains 118 bytes.

/Users/markjprice/Code/Chapter09/WorkingWithStreams/streams.gzip
contains 150 bytes.

High-performance streams using pipelines
In .NET Core 2.1, Microsoft introduced pipelines. Processing data from a stream
correctly requires a lot of complex boilerplate code that is difficult to maintain.
Testing on your local laptop often works with small example files, but it fails in the
real world due to poor assumptions. Pipelines help with this.

Working with Files, Streams, and Serialization | 09

[313]

Asynchronous streams
With C# 8.0 and .NET Core 3.0, Microsoft introduced asynchronous processing of
streams. You will learn about this in Chapter 13, Improving Performance and Scalability
Using Multitasking.

Encoding and decoding text
Text characters can be represented in different ways. For example, the alphabet can
be encoded using Morse code into a series of dots and dashes for transmission over a
telegraph line.

In a similar way, text inside a computer is stored as bits (ones and zeros)
representing a code point within a code space. Most code points represent a single
character, but they can also have other meanings like formatting.

For example, ASCII has a code space with 128 code points. .NET uses a standard
called Unicode to encode text internally. Unicode has more than one million
code points.

Sometimes, you will need to move text outside .NET for use by systems that do not
use Unicode or use a variation of Unicode so it is important to learn how to convert
between encodings.

More Information: Although pipelines are powerful for real-
world use and eventually you will want to learn about them,
a decent example gets complicated so I have no plans to cover
them in this book. You can read a detailed description of the
problem and how pipelines help at the following link: https://
blogs.msdn.microsoft.com/dotnet/2018/07/09/system-
io-pipelines-high-performance-io-in-net/

More Information: You can complete a tutorial about async
streams at the following link: https://docs.microsoft.com/
en-us/dotnet/csharp/tutorials/generate-consume-
asynchronous-stream

https://blogs.msdn.microsoft.com/dotnet/2018/07/09/system-io-pipelines-high-performance-io-in-net/
https://blogs.msdn.microsoft.com/dotnet/2018/07/09/system-io-pipelines-high-performance-io-in-net/
https://blogs.msdn.microsoft.com/dotnet/2018/07/09/system-io-pipelines-high-performance-io-in-net/
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/generate-consume-asynchronous-stream
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/generate-consume-asynchronous-stream

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[314]

The following table lists some alternative text encodings commonly used by
computers:

Encoding Description

ASCII This encodes a limited range of characters using the lower seven bits
of a byte.

UTF-8 This represents each Unicode code point as a sequence of one to four
bytes.

UTF-7 This is designed to be more efficient over 7-bit channels than UTF-8 but
it has security and robustness issues so UTF-8 is recommended over
UTF-7.

UTF-16 This represents each Unicode code point as a sequence of one or two 16-
bit integers.

UTF-32 This represents each Unicode code point as a 32-bit integer and is
therefore a fixed-length encoding unlike the other Unicode encodings,
which are all variable-length encodings.

ANSI/ISO
encodings

This provides support for a variety of code pages that are used to
support a specific language or group of languages.

In most cases today, UTF-8 is a good default, which is why it is literally the default
encoding, that is, Encoding.Default.

Encoding strings as byte arrays
Let's explore text encodings.

1. Create a new console application project named WorkingWithEncodings,
add it to the Chapter09 workspace, and select the project as active for
OmniSharp.

2. Import the System.Text namespace and statically import the Console class.
3. Add statements to the Main method to encode a string using an encoding

chosen by the user, loop through each byte, and then decode it back into
a string and output it, as shown in the following code:
WriteLine("Encodings");
WriteLine("[1] ASCII");
WriteLine("[2] UTF-7");
WriteLine("[3] UTF-8");
WriteLine("[4] UTF-16 (Unicode)");
WriteLine("[5] UTF-32");
WriteLine("[any other key] Default");

// choose an encoding

Working with Files, Streams, and Serialization | 09

[315]

Write("Press a number to choose an encoding: ");
ConsoleKey number = ReadKey(intercept: false).Key;
WriteLine();
WriteLine();

Encoding encoder = number switch
{
 ConsoleKey.D1 => Encoding.ASCII,
 ConsoleKey.D2 => Encoding.UTF7,
 ConsoleKey.D3 => Encoding.UTF8,
 ConsoleKey.D4 => Encoding.Unicode,
 ConsoleKey.D5 => Encoding.UTF32,
 _ => Encoding.Default
};

// define a string to encode
string message = "A pint of milk is £1.99";

// encode the string into a byte array
byte[] encoded = encoder.GetBytes(message);

// check how many bytes the encoding needed
WriteLine("{0} uses {1:N0} bytes.",
 encoder.GetType().Name, encoded.Length);

// enumerate each byte
WriteLine($"BYTE HEX CHAR");
foreach (byte b in encoded)
{
 WriteLine($"{b,4} {b.ToString("X"),4} {(char)b,5}");
}

// decode the byte array back into a string and display it
string decoded = encoder.GetString(encoded);
WriteLine(decoded);

4. Run the application and press 1 to choose ASCII and note that when
outputting the bytes, the pound sign (£) cannot be represented in ASCII,
so it uses a question mark instead, as shown in the following output:
ASCIIEncodingSealed uses 23 bytes.

BYTE HEX CHAR

 65 41 A

 32 20

 112 70 p

 105 69 i

 110 6E n

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[316]

 116 74 t

 32 20

 111 6F o

 102 66 f

 32 20

 109 6D m

 105 69 i

 108 6C l

 107 6B k

 32 20

 105 69 i

 115 73 s

 32 20

 63 3F ?

 49 31 1

 46 2E .

 57 39 9

 57 39 9

A pint of milk is ?1.99

5. Rerun the application and press 3 to choose UTF-8 and note that UTF-8
requires one extra byte (24 bytes instead of 23 bytes) but it can store the £
sign.

6. Rerun the application and press 4 to choose Unicode (UTF-16) and note that
UTF-16 requires two bytes for every character, taking 46 total bytes, and it
can store the £ sign. This encoding is used internally by .NET to store char
and string values.

Encoding and decoding text in files
When using stream helper classes, such as StreamReader and StreamWriter,
you can specify the encoding you want to use. As you write to the helper, the text
will automatically be encoded, and as you read from the helper, the bytes will be
automatically decoded.

To specify an encoding, pass the encoding as a second parameter to the helper type's
constructor, as shown in the following code:

var reader = new StreamReader(stream, Encoding.UTF7);
var writer = new StreamWriter(stream, Encoding.UTF7);

Working with Files, Streams, and Serialization | 09

[317]

Serializing object graphs
Serialization is the process of converting a live object into a sequence of bytes using
a specified format. Deserialization is the reverse process.

There are dozens of formats you can specify, but the two most common ones are
eXtensible Markup Language (XML) and JavaScript Object Notation (JSON).

.NET Core has multiple classes that will serialize to and from XML and JSON. We
will start by looking at XmlSerializer and JsonSerializer.

Serializing as XML
Let's start by looking at XML, probably the world's most used serialization format
(for now).

1. Create a new console application project named
WorkingWithSerialization, add it to the Chapter09 workspace,
and select the project as active for OmniSharp.
To show a typical example, we will define a custom class to store information
about a person and then create an object graph using a list of Person
instances with nesting.

2. Add a class named Person with a Salary property that is protected,
meaning it is only accessible to itself and derived classes. To populate the
salary, the class has a constructor with a single parameter to set the initial
salary, as shown in the following code:
using System;

Good Practice: Often, you won't have the choice of which encoding
to use, because you will be generating a file for use by another
system. However, if you do, pick one that uses the least number of
bytes, but can store every character you need.

Good Practice: JSON is more compact and is best for web and mobile
applications. XML is more verbose but is better supported in more
legacy systems. Use JSON to minimize the size of serialized object
graphs. JSON is also a good choice when sending object graphs to
web applications and mobile applications because JSON is the native
serialization format for JavaScript and mobile apps often make calls
over limited bandwidth, so the number of bytes is important.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[318]

using System.Collections.Generic;

namespace Packt.Shared
{
 public class Person
 {
 public Person(decimal initialSalary)
 {
 Salary = initialSalary;
 }

 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime DateOfBirth { get; set; }
 public HashSet<Person> Children { get; set; }
 protected decimal Salary { get; set; }
 }
}

3. Back in Program.cs, import the following namespaces:
using System; // DateTime
using System.Collections.Generic; // List<T>, HashSet<T>
using System.Xml.Serialization; // XmlSerializer
using System.IO; // FileStream
using Packt.Shared; // Person
using static System.Console;
using static System.Environment;
using static System.IO.Path;

4. Add the following statements to the Main method:
// create an object graph
var people = new List<Person>
{
 new Person(30000M) { FirstName = "Alice",
 LastName = "Smith",
 DateOfBirth = new DateTime(1974, 3, 14) },

 new Person(40000M) { FirstName = "Bob",
 LastName = "Jones",
 DateOfBirth = new DateTime(1969, 11, 23) },

 new Person(20000M) { FirstName = "Charlie",
 LastName = "Cox",
 DateOfBirth = new DateTime(1984, 5, 4),
 Children = new HashSet<Person>
 { new Person(0M) { FirstName = "Sally",
 LastName = "Cox",
 DateOfBirth = new DateTime(2000, 7, 12) } } }

Working with Files, Streams, and Serialization | 09

[319]

};

// create object that will format a List of Persons as XML
var xs = new XmlSerializer(typeof(List<Person>));

// create a file to write to
string path = Combine(CurrentDirectory, "people.xml");

using (FileStream stream = File.Create(path))
{
 // serialize the object graph to the stream
 xs.Serialize(stream, people);
}

WriteLine("Written {0:N0} bytes of XML to {1}",
 arg0: new FileInfo(path).Length,
 arg1: path);

WriteLine();

// Display the serialized object graph
WriteLine(File.ReadAllText(path));

5. Run the console application, view the result, and note that an exception
is thrown, as shown in the following output:
Unhandled Exception: System.InvalidOperationException: Packt.
Shared.Person cannot be serialized because it does not have a
parameterless constructor.

6. Back in the Person.cs file, add the following statement to define a
parameter-less constructor, as shown in the following code:
public Person() { }

The constructor does not need to do anything, but it must exist so that the
XmlSerializer can call it to instantiate new Person instances during the
deserialization process.

7. Rerun the console application and view the result, and note that the object
graph is serialized as XML and the Salary property is not included,
as shown in the following output:
Written 752 bytes of XML to

/Users/markjprice/Code/Chapter09/WorkingWithSerialization/people.
xml

<?xml version="1.0"?>

<ArrayOfPerson xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[320]

 <Person>

 <FirstName>Alice</FirstName>

 <LastName>Smith</LastName>

 <DateOfBirth>1974-03-14T00:00:00</DateOfBirth>

 </Person>

 <Person>

 <FirstName>Bob</FirstName>

 <LastName>Jones</LastName>

 <DateOfBirth>1969-11-23T00:00:00</DateOfBirth>

 </Person>

 <Person>

 <FirstName>Charlie</FirstName>

 <LastName>Cox</LastName>

 <DateOfBirth>1984-05-04T00:00:00</DateOfBirth>

 <Children>

 <Person>

 <FirstName>Sally</FirstName>

 <LastName>Cox</LastName>

 <DateOfBirth>2000-07-12T00:00:00</DateOfBirth>

 </Person>

 </Children>

 </Person>

</ArrayOfPerson>

Generating compact XML
We could make the XML more compact using attributes instead of elements for some
fields.

1. In the Person.cs file, import the System.Xml.Serialization namespace.
2. Decorate all the properties, except Children, with the [XmlAttribute]

attribute, and set a short name for each property, as shown in the following
code:
[XmlAttribute("fname")]
public string FirstName { get; set; }

[XmlAttribute("lname")]
public string LastName { get; set; }

Working with Files, Streams, and Serialization | 09

[321]

[XmlAttribute("dob")]
public DateTime DateOfBirth { get; set; }

3. Rerun the application and note that the size of the file has been reduced
from 752 to 462 bytes, a space saving of more than a third, as shown in the
following output:
Written 462 bytes of XML to /Users/markjprice/Code/Chapter09/
WorkingWithSerialization/people.xml

<?xml version="1.0"?>

<ArrayOfPerson xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Person fname="Alice" lname="Smith" dob="1974-03-14T00:00:00" />

 <Person fname="Bob" lname="Jones" dob="1969-11-23T00:00:00" />

 <Person fname="Charlie" lname="Cox" dob="1984-05-04T00:00:00">

 <Children>

 <Person fname="Sally" lname="Cox" dob="2000-07-12T00:00:00"
/>

 </Children>

 </Person>

</ArrayOfPerson>

Deserializing XML files
Now let's try deserializing the XML file back into live objects in memory.

1. Add statements to the end of the Main method to open the XML file and then
deserialize it, as shown in the following code:
using (FileStream xmlLoad = File.Open(path, FileMode.Open))
{
 // deserialize and cast the object graph into a List of Person
 var loadedPeople = (List<Person>)xs.Deserialize(xmlLoad);

 foreach (var item in loadedPeople)
 {
 WriteLine("{0} has {1} children.",
 item.LastName, item.Children.Count);
 }
}

2. Rerun the application and note that the people are loaded successfully from
the XML file, as shown in the following output:
Smith has 0 children.

Jones has 0 children.

Cox has 1 children.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[322]

There are many other attributes that can be used to control the XML generated.

Serializing with JSON
One of the most popular .NET libraries for working with the JSON serialization
format is Newtonsoft.Json, known as Json.NET. It is mature and powerful.

Let's see it in action.

1. Edit the WorkingWithSerialization.csproj file to add a package reference
for the latest version of Newtonsoft.Json, as shown highlighted in the
following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Newtonsoft.Json"
 Version="12.0.2" />
 </ItemGroup>

</Project>

2. Add statements to the end of the Main method to create a text file and then
serialize the people into the file as JSON, as shown in the following code:
// create a file to write to
string jsonPath = Combine(CurrentDirectory, "people.json");

using (StreamWriter jsonStream = File.CreateText(jsonPath))
{
 // create an object that will format as JSON

Good Practice: When using XmlSerializer, remember that only
the public fields and properties are included, and the type must
have a parameter-less constructor. You can customize the output
with attributes.

Good Practice: Search for NuGet packages on Microsoft's
NuGet feed to discover the latest supported version, as shown
at the following link: https://www.nuget.org/packages/
Newtonsoft.Json/

https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/

Working with Files, Streams, and Serialization | 09

[323]

 var jss = new Newtonsoft.Json.JsonSerializer();

 // serialize the object graph into a string
 jss.Serialize(jsonStream, people);
}

WriteLine();
WriteLine("Written {0:N0} bytes of JSON to: {1}",
 arg0: new FileInfo(jsonPath).Length,
 arg1: jsonPath);

// Display the serialized object graph
WriteLine(File.ReadAllText(jsonPath));

3. Rerun the application and note that JSON requires less than half the number
of bytes compared to XML with elements. It's even smaller than the XML file,
which uses attributes, as shown in the following output:
Written 366 bytes of JSON to: /Users/markjprice/Code/Chapter09/
WorkingWithSerialization/people.json

[{"FirstName":"Alice","LastName":"Smith","DateOfBirth":"1974-
03-14T00:00:00","Children":null},{"FirstName":"Bob","LastN
ame":"Jones","DateOfBirth":"1969-11-23T00:00:00","Children
":null},{"FirstName":"Charlie","LastName":"Cox","DateOfBir
th":"1984-05-04T00:00:00","Children":[{"FirstName":"Sally","LastN-
ame":"Cox","DateOfBirth":"2000-07-12T00:00:00","Children":null}]}]

High-performance JSON processing
.NET Core 3.0 introduces a new namespace for working with JSON:
System.Text.Json, which is optimized for performance by leveraging APIs like
Span<T>.

Also, Json.NET is implemented by reading UTF-16. It would be more performant
to read and write JSON documents using UTF-8 because most network protocols
including HTTP use UTF-8 and you can avoid transcoding UTF-8 to and from
Json.NET's Unicode string values. With the new API, Microsoft achieved between
1.3x and 5x improvement, depending on the scenario.

More Information: You can read more about the new
System.Text.Json APIs at the following link: https://
devblogs.microsoft.com/dotnet/try-the-new-system-
text-json-apis/

https://devblogs.microsoft.com/dotnet/try-the-new-system-text-json-apis/
https://devblogs.microsoft.com/dotnet/try-the-new-system-text-json-apis/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[324]

The original author of Json.NET, James Newton-King, joined Microsoft and has
been working with them to develop their new JSON types. As he says in a comment
discussing the new JSON APIs, "Json.NET isn't going away," as shown in the
following screenshot:

Let's explore the new JSON APIs.

1. Import the System.Threading.Tasks namespace.
2. Modify the Main method to enable awaiting on tasks by changing void to

async Task, as shown highlighted in the following code:
static async Task Main(string[] args)

3. Import the new JSON class for performing serialization using an alias to
avoid conflicting names with the Json.NET one we used before, as shown in
the following code:
using NuJson = System.Text.Json.JsonSerializer;

4. Add statements to open the JSON file, deserialize it, and output the names
and counts of the children of the people, as shown in the following code:
using (FileStream jsonLoad = File.Open(
 jsonPath, FileMode.Open))
{
 // deserialize object graph into a List of Person
 var loadedPeople = (List<Person>)
 await NuJson.DeserializeAsync(
 utf8Json: jsonLoad,
 returnType: typeof(List<Person>));

 foreach (var item in loadedPeople)
 {

More Information: You can read more about the issues solved
by the new JSON APIs, including JamesNK's comments, at
the following link: https://github.com/dotnet/corefx/
issues/33115

https://github.com/dotnet/corefx/issues/33115
https://github.com/dotnet/corefx/issues/33115

Working with Files, Streams, and Serialization | 09

[325]

 WriteLine("{0} has {1} children.",
 item.LastName, item.Children?.Count);
 }
}

5. Run the console application and view the result, as shown in the following
output:

Smith has children.

Jones has children.

Cox has 1 children.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with more in-depth research.

Exercise 9.1 – Test your knowledge
Answer the following questions:

1. What is the difference between using the File class and the FileInfo class?
2. What is the difference between the ReadByte method and the Read method

of a stream?
3. When would you use the StringReader, TextReader, and StreamReader

classes?
4. What does the DeflateStream type do?
5. How many bytes per character does the UTF-8 encoding use?
6. What is an object graph?
7. What is the best serialization format to choose for minimizing space

requirements?
8. What is the best serialization format to choose for cross-platform

compatibility?
9. Why is it bad to use a string value like \Code\Chapter01 to represent a path

and what should you do instead?
10. Where can you find information about NuGet packages and their

dependencies?

Good Practice: Choose Json.NET for developer productivity and
a large feature set or System.Text.Json for performance.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[326]

Exercise 9.2 – Practice serializing as XML
Create a console application named Exercise02 that creates a list of shapes, uses
serialization to save it to the filesystem using XML, and then deserializes it back:

// create a list of Shapes to serialize
var listOfShapes = new List<Shape>
{
 new Circle { Colour = "Red", Radius = 2.5 },
 new Rectangle { Colour = "Blue", Height = 20.0, Width = 10.0 },
 new Circle { Colour = "Green", Radius = 8.0 },
 new Circle { Colour = "Purple", Radius = 12.3 },
 new Rectangle { Colour = "Blue", Height = 45.0, Width = 18.0 }
};

Shapes should have a read-only property named Area so that when you deserialize,
you can output a list of shapes, including their areas, as shown here:

List<Shape> loadedShapesXml =
 serializerXml.Deserialize(fileXml) as List<Shape>;
foreach (Shape item in loadedShapesXml)
{
 WriteLine("{0} is {1} and has an area of {2:N2}",
 item.GetType().Name, item.Colour, item.Area);
}

This is what your output should look like when you run the application:

Loading shapes from XML:

Circle is Red and has an area of 19.63

Rectangle is Blue and has an area of 200.00

Circle is Green and has an area of 201.06

Circle is Purple and has an area of 475.29

Rectangle is Blue and has an area of 810.00

Exercise 9.3 – Explore topics
Use the following links to read more on this chapter's topics:

• File System and the Registry (C# Programming Guide): https://docs.
microsoft.com/en-us/dotnet/csharp/programming-guide/file-
system/

• Character encoding in .NET: https://docs.microsoft.com/en-us/
dotnet/articles/standard/base-types/character-encoding

• Serialization (C#): https://docs.microsoft.com/en-us/dotnet/
articles/csharp/programming-guide/concepts/serialization/

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/character-encoding
https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/character-encoding
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/concepts/serialization/
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/concepts/serialization/

Working with Files, Streams, and Serialization | 09

[327]

• Serializing to Files, TextWriters, and XmlWriters: https://docs.
microsoft.com/en-us/dotnet/articles/csharp/programming-guide/
concepts/linq/serializing-to-files-textwriters-and-xmlwriters

• Newtonsoft Json.NET: http://www.newtonsoft.com/json

Summary
In this chapter, you learned how to read from and write to text files and XML files,
how to compress and decompress files, how to encode and decode text, and how to
serialize an object into JSON and XML (and deserialize it back again).

In the next chapter, you will learn how to protect data and files using hashing,
signing encryption, authentication, and authorization.

https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/concepts/linq/serializing-to-files-textwriters-and-xmlwriters
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/concepts/linq/serializing-to-files-textwriters-and-xmlwriters
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/concepts/linq/serializing-to-files-textwriters-and-xmlwriters
http://www.newtonsoft.com/json

[329]

Chapter 10
Protecting Your Data

and Applications
This chapter is about protecting your data from being viewed by malicious users using
encryption, and from being manipulated or corrupted using hashing and signing.

In .NET Core 2.1, Microsoft introduced new Span<T>-based cryptography APIs
for hashing, random number generation, asymmetric signature generation and
processing, and RSA encryption. This chapter covers the following topics:

• Understanding the vocabulary of protection
• Encrypting and decrypting data
• Hashing data
• Signing data
• Generating random numbers
• What's new in cryptography?
• Authenticating and authorizing users

Understanding the vocabulary of
protection
There are many techniques to protect your data; below we'll briefly introduce six
of the most popular ones and you will see more detailed explanations and practical
implementations throughout this chapter:

• Encryption and decryption: These are a two-way process to convert your
data from clear-text into crypto-text and back again.

• Hashes: This is a one-way process to generate a hash value to securely store
passwords, or can be used to detect malicious changes or corruption of
your data.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[330]

• Signatures: This technique is used to ensure that data has come from
someone you trust by validating a signature that has been applied to some
data against someone's public key.

• Authentication: This technique is used to identify someone by checking their
credentials.

• Authorization: This technique is used to ensure that someone has permission
to perform an action or work with some data by checking the roles or groups
they belong to.

Keys and key sizes
Protection algorithms often use a key. Keys are represented by byte arrays of varying
size.

Keys can be symmetric (also known as shared or secret because the same key is used
to encrypt and decrypt) or asymmetric (a public-private key pair where the public
key is used to encrypt and only the private key can be used to decrypt).

Keys come in various byte array sizes.

Good Practice: If security is important to you (and it should be!),
then hire an experienced security expert for guidance rather than
relying on advice found online. It is very easy to make small
mistakes and leave your applications and data vulnerable without
realizing until it is too late!

Good Practice: Choose a bigger key size for stronger protection.

Good Practice: Symmetric key encryption algorithms are fast and
can encrypt large amounts of data using a stream. Asymmetric key
encryption algorithms are slow and can only encrypt small byte
arrays.

In the real world, get the best of both worlds by using a symmetric
key to encrypt your data, and an asymmetric key to share the
symmetric key. This is how Secure Sockets Layer (SSL) encryption
on the internet works.

Protecting Your Data and Applications | 10

[331]

IVs and block sizes
When encrypting large amounts of data, there are likely to be repeating sequences.
For example, in an English document, in the sequence of characters, the would
appear frequently, and each time it might get encrypted as hQ2. A good cracker
would use this knowledge to make it easier to crack the encryption, as shown in the
following output:

When the wind blew hard the umbrella broke.

5:s4&hQ2aj#D f9d1d£8fh"&hQ2s0)an DF8SFd#][1

We can avoid repeating sequences by dividing data into blocks. After encrypting
a block, a byte array value is generated from that block, and this value is fed into
the next block to adjust the algorithm so that the isn't encrypted in the same
way. To encrypt the first block, we need a byte array to feed in. This is called the
initialization vector (IV).

Salts
A salt is a random byte array that is used as an additional input to a one-way
hash function. If you do not use a salt when generating hashes, then when many
of your users register with 123456 as their password (about 8% of users still did
this in 2016!), they will all have the same hashed value, and their accounts will be
vulnerable to a dictionary attack.

When a user registers, the salt should be randomly generated and concatenated
with their chosen password before being hashed. The output (but not the original
password) is stored with the salt in the database.

Then, when the user next logs in and enters their password, you look up their salt,
concatenate it with the entered password, regenerate a hash, and then compare its
value with the hash stored in the database. If they are the same, you know they
entered the correct password.

Good Practice: Choose a small block size for stronger encryption.

More Information: Dictionary Attacks 101: https://blog.
codinghorror.com/dictionary-attacks-101/

https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/
https://blog.codinghorror.com/dictionary-attacks-101/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[332]

Generating keys and IVs
Keys and IVs are byte arrays. Both of the two parties that want to exchange
encrypted data need the key and IV values, but byte arrays can be difficult to
exchange reliably.

You can reliably generate a key or IV using a password-based key derivation
function (PBKDF2). A good one is the Rfc2898DeriveBytes class, which takes
a password, a salt, and an iteration count, and then generates keys and IVs by
making calls to its GetBytes method.

Encrypting and decrypting data
In .NET Core, there are multiple encryption algorithms you can choose from.

Some algorithms are implemented by the operating system and their names are
suffixed with CryptoServiceProvider. Some algorithms are implemented in .NET
Core and their names are suffixed with Managed.

Some algorithms use symmetric keys, and some use asymmetric keys. The main
asymmetric encryption algorithm is RSA.

Symmetric encryption algorithms use CryptoStream to encrypt or decrypt large
amounts of bytes efficiently. Asymmetric algorithms can only handle small amounts
of bytes, stored in a byte array instead of a stream.

The most common symmetric encryption algorithms derive from the abstract class
named SymmetricAlgorithm and are shown in the following list:

• AES
• DESCryptoServiceProvider
• TripleDESCryptoServiceProvider
• RC2CryptoServiceProvider
• RijndaelManaged

If you need to write code to decrypt some data sent by an external system, then you
will have to use whatever algorithm the external system used to encrypt the data. Or
if you need to send encrypted data to a system that can only decrypt using a specific
algorithm then again you will not have a choice of algorithm.

Good Practice: The salt size should be 8 bytes or larger, and
the iteration count should be greater than zero. The minimum
recommended number of iterations is 1,000.

Protecting Your Data and Applications | 10

[333]

If your code will both encrypt and decrypt then you can choose the algorithm that
best suits your requirements for strength, performance, and so on.

Encrypting symmetrically with AES
To make it easier to reuse your protection code in the future, we will create a static
class named Protector in its own class library.

1. In the Code folder, create a folder named Chapter10, with two subfolders
named CryptographyLib and EncryptionApp.

2. In Visual Studio Code, save a workspace as Chapter10 in the Chapter10
folder.

3. Add the folder named CryptographyLib to the workspace.
4. Navigate to Terminal | New Terminal.
5. In Terminal, enter the following command:

dotnet new classlib

6. Add the folder named EncryptionApp to the workspace.
7. Navigate to Terminal | New Terminal and select EncryptionApp.
8. In Terminal, enter the following command:

dotnet new console

9. In EXPLORER, expand CryptographyLib and rename the Class1.cs file to
Protector.cs.

10. In the EncryptionApp project folder, open the file named EncryptionApp.
csproj, and add a package reference to the CryptographyLib library, as
shown highlighted in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>

Good Practice: Choose the Advanced Encryption Standard (AES),
which is based on the Rijndael algorithm for symmetric encryption.
Choose RSA for asymmetric encryption. Do not confuse RSA with
DSA. Digital Signature Algorithm (DSA) cannot encrypt data. It
can only generate hashes and signatures.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[334]

 <ProjectReference
 Include="..\CryptographyLib\CryptographyLib.csproj" />
 </ItemGroup>

</Project>

11. In Terminal, enter the following command:
dotnet build

12. Open the Protector.cs file and change its contents to define a static class
named Protector with fields for storing a salt byte array and a number
of iterations, and methods to Encrypt and Decrypt, as shown in the
following code:
using System;
using System.Collections.Generic;
using System.IO;
using System.Security.Cryptography;
using System.Security.Principal;
using System.Text;
using System.Xml.Linq;
using static System.Convert;

namespace Packt.Shared
{
 public static class Protector
 {
 // salt size must be at least 8 bytes, we will use 16 bytes
 private static readonly byte[] salt =
 Encoding.Unicode.GetBytes("7BANANAS");

 // iterations must be at least 1000, we will use 2000
 private static readonly int iterations = 2000;

 public static string Encrypt(
 string plainText, string password)
 {
 byte[] encryptedBytes;
 byte[] plainBytes = Encoding.Unicode
 .GetBytes(plainText);
 var aes = Aes.Create();
 var pbkdf2 = new Rfc2898DeriveBytes(
 password, salt, iterations);
 aes.Key = pbkdf2.GetBytes(32); // set a 256-bit key

Protecting Your Data and Applications | 10

[335]

 aes.IV = pbkdf2.GetBytes(16); // set a 128-bit IV

 using (var ms = new MemoryStream())
 {
 using (var cs = new CryptoStream(
 ms, aes.CreateEncryptor(),
 CryptoStreamMode.Write))
 {
 cs.Write(plainBytes, 0, plainBytes.Length);
 }
 encryptedBytes = ms.ToArray();
 }

 return Convert.ToBase64String(encryptedBytes);
 }

 public static string Decrypt(
 string cryptoText, string password)
 {
 byte[] plainBytes;
 byte[] cryptoBytes = Convert
 .FromBase64String(cryptoText);
 var aes = Aes.Create();
 var pbkdf2 = new Rfc2898DeriveBytes(
 password, salt, iterations);
 aes.Key = pbkdf2.GetBytes(32);
 aes.IV = pbkdf2.GetBytes(16);

 using (var ms = new MemoryStream())
 {
 using (var cs = new CryptoStream(
 ms, aes.CreateDecryptor(),
 CryptoStreamMode.Write))
 {
 cs.Write(cryptoBytes, 0, cryptoBytes.Length);
 }
 plainBytes = ms.ToArray();
 }

 return Encoding.Unicode.GetString(plainBytes);
 }
 }
}

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[336]

Note the following points about the preceding code:

 ° We used double the recommended salt size and iteration count.
 ° Although the salt and iteration count can be hardcoded, the

password must be passed at runtime when calling the Encrypt and
Decrypt methods.

 ° We use a temporary MemoryStream type to store the results of
encrypting and decrypting, and then call ToArray to turn the stream
into a byte array.

 ° We convert the encrypted byte arrays to and from a Base64 encoding
to make them easier to read.

13. In the EncryptionApp project, open the Program.cs file and then import the
namespace for the Protector class and statically import the Console class,
as shown in the following code:
using Packt.Shared;
using static System.Console;

14. In Main, add statements to prompt the user for a message and a password,
and then encrypt and decrypt, as shown in the following code:
Write("Enter a message that you want to encrypt: ");
string message = ReadLine();
Write("Enter a password: ");
string password = ReadLine();

string cryptoText = Protector.Encrypt(message, password);

WriteLine($"Encrypted text: {cryptoText}");
Write("Enter the password: ");
string password2 = ReadLine();

try
{
 string clearText = Protector.Decrypt(cryptoText, password2);
 WriteLine($"Decrypted text: {clearText}");
}
catch (CryptographicException ex)
{

Good Practice: Never hardcode a password in your source code
because, even after compilation, the password can be read in the
assembly by using disassembler tools.

Protecting Your Data and Applications | 10

[337]

 WriteLine("{0}\nMore details: {1}",
 arg0: "You entered the wrong password!",
 arg1: ex.Message);
}
catch (Exception ex)
{
 WriteLine("Non-cryptographic exception: {0}, {1}",
 arg0: ex.GetType().Name,
 arg1: ex.Message);
}

15. Run the console application, try entering a message and password, and view
the result, as shown in the following output:
Enter a message that you want to encrypt: Hello Bob

Enter a password: secret

Encrypted text: pV5qPDf1CCZmGzUMH2gapFSkn573lg7tMj5ajice3cQ=

Enter the password: secret

Decrypted text: Hello Bob

16. Rerun the application and try entering a message and password, but this
time enter the password incorrectly after encrypting and view the output:
Enter a message that you want to encrypt: Hello Bob

Enter a password: secret

Encrypted text: pV5qPDf1CCZmGzUMH2gapFSkn573lg7tMj5ajice3cQ=

Enter the password: 123456

You entered the wrong password!

More details: Padding is invalid and cannot be removed.

Hashing data
In .NET Core, there are multiple hash algorithms you can choose from. Some do not
use any key, some use symmetric keys, and some use asymmetric keys.

There are two important factors to consider when choosing a hash algorithm:

• Collision resistance: How rare is it to find two inputs that share the same
hash?

• Preimage resistance: For a hash, how difficult would it be to find another
input that shares the same hash?

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[338]

Some common non-keyed hashing algorithms are shown in the following table:

Algorithm Hash size Description

MD5 16 bytes This is commonly used because it is fast, but it is not
collision-resistant

SHA1 20 bytes The use of SHA1 on the internet has been deprecated since
2011

SHA256
SHA384
SHA512

32 bytes
48 bytes
64 bytes

These are the Secure Hashing Algorithm 2nd generation
(SHA2) algorithms with different hash sizes

Hashing with the commonly used SHA256
We will now add a class to represent a user stored in memory, a file, or a database.
We will use a dictionary to store multiple users in memory.

1. In the CryptographyLib class library project, add a new class file named
User.cs, as shown in the following code:
namespace Packt.Shared
{
 public class User
 {
 public string Name { get; set; }
 public string Salt { get; set; }
 public string SaltedHashedPassword { get; set; }
 }
}

2. Add statements to the Protector class to declare a dictionary to store users
and define two methods, one to register a new user and one to validate their
password when they subsequently log in, as shown in the following code:
private static Dictionary<string, User> Users =
 new Dictionary<string, User>();

Good Practice: Avoid MD5 and SHA1 because they have known
weaknesses. Choose a larger hash size to reduce the possibility of
repeated hashes. The first publicly known MD5 collision happened
in 2010. The first publicly known SHA1 collision happened in 2017.
You can read more at the following link: https://arstechnica.
co.uk/information-technology/2017/02/at-deaths-
door-for-years-widely-used-sha1-function-is-now-
dead/

https://arstechnica.co.uk/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/
https://arstechnica.co.uk/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/
https://arstechnica.co.uk/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/
https://arstechnica.co.uk/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/

Protecting Your Data and Applications | 10

[339]

public static User Register(
 string username, string password)
{
 // generate a random salt
 var rng = RandomNumberGenerator.Create();
 var saltBytes = new byte[16];
 rng.GetBytes(saltBytes);
 var saltText = Convert.ToBase64String(saltBytes);

 // generate the salted and hashed password
 var saltedhashedPassword = SaltAndHashPassword(
 password, saltText);

 var user = new User
 {
 Name = username, Salt = saltText,
 SaltedHashedPassword = saltedhashedPassword
 };
 Users.Add(user.Name, user);

 return user;
}

public static bool CheckPassword(
 string username, string password)
{
 if (!Users.ContainsKey(username))
 {
 return false;
 }
 var user = Users[username];

 // re-generate the salted and hashed password
 var saltedhashedPassword = SaltAndHashPassword(
 password, user.Salt);

 return (saltedhashedPassword == user.SaltedHashedPassword);
}

private static string SaltAndHashPassword(
 string password, string salt)
{

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[340]

 var sha = SHA256.Create();
 var saltedPassword = password + salt;
 return Convert.ToBase64String(
 sha.ComputeHash(Encoding.Unicode.GetBytes(
 saltedPassword)));
}

3. Create a new console application project named HashingApp, add it to the
workspace, and select the project as active for OmniSharp.

4. Add a reference to the CryptographyLib assembly as you did before and
import the Packt.Shared namespace.

5. In the Main method, add statements to register a user and prompt to register
a second user, and then prompt to log in as one of those users and validate
the password, as shown in the following code:
WriteLine("Registering Alice with Pa$$w0rd.");
var alice = Protector.Register("Alice", "Pa$$w0rd");
WriteLine($"Name: {alice.Name}");
WriteLine($"Salt: {alice.Salt}");
WriteLine("Password (salted and hashed): {0}",
 arg0: alice.SaltedHashedPassword);
WriteLine();

Write("Enter a new user to register: ");
string username = ReadLine();
Write($"Enter a password for {username}: ");
string password = ReadLine();
var user = Protector.Register(username, password);
WriteLine($"Name: {user.Name}");
WriteLine($"Salt: {user.Salt}");
WriteLine("Password (salted and hashed): {0}",
 arg0: user.SaltedHashedPassword);
WriteLine();

bool correctPassword = false;
while (!correctPassword)
{
 Write("Enter a username to log in: ");
 string loginUsername = ReadLine();
 Write("Enter a password to log in: ");
 string loginPassword = ReadLine();

 correctPassword = Protector.CheckPassword(
 loginUsername, loginPassword);

 if (correctPassword)
 {

Protecting Your Data and Applications | 10

[341]

 WriteLine($"Correct! {loginUsername} has been logged in.");
 }
 else
 {
 WriteLine("Invalid username or password. Try again.");
 }
}

When using multiple projects, remember to use a Terminal window for the
correct console application before entering the dotnet build and dotnet
run commands.

6. Run the console application, register a new user with the same password as
Alice, and view the result, as shown in the following output:

Registering Alice with Pa$$w0rd.

Name: Alice

Salt: I1I1dzIjkd7EYDf/6jaf4w==

Password (salted and hashed): pIoadjE4W/XaRFkqS3br3UuAuPv/3LVQ8kzj
6mvcz+s=

Enter a new user to register: Bob

Enter a password for Bob: Pa$$w0rd

Name: Bob

Salt: 1X7ym/UjxTiuEWBC/vIHpw==

Password (salted and hashed):
DoBFtDhKeN0aaaLVdErtrZ3mpZSvpWDQ9TXDosTq0sQ=

Enter a username to log in: Alice

Enter a password to log in: secret

Invalid username or password. Try again.

Enter a username to log in: Bob

Enter a password to log in: secret

Invalid username or password. Try again.

Enter a username to log in: Bob

Enter a password to log in: Pa$$w0rd

Correct! Bob has been logged in.

Even if two users register with the same password, they have randomly generated
salts so that their salted and hashed passwords are different.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[342]

Signing data
To prove that some data has come from someone we trust, it can be signed. Actually,
you do not sign the data itself; instead, you sign a hash of the data.

We will be using the SHA256 algorithm for generating the hash, combined with the
RSA algorithm for signing the hash.

We could use DSA for both hashing and signing. DSA is faster than RSA for
generating a signature, but it is slower than RSA for validating a signature. Since
a signature is generated once but validated many times, it is best to have faster
validation than a generation.

Signing with SHA256 and RSA
Let's explore signing data and checking the signature with a public key.

1. In the CryptographyLib class library project, add statements to the
Protector class to declare a field for the public key, two extension methods
to convert an RSA instance to and from XML, and two methods to generate
and validate a signature, as shown in the following code:
public static string PublicKey;

public static string ToXmlStringExt(
 this RSA, bool includePrivateParameters)
{
 var p = rsa.ExportParameters(includePrivateParameters);
 XElement xml;
 if (includePrivateParameters)
 {
 xml = new XElement("RSAKeyValue",
 new XElement("Modulus", ToBase64String(p.Modulus)),
 new XElement("Exponent", ToBase64String(p.Exponent)),
 new XElement("P", ToBase64String(p.P)),
 new XElement("Q", ToBase64String(p.Q)),
 new XElement("DP", ToBase64String(p.DP)),
 new XElement("DQ", ToBase64String(p.DQ)),
 new XElement("InverseQ", ToBase64String(p.InverseQ))

More Information: The RSA algorithm is based on the
factorization of large integers, compared to the DSA algorithm,
which is based on the discrete logarithm calculation. You can
read more at the following link: http://mathworld.wolfram.
com/RSAEncryption.html

http://mathworld.wolfram.com/RSAEncryption.html
http://mathworld.wolfram.com/RSAEncryption.html
http://mathworld.wolfram.com/RSAEncryption.html

Protecting Your Data and Applications | 10

[343]

);
 }
 else
 {
 xml = new XElement("RSAKeyValue",
 new XElement("Modulus", ToBase64String(p.Modulus)),
 new XElement("Exponent",
 ToBase64String(p.Exponent)));
 }
 return xml?.ToString();
}

public static void FromXmlStringExt(
 this RSA rsa, string parametersAsXml)
{
 var xml = XDocument.Parse(parametersAsXml);
 var root = xml.Element("RSAKeyValue");
 var p = new RSAParameters
 {
 Modulus = FromBase64String(
 root.Element("Modulus").Value),
 Exponent = FromBase64String(
 root.Element("Exponent").Value)
 };

 if (root.Element("P") != null)
 {
 p.P = FromBase64String(root.Element("P").Value);
 p.Q = FromBase64String(root.Element("Q").Value);
 p.DP = FromBase64String(root.Element("DP").Value);
 p.DQ = FromBase64String(root.Element("DQ").Value);
 p.InverseQ = FromBase64String(
 root.Element("InverseQ").Value);
 }
 rsa.ImportParameters(p);
}

public static string GenerateSignature(string data)
{
 byte[] dataBytes = Encoding.Unicode.GetBytes(data);
 var sha = SHA256.Create();
 var hashedData = sha.ComputeHash(dataBytes);

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[344]

 var rsa = RSA.Create();
 PublicKey = rsa.ToXmlStringExt(false); // exclude private key

 return ToBase64String(rsa.SignHash(hashedData,
 HashAlgorithmName.SHA256, RSASignaturePadding.Pkcs1));
}

public static bool ValidateSignature(
 string data, string signature)
{
 byte[] dataBytes = Encoding.Unicode.GetBytes(data);
 var sha = SHA256.Create();
 var hashedData = sha.ComputeHash(dataBytes);
 byte[] signatureBytes = FromBase64String(signature);
 var rsa = RSA.Create();
 rsa.FromXmlStringExt(PublicKey);

 return rsa.VerifyHash(hashedData, signatureBytes,
 HashAlgorithmName.SHA256, RSASignaturePadding.Pkcs1);
}

Note the following from the preceding code:

 ° The RSA type has two methods named ToXmlString and
FromXmlString. These serialize and deserialize the RSAParameters
structure, which contains the public and private keys. However,
the implementation of these methods on macOS throws a
PlatformNotSupportedException exception. I have had
to re-implement them myself as extension methods named
ToXmlStringExt and FromXmlStringExt using LINQ to XML
types such as XDocument, which you will learn about in Chapter 12,
Querying and Manipulating Data Using LINQ.

 ° Only the public part of the public-private key pair needs to be made
available to the code that is checking the signature so that we can
pass the false value when we call the ToXmlStringExt method. The
private part is required to sign data and must be kept secret because
anyone with the private part can sign data as if they are you!

 ° The hash algorithm used to generate the hash from the data by
calling the SignHash method must match the hash algorithm set
when calling the VerifyHash method. In the preceding code, we
used SHA256.

Now we can test signing some data and checking its signature.

Protecting Your Data and Applications | 10

[345]

2. Create a new console application project named SigningApp, add it to the
workspace, and select the project as active for OmniSharp.

3. Add a reference to the CryptographyLib assembly, in Program.cs import
the appropriate namespaces, and then in Main, add statements to prompt
the user to enter some text, sign it, check its signature, then modify the text,
check the signature again to deliberately cause a mismatch, as shown in the
following code:
Write("Enter some text to sign: ");
string data = ReadLine();
var signature = Protector.GenerateSignature(data);
WriteLine($"Signature: {signature}");
WriteLine("Public key used to check signature:");
WriteLine(Protector.PublicKey);

if (Protector.ValidateSignature(data, signature))
{
 WriteLine("Correct! Signature is valid.");
}
else
{
 WriteLine("Invalid signature.");
}

// simulate a fake signature by replacing the
// first character with an X
var fakeSignature = signature.Replace(signature[0], 'X');

if (Protector.ValidateSignature(data, fakeSignature))
{
 WriteLine("Correct! Signature is valid.");
}
else
{
 WriteLine($"Invalid signature: {fakeSignature}");
}

4. Run the console application and enter some text, as shown in the following
output (edited for length):
Enter some text to sign: The cat sat on the mat.

Signature: BXSTdM...4Wrg==

Public key used to check signature:

<RSAKeyValue>

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[346]

 <Modulus>nHtwl3...mw3w==</Modulus>

 <Exponent>AQAB</Exponent>

</RSAKeyValue>

Correct! Signature is valid.

Invalid signature: XXSTdM...4Wrg==

Generating random numbers
Sometimes you need to generate random numbers, perhaps in a game that simulates
rolls of a die, or for use with cryptography in encryption or signing. There are a
couple of classes that can generate random numbers in .NET Core.

Generating random numbers for games
In scenarios that don't need truly random numbers like games, you can create an
instance of the Random class, as shown in the following code example:

var r = new Random();

Random has a constructor with a parameter for specifying a seed value used to
initialize its pseudo-random number generator, as shown in the following code:

var r = new Random(Seed: 12345);

As you learned in Chapter 2, Speaking C#, parameter names should use camel
case. The developer who defined the constructor for the Random class broke this
convention! The parameter name should be seed, not Seed.

Once you have a Random object, you can call its methods to generate random
numbers, as shown in the following code examples:

int dieRoll = r.Next(minValue: 1, maxValue: 7); // returns 1 to 6
double randomReal = r.NextDouble(); // returns 0.0 to 1.0
var arrayOfBytes = new byte[256];
r.NextBytes(arrayOfBytes); // 256 random bytes in an array

Good Practice: Shared seed values act as a secret key, so if you use
the same random number generation algorithm with the same seed
value in two applications, then they can generate the same "random"
sequences of numbers. Sometimes this is necessary, for example,
when synchronizing a GPS receiver with a satellite. But usually, you
want to keep your seed secret.

Protecting Your Data and Applications | 10

[347]

The Next method takes two parameters: minValue and maxValue. Now, maxValue
is not the maximum value that the method returns! It is an exclusive upper bound,
meaning it is one more than the maximum value.

Generating random numbers for cryptography
Random generates pseudo-random numbers. This is not good enough for
cryptography! If the random numbers are not truly random then they are repeatable,
and if they are repeatable, then a cracker can break your protection.

For truly random numbers, you must use a RandomNumberGenerator derived type,
such as RNGCryptoServiceProvider.

We will now create a method to generate a truly random byte array that can be used
in algorithms like encryption for key and IV values.

1. In the CryptographyLib class library project, add statements to the
Protector class to define a method to get a random key or IV for use in
encryption, as shown in the following code:
public static byte[] GetRandomKeyOrIV(int size)
{
 var r = RandomNumberGenerator.Create();
 var data = new byte[size];
 r.GetNonZeroBytes(data);
 // data is an array now filled with
 // cryptographically strong random bytes
 return data;
}

Now we can test the random bytes generated for a truly random encryption
key or IV.

2. Create a new console application project named RandomizingApp, add it to
the workspace, and select the project as active for OmniSharp.

3. Add a reference to the CryptographyLib assembly, import the appropriate
namespaces, and in Main, add statements to prompt the user to enter a size
of byte array and then generate random byte values and write them to the
console, as shown in the following code:
Write("How big do you want the key (in bytes): ");
string size = ReadLine();

byte[] key = Protector.GetRandomKeyOrIV(int.Parse(size));

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[348]

WriteLine($"Key as byte array:");
for (int b = 0; b < key.Length; b++)
{
 Write($"{key[b]:x2} ");
 if (((b + 1) % 16) == 0) WriteLine();
}
WriteLine();

4. Run the console application, enter a typical size for the key, such as 256, and
view the randomly generated key, as shown in the following output:

How big do you want the key (in bytes): 256

Key as byte array:

f1 57 3f 44 80 e7 93 dc 8e 55 04 6c 76 6f 51 b9

e8 84 59 e5 8d eb 08 d5 e6 59 65 20 b1 56 fa 68

...

What's new in cryptography
An automatic benefit of using .NET Core 3.0 is that algorithms for hashing, HMAC,
random number generation, asymmetric signature generation and processing,
and RSA encryption have been rewritten to use Span<T> so they achieve better
performance. For example, Rfc2898DeriveBytes is about 15% faster.

Some enhancements have been made to the cryptography APIs that are useful
in advanced scenarios, including:

• Signing and verifying of CMS/PKCS #7 messages.
• Enable X509Certificate.GetCertHash and X509Certificate.

GetCertHashString to get certificate thumbprint values using algorithms
other than SHA-1.

• The CryptographicOperations class with useful methods like ZeroMemory
to securely clear memory.

• RandomNumberGenerator has a Fill method that will fill a span with
random values and doesn't require you to manage an IDisposable resource.

Protecting Your Data and Applications | 10

[349]

• APIs to read, validate, and create RFC 3161 TimestampToken values.
• Elliptic-Curve Diffie-Hellman support using the ECDiffieHellman classes.
• Support for RSA-OAEP-SHA2 and RSA-PSS on Linux platforms.

Authenticating and authorizing users
Authentication is the process of verifying the identity of a user by validating their
credentials against some authority. Credentials include a username and password
combination, or a fingerprint or face scan.

Once authenticated, the authority can make claims about the user, for example, what
their email address is, and what groups or roles they belong to.

Authorization is the process of verifying membership of groups or roles before
allowing access to resources such as application functions and data. Although
authorization can be based on individual identity, it is good security practice to
authorize based on group or role membership (that can be indicated via claims) even
when there is only one user in the role or group. This is because that allows the user's
membership to change in future without reassigning the user's individual access
rights.

For example, instead of assigning access rights to launch a nuclear strike to Donald
Trump (a user), you would assign access rights to launch a nuclear strike to the
President of the United States (a role) and then add Donald Trump as a member of
that role.

There are multiple authentication and authorization mechanisms to choose from.
They all implement a pair of interfaces in the System.Security.Principal
namespace: IIdentity and IPrincipal.

IIdentity represents a user, so it has a Name property and an IsAuthenticated
property to indicate if they are anonymous or if they have been successfully
authenticated from their credentials.

The most common class that implements this interface is GenericIdentity, which
inherits from ClaimsIdentity, as shown in the following diagram:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[350]

Each ClaimsIdentity class has a Claims property that is shown in the preceding
diagram as a double-arrowhead between the ClaimsIdentity and Claim classes.

The Claim objects have a Type property that indicates if the claim is for their name,
their membership of a role or group, their date of birth, and so on.

IPrincipal is used to associate an identity with the roles and groups that they
are members of, so it can be used for authorization purposes. The current thread
executing your code has a CurrentPrincipal property that can be set to any object
that implements IPrincipal, and it will be checked when permission is needed to
perform a secure action.

The most common class that implements this interface is GenericPrincipal, which
inherits from ClaimsPrincipal, as shown in the following diagram:

Protecting Your Data and Applications | 10

[351]

Implementing authentication and
authorization
Let's explore authentication and authorization.

1. In the CryptographyLib class library project, add a property to the User
class to store an array of roles, as shown in the following code:
public string[] Roles { get; set; }

2. Modify the Register method in the Protector class to allow an array
of roles to be passed as an optional parameter, as shown highlighted in the
following code:
public static User Register(
 string username, string password,
 string[] roles = null)

3. Modify the Register method in the Protector class to set the array of roles
in the User object, as shown in the following code:
var user = new User
{
 Name = username, Salt = saltText,
 SaltedHashedPassword = saltedhashedPassword,

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[352]

 Roles = roles
};

4. In the CryptographyLib class library project, add statements to the
Protector class to define a LogIn method to log in a user, and use generic
identity and principal to assign them to the current thread, as shown in the
following code:
public static void LogIn(string username, string password)
{
 if (CheckPassword(username, password))
 {
 var identity = new GenericIdentity(
 username, "PacktAuth");
 var principal = new GenericPrincipal(
 identity, Users[username].Roles);
 System.Threading.Thread.CurrentPrincipal = principal;
 }
}

5. Create a new console application project named SecureApp, add it to the
workspace, and select the project as active for OmniSharp.

6. Add a reference to the CryptographyLib assembly, and then in Program.cs,
import the following namespaces:
using static System.Console;
using Packt.Shared;
using System.Threading;
using System.Security;
using System.Security.Permissions;
using System.Security.Principal;
using System.Security.Claims;

7. In the Main method, write statements to register three users named Alice,
Bob, and Eve, in various roles, prompt the user to log in, and then output
information about them, as shown in the following code:
Protector.Register("Alice", "Pa$$w0rd",
 new[] { "Admins" });
Protector.Register("Bob", "Pa$$w0rd",
 new[] { "Sales", "TeamLeads" });
Protector.Register("Eve", "Pa$$w0rd");

Write($"Enter your user name: ");
string username = ReadLine();
Write($"Enter your password: ");

Protecting Your Data and Applications | 10

[353]

string password = ReadLine();

Protector.LogIn(username, password);
if (Thread.CurrentPrincipal == null)
{
 WriteLine("Log in failed.");
 return;
}

var p = Thread.CurrentPrincipal;

WriteLine(
 $"IsAuthenticated: {p.Identity.IsAuthenticated}");
WriteLine(
 $"AuthenticationType: {p.Identity.AuthenticationType}");
WriteLine($"Name: {p.Identity.Name}");
WriteLine($"IsInRole(\"Admins\"): {p.IsInRole("Admins")}");
WriteLine($"IsInRole(\"Sales\"): {p.IsInRole("Sales")}");

if (p is ClaimsPrincipal)
{
 WriteLine(
 $"{p.Identity.Name} has the following claims:");

 foreach (Claim in (p as ClaimsPrincipal).Claims)
 {
 WriteLine($"{claim.Type}: {claim.Value}");
 }
}

8. Run the console application, log in as Alice with Pa$$word, and view the
results, as shown in the following output:
Enter your user name: Alice

Enter your password: Pa$$w0rd

IsAuthenticated: True

AuthenticationType: PacktAuth

Name: Alice

IsInRole("Admins"): True

IsInRole("Sales"): False

Alice has the following claims: http://schemas.xmlsoap.org/
ws/2005/05/identity/claims/name: Alice http://schemas.microsoft.
com/ws/2008/06/identity/claims/role: Admins

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
http://schemas.microsoft.com/ws/2008/06/identity/claims/role
http://schemas.microsoft.com/ws/2008/06/identity/claims/role

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[354]

9. Run the console application, log in as Alice with secret, and view the
results, as shown in the following output:
Enter your user name: Alice

Enter your password: secret

Log in failed.

10. Run the console application, log in as Bob with Pa$$word, and view the
results, as shown in the following output:

Enter your user name: Bob

Enter your password: Pa$$w0rd

IsAuthenticated: True

AuthenticationType: PacktAuth

Name: Bob

IsInRole("Admins"): False

IsInRole("Sales"): True

Bob has the following claims:

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name: Bob

http://schemas.microsoft.com/ws/2008/06/identity/claims/role:
Sales http://schemas.microsoft.com/ws/2008/06/identity/claims/
role: TeamLeads

Protecting application functionality
Now let's explore how we can use authorization to prevent some users from
accessing some features of an application.

1. Add a method to the Program class, secured by checking for permission
inside the method, and throw appropriate exceptions if the user is
anonymous or not a member of the Admins role, as shown in the following
code:
static void SecureFeature()
{
 if (Thread.CurrentPrincipal == null)
 {
 throw new SecurityException(
 "A user must be logged in to access this feature.");
 }

 if (!Thread.CurrentPrincipal.IsInRole("Admins"))
 {

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name:
http://schemas.microsoft.com/ws/2008/06/identity/claims/role:

Protecting Your Data and Applications | 10

[355]

 throw new SecurityException(
 "User must be a member of Admins to access this feature.");
 }

 WriteLine("You have access to this secure feature.");
}

2. Add statements to the end of the Main method to call the SecureFeature
method in a try statement, as shown in the following code:
try
{
 SecureFeature();
}
catch (System.Exception ex)
{
 WriteLine($"{ex.GetType()}: {ex.Message}");
}

3. Run the console application, log in as Alice with Pa$$word, and view the
results:
You have access to this secure feature.

4. Run the console application, log in as Bob with Pa$$word, and view the
results:

System.Security.SecurityException: User must be a member of Admins
to access this feature.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore the topics covered in this chapter with deeper
research.

Exercise 10.1 – Test your knowledge
Answer the following questions:

1. Of the encryption algorithms provided by .NET, which is the best choice for
symmetric encryption?

2. Of the encryption algorithms provided by .NET, which is the best choice for
asymmetric encryption?

3. What is a rainbow attack?

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[356]

4. For encryption algorithms, is it better to have a larger or smaller block size?
5. What is a hash?
6. What is a signature?
7. What is the difference between symmetric and asymmetric encryption?
8. What does RSA stand for?
9. Why should passwords be salted before being stored?
10. SHA1 is a hashing algorithm designed by the United States National Security

Agency. Why should you never use it?

Exercise 10.2 – Practice protecting data with
encryption and hashing
Create a console application named Exercise02 that protects an XML file, such as
the following example:

<?xml version="1.0" encoding="utf-8" ?>
<customers>
 <customer>
 <name>Bob Smith</name>
 <creditcard>1234-5678-9012-3456</creditcard>
 <password>Pa$$w0rd</password>
 </customer>
 ...
</customers>

The customer's credit card number and password are currently stored in clear text.
The credit card must be encrypted so that it can be decrypted and used later, and the
password must be salted and hashed.

Exercise 10.3 – Practice protecting data with
decryption
Create a console application named Exercise03 that opens the XML file that you
protected in the preceding code and decrypts the credit card number.

Exercise 10.4 – Explore topics
Use the following links to read more about the topics covered in this chapter:

Protecting Your Data and Applications | 10

[357]

• Key Security Concepts: https://docs.microsoft.com/en-us/dotnet/
standard/security/key-security-concepts

• Encrypting Data: https://docs.microsoft.com/en-us/dotnet/
standard/security/encrypting-data

• Cryptographic Signatures: https://docs.microsoft.com/en-us/dotnet/
standard/security/cryptographic-signatures

• Principal and Identity Objects: https://docs.microsoft.com/en-us/
dotnet/standard/security/principal-and-identity-objects

Summary
In this chapter, you learned how to encrypt and decrypt using symmetric encryption,
how to generate a salted hash, how to sign data and check the signature on the
data, how to generate truly random numbers, and how to use authentication and
authorization to protect features of your applications.

In the next chapter, you will learn how to work with databases using Entity
Framework Core.

https://docs.microsoft.com/en-us/dotnet/standard/security/key-security-concepts
https://docs.microsoft.com/en-us/dotnet/standard/security/key-security-concepts
https://docs.microsoft.com/en-us/dotnet/standard/security/cryptographic-signatures
https://docs.microsoft.com/en-us/dotnet/standard/security/cryptographic-signatures
https://docs.microsoft.com/en-us/dotnet/standard/security/principal-and-identity-objects
https://docs.microsoft.com/en-us/dotnet/standard/security/principal-and-identity-objects
https://docs.microsoft.com/en-us/dotnet/standard/security/principal-and-identity-objects

[359]

Chapter 11
Working with Databases

Using Entity Framework Core
This chapter is about reading and writing to data stores, such as Microsoft SQL
Server, SQLite, and Azure Cosmos DB, by using the object-to-data store mapping
technology named Entity Framework Core (EF Core).

This chapter will cover the following topics:

• Understanding modern databases
• Setting up EF Core
• Defining EF Core models
• Querying EF Core models
• Loading patterns with EF Core
• Manipulating data with EF Core

Understanding modern databases
Two of the most common places to store data are in a Relational Database
Management System (RDBMS) such as Microsoft SQL Server, PostgreSQL, MySQL,
and SQLite, or in a NoSQL data store such as Microsoft Azure Cosmos DB, Redis,
MongoDB, and Apache Cassandra.

This chapter will focus on RDBMSes such as SQL Server and SQLite. If you wish to
learn more about NoSQL databases, such as Cosmos DB and MongoDB, and how to
use them with EF Core, then I recommend the following links, which will go over
them in detail:

• Welcome to Azure Cosmos DB: https://docs.microsoft.com/en-us/
azure/cosmos-db/introduction

https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[360]

• Use NoSQL databases as a persistence infrastructure: https://docs.
microsoft.com/en-us/dotnet/standard/microservices-architecture/
microservice-ddd-cqrs-patterns/nosql-database-persistence-
infrastructure

• Document Database Providers for Entity Framework Core: https://
github.com/BlueshiftSoftware/EntityFrameworkCore

Understanding Entity Framework
Entity Framework (EF) was first released as part of the .NET Framework 3.5 with
Service Pack 1 back in late 2008. Since then, Entity Framework has evolved, as
Microsoft has observed how programmers use an object-relational mapping (ORM)
tool in the real world.

ORMs use a mapping definition to associate columns in tables to properties in
classes. Then, a programmer can interact with objects of different types in a way
that they are familiar with, instead of having to deal with knowing how to store the
values in a relational table or other structure provided by a NoSQL data store.

The version of EF included with the last version of .NET Framework is Entity
Framework 6 (EF6). It is mature, stable, and supports an old EDMX (XML file)
way of defining the model as well as complex inheritance models, and a few other
advanced features.

EF 6.3 is supported on .NET Core 3.0 cross-platform in order to enable existing
projects like web applications and services to be ported. However, EF6 should be
considered a legacy technology, has some limitations when running cross-platform,
and no new features will be added to it.

The truly cross-platform version, EF Core, is different. Although EF Core has a
similar name, you should be aware of how it varies from EF6. For example, as well
as traditional RDBMSes, EF Core also supports modern cloud-based, nonrelational,
schema-less data stores, such as Microsoft Azure Cosmos DB and MongoDB,
sometimes with third-party providers.

More Information: You can read more about Entity Framework
6.3 and its .NET Core 3.0 support at the following link:
https://devblogs.microsoft.com/dotnet/announcing-
ef-core-3-0-and-ef-6-3-general-availability/

More Information: You can read a preview article about the EF
Core Cosmos DB provider at the following link: https://msdn.
microsoft.com/en-us/magazine/mt833286.aspx

https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/nosql-database-persistence-infrastructure
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/nosql-database-persistence-infrastructure
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/nosql-database-persistence-infrastructure
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/nosql-database-persistence-infrastructure
https://github.com/BlueshiftSoftware/EntityFrameworkCore
https://github.com/BlueshiftSoftware/EntityFrameworkCore
https://devblogs.microsoft.com/dotnet/announcing-ef-core-3-0-and-ef-6-3-general-availability/
https://devblogs.microsoft.com/dotnet/announcing-ef-core-3-0-and-ef-6-3-general-availability/
https://devblogs.microsoft.com/dotnet/announcing-ef-core-3-0-and-ef-6-3-general-availability/
https://msdn.microsoft.com/en-us/magazine/mt833286.aspx
https://msdn.microsoft.com/en-us/magazine/mt833286.aspx

Working with Databases Using Entity Framework Core | 11

[361]

Using a sample relational database
To learn how to manage an RDBMS using .NET Core, it would be useful to have
a sample one so that you can practice on one that has a medium complexity and a
decent amount of sample records. Microsoft offers several sample databases, most of
which are too complex for our needs, so instead, we will use a database that was first
created in the early 1990s known as Northwind.

Let's take a minute to look at a diagram of the Northwind database. You can use the
diagram below to refer to as we write code and queries throughout this book:

You will write code to work with the Categories and Products tables later in this
chapter and other tables in later chapters. But before we do, note that:

• Each category has a unique identifier, name, description, and picture.
• Each product has a unique identifier, name, unit price, units in stock, and

other fields.
• Each product is associated with a category by storing the category's unique

identifier.
• The relationship between Categories and Products is one-to-many,

meaning each category can have zero or more products.

SQLite is a small, cross-platform, self-contained RDBMS that is available in the
public domain. It's the most common RDBMS for mobile platforms such as iOS
(iPhone and iPad) and Android.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[362]

Setting up SQLite for macOS
SQLite is included in macOS in the /usr/bin/ directory as a command-line
application named sqlite3.

Setting up SQLite for Windows
SQLite can be downloaded and installed for other OSes. On Windows, we also need
to add the folder for SQLite to the system path so it will be found when we enter
commands in Command Prompt.

1. Start your favorite browser and navigate to the following link: https://www.
sqlite.org/download.html

2. Scroll down the page to the Precompiled Binaries for Windows section.
3. Click sqlite-tools-win32-x86-3290000.zip.
4. Extract the ZIP file into a folder named C:\Sqlite\
5. Navigate to Windows Settings.
6. Search for environment and choose Edit the system environment variables.
7. Click the Environment Variables button.
8. In System variables, select Path in the list, and then click Edit…
9. Click New, enter C:\Sqlite, and press Enter.
10. Click OK.
11. Click OK.
12. Click OK.
13. Close Windows Settings.

Creating the Northwind sample database for
SQLite
Now we can create the Northwind sample database using an SQL script.

1. Create a folder named Chapter11 with a subfolder named
WorkingWithEFCore.

https://www.sqlite.org/download.html
https://www.sqlite.org/download.html

Working with Databases Using Entity Framework Core | 11

[363]

2. Download the script to create the Northwind database for SQLite from the
following link: https://github.com/markjprice/cs8dotnetcore3/blob/
master/sql-scripts/Northwind.sql

3. Copy Northwind.sql into the WorkingWithEFCore folder.
4. In Visual Studio Code, open the WorkingWithEFCore folder, navigate to

Terminal, and pipe the script to SQLite to create the Northwind.db database,
as shown in the following command:

sqlite3 Northwind.db < Northwind.sql

Be patient because this command might take a while to create all the database
structure.

Managing the Northwind sample database
with SQLiteStudio
You can use a cross-platform graphical database manager named SQLiteStudio to
easily manage SQLite databases.

1. Navigate to the following link: http://sqlitestudio.pl and download
and install the application.

2. Launch SQLiteStudio.
3. On the Database menu, choose Add a database, or press Cmd + O on macOS

or Ctrl + O on Windows.
4. In the Database dialog, click on the folder button to browse for an existing

database file on the local computer, and select the Northwind.db file in the
WorkingWithEFCore folder, and then click OK.

5. Right-click on the Northwind database and choose Connect to the database.
You will see the tables that were created by the script.

6. Right-click on the Products table and choose Edit the table.

More Information: You can read about the SQL statements
supported by SQLite at the following link: https://sqlite.
org/lang.html

https://github.com/markjprice/cs8dotnetcore3/blob/master/sql-scripts/Northwind.sql
https://github.com/markjprice/cs8dotnetcore3/blob/master/sql-scripts/Northwind.sql
https://github.com/markjprice/cs8dotnetcore3/blob/master/sql-scripts/Northwind.sql
http://sqlitestudio.pl/
http://sqlitestudio.pl
https://sqlite.org/lang.html
https://sqlite.org/lang.html

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[364]

In the table editor window, you will see the structure of the Products table,
including column names, data types, keys, and constraints, as shown in the
following screenshot:

7. In the table editor window, click the Data tab. You will see 77 products, as
shown in the following screenshot:

Setting up EF Core
Before we dive into the practicalities of managing data using EF Core, let's briefly
talk about choosing between EF Core data providers.

Choosing an EF Core data provider
To manage data in a specific database, we need classes that know how to efficiently
talk to that database. EF Core data providers are sets of classes that are optimized for
a specific data store. There is even a provider for storing the data in the memory of
the current process, which is useful for high-performance unit testing since it avoids
hitting an external system.

Working with Databases Using Entity Framework Core | 11

[365]

They are distributed as NuGet packages, as shown in the following table:

To manage this data store Install this NuGet package

Microsoft SQL Server 2008 or later Microsoft.EntityFrameworkCore.SqlServer

SQLite 3.7 or later Microsoft.EntityFrameworkCore.SQLite

MySQL MySQL.Data.EntityFrameworkCore

In-memory Microsoft.EntityFrameworkCore.InMemory

Connecting to the database
To connect to SQLite, we just need to know the database filename. We specify this
information in a connection string.

1. In Visual Studio Code, make sure that you have opened the
WorkingWithEFCore folder, and then in Terminal, enter the dotnet new
console command.

2. Edit WorkingWithEFCore.csproj to add a package reference to the EF Core
data provider for SQLite, as shown highlighted in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="3.0.0" />
 </ItemGroup>

</Project>

More Information: Devart is a third party that offers EF Core
providers for a wide range of data stores. Find out more at the
following link: https://www.devart.com/dotconnect/
entityframework.html

https://www.devart.com/dotconnect/entityframework.html
https://www.devart.com/dotconnect/entityframework.html

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[366]

3. In Terminal, build the project to restore packages, as shown in the following
command:
dotnet build

Defining EF Core models
EF Core uses a combination of conventions, annotation attributes, and Fluent API
statements to build an entity model at runtime so that any actions performed on the
classes can later be automatically translated into actions performed on the actual
database. An entity class represents the structure of a table and an instance of the
class represents a row in that table.

First we will review the three ways to define a model, with code examples, and then
we will create some classes that implement those techniques.

EF Core conventions
The code we will write will use the following conventions:

• The name of a table is assumed to match the name of a DbSet<T> property in
the DbContext class, for example, Products.

• The names of the columns are assumed to match the names of properties in
the class, for example, ProductID.

• The string .NET type is assumed to be a nvarchar type in the database.
• The int .NET type is assumed to be an int type in the database.
• A property that is named ID, or if the class is named Product, then the

property can be named ProductID. That property is then assumed to be a
primary key. If this property is an integer type or the Guid type, then it is also
assumed to be IDENTITY (a column type that automatically assigns a value
when inserting).

More Information: You can check the most recent version at
the following link: https://www.nuget.org/packages/
Microsoft.EntityFrameworkCore. Sqlite/

More Information: There are many other conventions, and you
can even define your own, but that is beyond the scope of this
book. You can read about them at the following link:

https://docs.microsoft.com/en-us/ef/core/modeling/

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore. Sqlite/
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore. Sqlite/
https://docs.microsoft.com/en-us/ef/core/modeling/
https://docs.microsoft.com/en-us/ef/core/modeling/

Working with Databases Using Entity Framework Core | 11

[367]

EF Core annotation attributes
Conventions often aren't enough to completely map the classes to the database objects.
A simple way of adding more smarts to your model is to apply annotation attributes.

For example, in the database, the maximum length of a product name is 40, and the
value cannot be null. In a Product class, we could apply attributes to specify this, as
shown in the following code:

[Required]
[StringLength(40)]
public string ProductName { get; set; }

When there isn't an obvious map between .NET types and database types, an
attribute can be used.

For example, in the database, the column type of UnitPrice for the Products table
is money. .NET Core does not have a money type, so it should use decimal instead, as
shown in the following code:

[Column(TypeName = "money")]
public decimal? UnitPrice { get; set; }

In the Category table, the Description column can be longer than the 8,000
characters that can be stored in a nvarchar variable, so it needs to map to ntext
instead, as shown in the following code:

[Column(TypeName = "ntext")]
public string Description { get; set; }

EF Core Fluent API
The last way that the model can be defined is by using the Fluent API. This API
can be used instead of attributes, as well as being used in addition to them. For
example, let's look at the following two attributes in a Product class, as shown in the
following code:

[Required]
[StringLength(40)]
public string ProductName { get; set; }

The attributes could be removed from the class to keep it simpler, and replaced with
an equivalent Fluent API statement in the OnModelCreating method of a database
context class, as shown in the following code:

modelBuilder.Entity<Product>()

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[368]

 .Property(product => product.ProductName)
 .IsRequired()
 .HasMaxLength(40);

Understanding data seeding
You can use the Fluent API to provide initial data to populate a database. EF Core
automatically works out what insert, update, or delete operations must be executed.
If we wanted to make sure that a new database has at least one row in the Product
table then we would call the HasData method, as shown in the following code:

modelBuilder.Entity<Product>()
 .HasData(new Product
 {
 ProductID = 1,
 ProductName = "Chai",
 UnitPrice = 8.99M
 });

Our model will map to an existing database that is already populated with data so
we will not need to use this technique in our code.

Building an EF Core model
Now that you've learned about model conventions, let's build a model to represent
two tables and the Northwind database. To make the classes more reusable, we
will define them in the Packt.Shared namespace. These three classes will refer to
each other, so to avoid compiler errors we will create the three classes without any
members first.

1. Add three class files to the WorkingWithEFCore project named
Northwind.cs, Category.cs, and Product.cs.

2. In the file named Northwind.cs, define a class named Northwind, as shown
in the following code:
namespace Packt.Shared
{
 public class Northwind
 {
 }
}

More Information: You can read more about data seeding at the
following link: https://docs.microsoft.com/en-us/ef/
core/modeling/data-seeding

https://docs.microsoft.com/en-us/ef/core/modeling/data-seeding
https://docs.microsoft.com/en-us/ef/core/modeling/data-seeding

Working with Databases Using Entity Framework Core | 11

[369]

3. In the file named Category.cs, define a class named Category, as shown in
the following code:
namespace Packt.Shared
{
 public class Category
 {
 }
}

4. In the file named Product.cs, define a class named Product, as shown in the
following code:

namespace Packt.Shared
{
 public class Product
 {
 }
}

Defining the Category and Product entity classes
Category will be used to represent a row in the Categories table, which has four
columns, as shown in the following screenshot:

We will use conventions to define three of the four properties (we will not map
the Picture column), the primary key, and the one-to-many relationship to the
Products table. To map the Description column to the correct database type, we
will need to decorate the string property with the Column attribute.

Later on in this chapter, we will use the Fluent API to define that CategoryName
cannot be null and is limited to a maximum of 15 characters.

1. Modify Category.cs, as shown in the following code:
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[370]

namespace Packt.Shared
{
 public class Category
 {
 // these properties map to columns in the database
 public int CategoryID { get; set; }

 public string CategoryName { get; set; }

 [Column(TypeName = "ntext")]
 public string Description { get; set; }

 // defines a navigation property for related rows
 public virtual ICollection<Product> Products { get; set; }

 public Category()
 {
 // to enable developers to add products to a Category we
must
 // initialize the navigation property to an empty list
 this.Products = new List<Product>();
 }
 }
}

Product will be used to represent a row in the Products table, which has ten
columns. You do not need to include all columns from a table as properties
of a class. We will only map six properties: ProductID, ProductName,
UnitPrice, UnitsInStock, Discontinued, and CategoryID.
Columns that are not mapped to properties cannot be read or set using the
class instances. If you use the class to create a new object, then the new row
in the table will have NULL or some other default value for the unmapped
column values in that row. In this scenario, the rows already have data
values and I have decided that I do not need to read those values in the
console application.
We can rename a column by defining a property with a different name, like
Cost, and then decorating the property with the [Column] attribute and
specifying its column name, like UnitPrice.
The final property, CategoryID, is associated with a Category property that
will be used to map each product to its parent category.

2. Modify Product.cs, as shown in the following code:
using System.ComponentModel.DataAnnotations;

Working with Databases Using Entity Framework Core | 11

[371]

using System.ComponentModel.DataAnnotations.Schema;

namespace Packt.Shared
{
 public class Product
 {
 public int ProductID { get; set; }

 [Required]
 [StringLength(40)]
 public string ProductName { get; set; }

 [Column("UnitPrice", TypeName = "money")]
 public decimal? Cost { get; set; }

 [Column("UnitsInStock")]
 public short? Stock { get; set; }

 public bool Discontinued { get; set; }

 // these two define the foreign key relationship
 // to the Categories table
 public int CategoryID { get; set; }

 public virtual Category Category { get; set; }
 }
}

The two properties that relate the two entities, Category.Products and Product.
Category, are both marked as virtual. This allows EF Core to inherit and override
the properties to provide extra features, such as lazy loading. Lazy loading is not
available in .NET Core 2.0 or earlier.

Defining the Northwind database context class
The Northwind class will be used to represent the database. To use EF Core, the class
must inherit from DbContext. This class understands how to communicate with
databases and dynamically generate SQL statements to query and manipulate data.

Inside your DbContext-derived class, you must define at least one property of the
DbSet<T> type. These properties represent the tables. To tell EF Core what columns
each table has, the DbSet properties use generics to specify a class that represents a
row in the table, with properties that represent its columns.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[372]

Your DbContext-derived class should have an overridden method named
OnConfiguring, which will set the database connection string.

Likewise, your DbContext-derived class can optionally have an overridden method
named OnModelCreating. This is where you can write Fluent API statements as an
alternative to decorating your entity classes with attributes.

1. Modify Northwind.cs, as shown in the following code:
using Microsoft.EntityFrameworkCore;

namespace Packt.Shared
{
 // this manages the connection to the database
 public class Northwind : DbContext
 {
 // these properties map to tables in the database
 public DbSet<Category> Categories { get; set; }
 public DbSet<Product> Products { get; set; }

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 string path = System.IO.Path.Combine(
 System.Environment.CurrentDirectory, "Northwind.db");

 optionsBuilder.UseSqlite($"Filename={path}");
 }

 protected override void OnModelCreating(
 ModelBuilder modelBuilder)
 {
 // example of using Fluent API instead of attributes
 // to limit the length of a category name to 15
 modelBuilder.Entity<Category>()
 .Property(category => category.CategoryName)
 .IsRequired() // NOT NULL
 .HasMaxLength(15);
 }
 }
}

Querying EF Core models
Now that we have a model that maps to the Northwind database and two of its
tables, we can write some simple LINQ queries to fetch data. You will learn much
more about writing LINQ queries in Chapter 12, Querying and Manipulating Data
Using LINQ. For now, just write the code and view the results.

1. Open Program.cs and import the following namespaces:

Working with Databases Using Entity Framework Core | 11

[373]

using static System.Console;
using Packt.Shared;
using Microsoft.EntityFrameworkCore;
using System.Linq;

2. In Program, define a QueryingCategories method, and add statements to
do these tasks, as shown in the following code:

 ° Create an instance of the Northwind class that will manage the
database.

 ° Create a query for all categories that include their related products.
 ° Enumerate through the categories, outputting the name and number

of products for each one.

static void QueryingCategories()
{
 using (var db = new Northwind())
 {
 WriteLine("Categories and how many products they have:");

 // a query to get all categories and their related products
 IQueryable<Category> cats = db.Categories
 .Include(c => c.Products);

 foreach (Category c in cats)
 {
 WriteLine($"{c.CategoryName} has {c.Products.Count}
products.");
 }
 }
}

3. In Main, call the QueryingCategories method, as shown in the following
code:
static void Main(string[] args)
{
 QueryingCategories();
}

4. Run the application and view the result, as shown in the following output:

Categories and how many products they have:

Beverages has 12 products.

Condiments has 12 products.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[374]

Confections has 13 products.

Dairy Products has 10 products.

Grains/Cereals has 7 products.

Meat/Poultry has 6 products.

Produce has 5 products.

Seafood has 12 products.

Filtering and sorting products
Let's explore a more complex query that filters and sorts data.

1. In Program, define a QueryingProducts method, and add statements to do
the following, as shown in the following code:

 ° Create an instance of the Northwind class that will manage the
database.

 ° Prompt the user for a price for products.
 ° Create a query for products that cost more than the price using LINQ.
 ° Loop through the results, outputting the ID, name, cost (formatted

with US dollars), and the number of units in stock.

static void QueryingProducts()
{
 using (var db = new Northwind())
 {
 WriteLine("Products that cost more than a price, highest at
top.");
 string input;
 decimal price;
 do
 {
 Write("Enter a product price: ");
 input = ReadLine();
 } while(!decimal.TryParse(input, out price));

 IQueryable<Product> prods = db.Products
 .Where(product => product.Cost > price)
 .OrderByDescending(product => product.Cost);

 foreach (Product item in prods)
 {
 WriteLine(

Working with Databases Using Entity Framework Core | 11

[375]

 "{0}: {1} costs {2:$#,##0.00} and has {3} in stock.",
 item.ProductID, item.ProductName, item.Cost, item.Stock);
 }
 }
}

2. In Main, comment the previous method, and call the method, as shown in the
following code:
static void Main(string[] args)
{
 // QueryingCategories();
 QueryingProducts();
}

3. Run the application, enter 50 when prompted to enter a product price, and
view the result, as shown in the following output:

Products that cost more than a price, highest at top.

Enter a product price: 50

38: Côte de Blaye costs $263.50 and has 17 in stock.

29: Thüringer Rostbratwurst costs $123.79 and has 0 in stock.

9: Mishi Kobe Niku costs $97.00 and has 29 in stock.

20: Sir Rodney's Marmalade costs $81.00 and has 40 in stock.

18: Carnarvon Tigers costs $62.50 and has 42 in stock.

59: Raclette Courdavault costs $55.00 and has 79 in stock.

51: Manjimup Dried Apples costs $53.00 and has 20 in stock.

There is a limitation with the console provided by Microsoft on versions of Windows
before the Windows 10 Fall Creators Update. By default, the console cannot display
Unicode characters. You can temporarily change the code page (also known as the
character set) in a console to Unicode UTF-8 by entering the following command at
the prompt before running the app:

chcp 65001

Logging EF Core
To monitor the interaction between EF Core and the database, we can enable logging.
This requires the following two tasks:

• The registering of a logging provider
• The implementation of a logger

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[376]

1. Add a file to your project named ConsoleLogger.cs.
2. Modify the file to define two classes, one to implement ILoggerProvider

and one to implement ILogger, as shown in the following code, and note the
following:

 ° ConsoleLoggerProvider returns an instance of ConsoleLogger. It
does not need any unmanaged resources, so the Dispose method
does not do anything, but it must exist.

 ° ConsoleLogger is disabled for log levels None, Trace, and
Information. It is enabled for all other log levels.

 ° ConsoleLogger implements its Log method by writing to Console.

using Microsoft.Extensions.Logging;
using System;
using static System.Console;

namespace Packt.Shared
{
 public class ConsoleLoggerProvider : ILoggerProvider
 {
 public ILogger CreateLogger(string categoryName)
 {
 return new ConsoleLogger();
 }

 // if your logger uses unmanaged resources,
 // you can release the memory here
 public void Dispose() { }
 }

 public class ConsoleLogger : ILogger
 {
 // if your logger uses unmanaged resources, you can
 // return the class that implements IDisposable here
 public IDisposable BeginScope<TState>(TState state)
 {
 return null;
 }

 public bool IsEnabled(LogLevel logLevel)
 {
 // to avoid overlogging, you can filter
 // on the log level
 switch(logLevel)
 {

Working with Databases Using Entity Framework Core | 11

[377]

 case LogLevel.Trace:
 case LogLevel.Information:
 case LogLevel.None:
 return false;
 case LogLevel.Debug:
 case LogLevel.Warning:
 case LogLevel.Error:
 case LogLevel.Critical:
 default:
 return true;
 };
 }

 public void Log<TState>(LogLevel,
 EventId eventId, TState state, Exception exception,
 Func<TState, Exception, string> formatter)
 {
 // log the level and event identifier
 Write($"Level: {logLevel}, Event ID: {eventId.Id}");

 // only output the state or exception if it exists
 if (state != null)
 {
 Write($", State: {state}");
 }
 if (exception != null)
 {
 Write($", Exception: {exception.Message}");
 }
 WriteLine();
 }
 }
}

3. At the top of the Program.cs file, add statements to import the namespaces
needed for logging, as shown in the following code:
using Microsoft.EntityFrameworkCore.Infrastructure;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

4. To both the QueryingCategories and QueryingProducts methods, add
statements immediately inside the using block for the Northwind database
context to get the logging factory and register your custom console logger, as
shown highlighted in the following code:
using (var db = new Northwind())

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[378]

{
 var loggerFactory = db.GetService<ILoggerFactory>();
 loggerFactory.AddProvider(new ConsoleLoggerProvider());

5. Run the console application and view the logs, which are partially shown in
the following output:
Level: Debug, Event ID: 20000, State: Opening connection to
database 'main' on server '/Users/markjprice/Code/Chapter11/
WorkingWithEFCore/Northwind.db'.

Level: Debug, Event ID: 20001, State: Opened connection to
database 'main' on server '/Users/markjprice/Code/Chapter11/
WorkingWithEFCore/Northwind.db'.

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30']

PRAGMA foreign_keys=ON;

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30']

SELECT "product"."ProductID", "product"."CategoryID",
"product"."UnitPrice", "product"."Discontinued",
"product"."ProductName", "product"."UnitsInStock"

FROM "Products" AS "product"

ORDER BY "product"."UnitPrice" DESC

The event ID values and what they mean will be specific to the .NET data
provider. If we want to know how the LINQ query has been translated into
SQL statements and is executing, then the Event ID to output has an Id
value of 20100.

6. Modify the Log method in ConsoleLogger to only output events with Id of
20100, as highlighted in the following code:
public void Log<TState>(LogLevel logLevel, EventId eventId, TState
state,
 Exception exception,Func<TState, Exception, string> formatter)
{
 if (eventId.Id == 20100)
 {
 // log the level and event identifier
 Write("Level: {0}, Event ID: {1}, Event: {2}"
 logLevel, eventId.Id, eventId.Name);

 // only output the state or exception if it exists
 if (state != null)
 {
 Write($", State: {state}");

Working with Databases Using Entity Framework Core | 11

[379]

 }
 if (exception != null)
 {
 Write($", Exception: {exception.Message}");
 }
 WriteLine();
 }
}

7. In Main, uncomment the QueryingCategories method and comment the
QueryingProducts method so that we can monitor the SQL statements that
are generated when joining two tables.

8. Run the console application, and note the following SQL statements that
were logged, as shown in the following output:

Categories and how many products they have:

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30']

PRAGMA foreign_keys=ON;

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30']

SELECT "c"."CategoryID", "c"."CategoryName", "c"."Description"

FROM "Categories" AS "c"

ORDER BY "c"."CategoryID"

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30']

SELECT "c.Products"."ProductID", "c.Products"."CategoryID",
"c.Products"."UnitPrice", "c.Products"."Discontinued",
"c.Products"."ProductName", "c.Products"."UnitsInStock"

FROM "Products" AS "c.Products"

INNER JOIN (

 SELECT "c0"."CategoryID"

 FROM "Categories" AS "c0"

) AS "t" ON "c.Products"."CategoryID" = "t"."CategoryID"

ORDER BY "t"."CategoryID"

Beverages has 12 products.

Condiments has 12 products.

Confections has 13 products.

Dairy Products has 10 products.

Grains/Cereals has 7 products.

Meat/Poultry has 6 products.

Produce has 5 products.

Seafood has 12 products.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[380]

Logging with query tags
When logging LINQ queries it can be tricky to correlate log messages in complex
scenarios. EF Core 2.2 introduced the query tags feature to help by allowing you to
add SQL comments to the log.

You can annotate a LINQ query using the TagWith method, as shown in the
following code:

IQueryable<Product> prods = db.Products
 .TagWith("Products filtered by price and sorted.")
 .Where(product => product.Cost > price)
 .OrderByDescending(product => product.Cost);

This will add an SQL comment to the log, as shown in the following output:

-- Products filtered by price and sorted.

Pattern matching with Like
EF Core supports common SQL statements including Like for pattern matching.

1. In Program, add a method named QueryingWithLike, as shown in the
following code, and note:

 ° We have enabled logging.
 ° We prompt the user to enter part of a product name and then use the

EF.Functions.Like method to search anywhere in the ProductName
property.

 ° For each matching product, we output its name, stock, and if it is
discontinued.

static void QueryingWithLike()
{
 using (var db = new Northwind())
 {
 var loggerFactory = db.GetService<ILoggerFactory>();
 loggerFactory.AddProvider(new ConsoleLoggerProvider());

More Information: You can read more about query tags at the
following link: https://docs.microsoft.com/en-us/ef/
core/querying/tags

https://docs.microsoft.com/en-us/ef/core/querying/tags
https://docs.microsoft.com/en-us/ef/core/querying/tags

Working with Databases Using Entity Framework Core | 11

[381]

 Write("Enter part of a product name: ");
 string input = ReadLine();

 IQueryable<Product> prods = db.Products
 .Where(p => EF.Functions.Like(p.ProductName, $"%{input}%"));

 foreach (Product item in prods)
 {
 WriteLine("{0} has {1} units in stock. Discontinued? {2}",
 item.ProductName, item.Stock, item.Discontinued);
 }
 }
}

2. In Main, comment the existing methods, and call QueryingWithLike, as
shown in the following code:
static void Main(string[] args)
{
 // QueryingCategories();
 // QueryingProducts();
 QueryingWithLike();
}

3. Run the console application, enter a partial product name such as che, and
view the result, as shown in the following output:

Enter part of a product name: che

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30']

PRAGMA foreign_keys=ON;

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[@__Format_1='?' (Size = 5)], CommandType='Text',
CommandTimeout='30']

SELECT "p"."ProductID", "p"."CategoryID", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"

FROM "Products" AS "p"

WHERE "p"."ProductName" LIKE @__Format_1

Chef Anton's Cajun Seasoning has 53 units in stock. Discontinued?
False

Chef Anton's Gumbo Mix has 0 units in stock. Discontinued? True

Queso Manchego La Pastora has 86 units in stock. Discontinued?
False

Gumbär Gummibärchen has 15 units in stock. Discontinued? False

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[382]

Defining global filters
The Northwind products can be discontinued, so it might be useful to ensure that
discontinued products are never returned in results, even if the programmer forgets
to use Where to filter them out.

1. Modify the OnModelCreating method in the Northwind class to add a
global filter to remove discontinued products, as shown highlighted in the
following code:
protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 // example of using Fluent API instead of attributes
 // to limit the length of a category name to under 15
 modelBuilder.Entity<Category>()
 .Property(category => category.CategoryName)
 .IsRequired() // NOT NULL
 .HasMaxLength(15);

 // global filter to remove discontinued products
 modelBuilder.Entity<Product>()
 .HasQueryFilter(p => !p.Discontinued);
}

2. Run the console application, enter the partial product name che, view the
result, and note that Chef Anton's Gumbo Mix is now missing, because the
SQL statement generated includes a filter for the Discontinued column, as
shown in the following output:
SELECT "p"."ProductID", "p"."CategoryID", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"

FROM "Products" AS "p"

WHERE ("p"."Discontinued" = 0) AND "p"."ProductName" LIKE @__
Format_1

Chef Anton's Cajun Seasoning has 53 units in stock. Discontinued?
False

Queso Manchego La Pastora has 86 units in stock. Discontinued?
False

Gumbär Gummibärchen has 15 units in stock. Discontinued? False

Loading patterns with EF Core
There are three loading patterns that are commonly used with EF: lazy loading, eager
loading, and explicit loading. In this section, we're going to introduce each of them.

Working with Databases Using Entity Framework Core | 11

[383]

Eager loading entities
In the QueryingCategories method, the code currently uses the Categories
property to loop through each category, outputting the category name and the
number of products in that category. This works because when we wrote the query,
we used the Include method to use eager loading (also known as early loading) for
the related products.

1. Modify the query to comment out the Include method call, as shown in the
following code:
IQueryable<Category> cats =
 db.Categories; //.Include(c => c.Products);

2. In Main, comment all methods except QueryingCategories, as shown in the
following code:
static void Main(string[] args)
{
 QueryingCategories();
 // QueryingProducts();
 // QueryingWithLike();
}

3. Run the console application and view the result, as shown in the following
partial output:

Beverages has 0 products.

Condiments has 0 products.

Confections has 0 products.

Dairy Products has 0 products.

Grains/Cereals has 0 products.

Meat/Poultry has 0 products.

Produce has 0 products.

Seafood has 0 products.

Each item in foreach is an instance of the Category class, which has a property
named Products, that is, the list of products in that category. Since the original
query is only selected from the Categories table, this property is empty for each
category.

Lazy loading was introduced in EF Core 2.1, and it can automatically load missing
related data.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[384]

Enabling lazy loading
To enable lazy loading, developers must:

• Reference a NuGet package for proxies.
• Configure lazy loading to using a proxy.

1. Open WorkingWithEFCore.csproj and add a package reference, as shown
in the following markup:
<PackageReference
 Include="Microsoft.EntityFrameworkCore.Proxies"
 Version="3.0.0" />

2. In Terminal, build the project to restore packages, as shown in the following
command:
dotnet build

3. Open Northwind.cs, import the Microsoft.EntityFrameworkCore.
Proxies namespace, and call an extension method to use lazy loading
proxies before using SQLite, as shown highlighted in the following code:
optionsBuilder.UseLazyLoadingProxies()
 .UseSqlite($"Filename={path}");

Now, every time the loop enumerates and an attempt is made to read the
Products property, the lazy loading proxy will check if they are loaded. If
not, it will load them for us "lazily" by executing a SELECT statement to load
just that set of products for the current category, and then the correct count
would be returned to the output.

4. Run the console app and you will see that the problem with lazy loading is
that multiple round trips to the database server are required to eventually
fetch all the data, as shown in the following partial output:
Categories and how many products they have:

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30']

PRAGMA foreign_keys=ON;

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30']

SELECT "c"."CategoryID", "c"."CategoryName", "c"."Description"

FROM "Categories" AS "c"

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[@__p_0='?'], CommandType='Text', CommandTimeout='30']

SELECT "p"."ProductID", "p"."CategoryID", "p"."UnitPrice",

Working with Databases Using Entity Framework Core | 11

[385]

"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"

FROM "Products" AS "p"

WHERE ("p"."Discontinued" = 0) AND ("p"."CategoryID" = @__p_0)

Beverages has 11 products.

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[@__p_0='?'], CommandType='Text', CommandTimeout='30']

SELECT "p"."ProductID", "p"."CategoryID", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"

FROM "Products" AS "p"

WHERE ("p"."Discontinued" = 0) AND ("p"."CategoryID" = @__p_0)

Condiments has 11 products.

Explicit loading entities
Another type of loading is explicit loading. It works in a similar way to lazy loading,
with the difference being that you are in control of exactly what related data is
loaded and when.

1. In the QueryingCategories method, modify the statements to disable lazy
loading and then prompt the user if they want to enable eager loading and
explicit loading, as shown in the following code:
IQueryable<Category> cats;
// = db.Categories;
// .Include(c => c.Products);

db.ChangeTracker.LazyLoadingEnabled = false;

Write("Enable eager loading? (Y/N): ");
bool eagerloading = (ReadKey().Key == ConsoleKey.Y);
bool explicitloading = false;
WriteLine();

if (eagerloading)
{
 cats = db.Categories.Include(c => c.Products);
}
else
{
 cats = db.Categories;
 Write("Enable explicit loading? (Y/N): ");
 explicitloading = (ReadKey().Key == ConsoleKey.Y);
 WriteLine();
}

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[386]

2. Inside the foreach loop, before the WriteLine method call, add statements
to check if explicit loading is enabled, and if so, prompt the user if they want
to explicitly load each individual category, as shown in the following code:
if (explicitloading)
{
 Write($"Explicitly load products for {c.CategoryName}? (Y/N):
");
 ConsoleKeyInfo key = ReadKey().Key;
 WriteLine();
 if (key.Key == ConsoleKey.Y)
 {
 var products = db.Entry(c).Collection(c2 => c2.Products);
 if (!products.IsLoaded) products.Load();
 }
}
WriteLine($"{c.CategoryName} has {c.Products.Count}
products.");

3. Run the console application; press N to disable eager loading, and press Y to
enable explicit loading. For each category, press Y or N to load its products
as you wish. I chose to load products for only two of the eight categories,
Beverages and Seafood, as shown in the following output:
Categories and how many products they have:

Enable eager loading? (Y/N): n

Enable explicit loading? (Y/N): y

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30']

PRAGMA foreign_keys=ON;

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[], CommandType='Text', CommandTimeout='30']

SELECT "c"."CategoryID", "c"."CategoryName", "c"."Description"

FROM "Categories" AS "c"

Explicitly load products for Beverages? (Y/N): y

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[@__p_0='?'], CommandType='Text', CommandTimeout='30']

SELECT "p"."ProductID", "p"."CategoryID", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"

FROM "Products" AS "p"

WHERE ("p"."Discontinued" = 0) AND ("p"."CategoryID" = @__p_0)

Beverages has 11 products.

Explicitly load products for Condiments? (Y/N): n

Condiments has 0 products.

Explicitly load products for Confections? (Y/N): n

Working with Databases Using Entity Framework Core | 11

[387]

Confections has 0 products.

Explicitly load products for Dairy Products? (Y/N): n

Dairy Products has 0 products.

Explicitly load products for Grains/Cereals? (Y/N): n

Grains/Cereals has 0 products.

Explicitly load products for Meat/Poultry? (Y/N): n

Meat/Poultry has 0 products.

Explicitly load products for Produce? (Y/N): n

Produce has 0 products.

Explicitly load products for Seafood? (Y/N): y

Level: Debug, Event ID: 20100, State: Executing DbCommand
[Parameters=[@__p_0='?'], CommandType='Text', CommandTimeout='30']

SELECT "p"."ProductID", "p"."CategoryID", "p"."UnitPrice",
"p"."Discontinued", "p"."ProductName", "p"."UnitsInStock"

FROM "Products" AS "p"

WHERE ("p"."Discontinued" = 0) AND ("p"."CategoryID" = @__p_0)

Seafood has 12 products.

Manipulating data with EF Core
Inserting, updating, and deleting entities using EF Core is an easy task to accomplish.
DbContext maintains change tracking automatically, so the local entities can have
multiple changes tracked, including adding new entities, modifying existing entities,
and removing entities. When you are ready to send those changes to the underlying
database, call the SaveChanges method. The number of entities successfully changed
will be returned.

Inserting entities
Let's start by looking at how to add a new row to a table.

1. In Program, create a new method named AddProduct, as shown in the
following code:
static bool AddProduct(int categoryID, string productName,
decimal? price)

Good Practice: Carefully consider which loading pattern is best for
your code. Lazy loading could literally make you a lazy database
developer! Read more about loading patterns at the following link:
https://docs.microsoft.com/en-us/ef/core/querying/
related-data

https://docs.microsoft.com/en-us/ef/core/querying/related-data
https://docs.microsoft.com/en-us/ef/core/querying/related-data

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[388]

{
 using (var db = new Northwind())
 {
 var newProduct = new Product
 {
 CategoryID = categoryID,
 ProductName = productName,
 Cost = price
 };

 // mark product as added in change tracking
 db.Products.Add(newProduct);

 // save tracked change to database
 int affected = db.SaveChanges();
 return (affected == 1);
 }
}

2. In Program, create a new method named ListProducts that outputs the ID,
name, cost, stock, and discontinued properties of each product sorted with
the costliest first, as shown in the following code:
static void ListProducts()
{
 using (var db = new Northwind())
 {
 WriteLine("{0,-3} {1,-35} {2,8} {3,5} {4}",
 "ID", "Product Name", "Cost", "Stock", "Disc.");

 foreach (var item in db.Products.OrderByDescending(p =>
p.Cost))
 {
 WriteLine("{0:000} {1,-35} {2,8:$#,##0.00} {3,5} {4}",
 item.ProductID, item.ProductName, item.Cost,
 item.Stock, item.Discontinued);
 }
 }
}

Remember that 1,-35 means left-align argument number 1 within a 35
character-wide column and 3,5 means right-align argument number
3 within a 5 character-wide column.

Working with Databases Using Entity Framework Core | 11

[389]

3. In Main, comment previous method calls, and then call AddProduct and
ListProducts, as shown in the following code:
static void Main(string[] args)
{
 // QueryingCategories();
 // QueryingProducts();
 // QueryingWithLike();

 if (AddProduct(6, "Bob's Burgers", 500M))
 {
 WriteLine("Add product successful.");
 }

 ListProducts();
}

4. Run the application, view the result, and note the new product has been
added, as shown in the following partial output:
Add product successful.

ID Product Name Cost Stock Disc.

078 Bob's Burgers $500.00 False

038 Côte de Blaye $263.50 17 False

020 Sir Rodney's Marmalade $81.00 40 False

Updating entities
Now, let's modify an existing row in a table.

1. In Program, add a method to increase the price of the first product with a
name that begins with Bob by $20, as shown in the following code:
static bool IncreaseProductPrice(string name, decimal amount)
{
 using (var db = new Northwind())
 {
 // get first product whose name starts with name
 Product updateProduct = db.Products.First(
 p => p.ProductName.StartsWith(name));

 updateProduct.Cost += amount;

 int affected = db.SaveChanges();
 return (affected == 1);
 }
}

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[390]

2. In Main, comment the whole if statement block that calls AddProduct,
and add a call to IncreaseProductPrice before the call to list products,
as shown highlighted in the following code:
if (IncreaseProductPrice("Bob", 20M))
{
 WriteLine("Update product price successful.");
}

ListProducts();

3. Run the console application, view the result, and note that the existing entity
for Bob's Burgers has increased in price by $20, as shown in the following
output:
Update product price successful.
ID Product Name Cost Stock Disc.
078 Bob's Burgers $520.00 False
038 Côte de Blaye $263.50 17 False

Deleting entities
Now let's see how to delete a row from a table.

1. In Program, import System.Collections.Generic, and then add a method
to delete all products with a name that begins with Bob, as shown in the
following code:
static int DeleteProducts(string name)
{
 using (var db = new Northwind())
 {
 IEnumerable<Product> products = db.Products.Where(
 p => p.ProductName.StartsWith(name));

 db.Products.RemoveRange(products);

 int affected = db.SaveChanges();
 return affected;
 }
}

You can remove individual entities with the Remove method. RemoveRange is
more efficient when you want to delete multiple entities.

2. In Main, comment the whole if statement block that calls
IncreaseProductPrice, and add a call to DeleteProducts, as shown
highlighted in the following code:

Working with Databases Using Entity Framework Core | 11

[391]

int deleted = DeleteProducts("Bob");
WriteLine($"{deleted} product(s) were deleted.");

ListProducts();

3. Run the console application and view the result, as shown in the following
output:
1 product(s) were deleted.
ID Product Name Cost Stock Disc.
038 Côte de Blaye $263.50 17 False
020 Sir Rodney's Marmalade $81.00 40 False

If multiple product names started with Bob, then they are all deleted. As an optional
challenge, uncomment the statements to add three new products that start with Bob
and then delete them.

Pooling database contexts
The DbContext class is disposable and is designed following the single-unit-of-work
principle. In the previous code examples, we created all the DbContext-derived
Northwind instances in a using block.

A feature of ASP.NET Core that is related to EF Core is that it makes your code more
efficient by pooling database contexts when building web applications and web
services.

This allows you to create and dispose of as many DbContext-derived objects as you
want, knowing your code is still very efficient.

Transactions
Every time you call the SaveChanges method, an implicit transaction is started so
that if something goes wrong, it would automatically roll back all the changes. If the
multiple changes within the transaction succeed, then the transaction and all changes
are committed.

Transactions maintain the integrity of your database by applying locks to prevent
reads and writes while a sequence of changes is occurring.

More Information: You can read more about pooling database
contexts at the following link: https://docs.microsoft.com/
en-us/ef/core/what-is-new/ef-core-2.0#dbcontext-
pooling

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.0#dbcontext-pooling
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.0#dbcontext-pooling
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-2.0#dbcontext-pooling

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[392]

Transactions are ACID, which is an acronym explained in the following list:

• A is for atomic. Either all the operations in the transaction commit, or none of
them do.

• C is for consistent. The state of the database before and after a transaction is
consistent. This is dependent on your code logic; for example, when transferring
money between bank accounts it is up to your business logic to ensure that if
you debit $100 in one account, you credit $100 in the other account.

• I is for isolated. During a transaction, changes are hidden from other processes.
There are multiple isolation levels that you can pick from (refer to the following
table). The stronger the level, the better the integrity of the data. However, more
locks must be applied, which will negatively affect other processes. Snapshot is
a special case because it creates multiple copies of rows to avoid locks, but this
will increase the size of your database while transactions occur.

• D is for durable. If a failure occurs during a transaction, it can be recovered.
This is often implemented as a two-phase commit and transaction logs. The
opposite of durable is volatile.

Isolation level Lock(s) Integrity problems
allowed

ReadUncommitted None

Dirty reads,
nonrepeatable
reads, and
phantom data

ReadCommitted
When editing, it applies read lock(s) to block
other users from reading the record(s) until
the transaction ends

Nonrepeatable
reads and phantom
data

RepeatableRead
When reading, it applies edit lock(s) to block
other users from editing the record(s) until
the transaction ends

Phantom data

Serializable
Applies key-range locks to prevent any
action that would affect the results,
including inserts and deletes

None

Snapshot None None

Defining an explicit transaction
You can control explicit transactions using the Database property of the database
context.

1. Import the following namespace in Program.cs to use the
IDbContextTransaction interface:

Working with Databases Using Entity Framework Core | 11

[393]

using Microsoft.EntityFrameworkCore.Storage;

2. In the DeleteProducts method, after the instantiation of the db variable,
add the following highlighted statements to start an explicit transaction
and output its isolation level. At the bottom of the method, commit the
transaction, and close the brace, as shown in the following code:
static int DeleteProducts(string name)
{
 using (var db = new Northwind())
 {
 using (IDbContextTransaction t = db.Database.
BeginTransaction())
 {
 WriteLine("Transaction isolation level: {0}",
 t.GetDbTransaction().IsolationLevel);

 var products = db.Products.Where(
 p => p.ProductName.StartsWith(name));

 db.Products.RemoveRange(products);

 int affected = db.SaveChanges();
 t.Commit();
 return affected;
 }
 }
}

3. Run the console application and view the result, as shown in the following
output:

Transaction isolation level: Serializable

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with deeper research.

Exercise 11.1 – Test your knowledge
Answer the following questions:

1. What type would you use for the property that represents a table, for
example, the Products property of a database context?

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[394]

2. What type would you use for the property that represents a one-to-many
relationship, for example, the Products property of a Category entity?

3. What is the EF Core convention for primary keys?
4. When would you use an annotation attribute in an entity class?
5. Why might you choose the Fluent API in preference to annotation attributes?
6. What does a transaction isolation level of Serializable mean?
7. What does the DbContext.SaveChanges() method return?
8. What is the difference between eager loading and explicit loading?
9. How should you define an EF Core entity class to match the following table?

CREATE TABLE Employees(
 EmpID INT IDENTITY,
 FirstName NVARCHAR(40) NOT NULL,
 Salary MONEY
)

10. What benefit do you get from declaring entity navigation properties as
virtual?

Exercise 11.2 – Practice exporting data using
different serialization formats
Create a console application named Exercise02 that queries the Northwind
database for all the categories and products, and then serializes the data using at
least three formats of serialization available to .NET Core.

Which format of serialization uses the least number of bytes?

Exercise 11.3 – Explore the EF Core
documentation
Use the following link to read more about the topics covered in this chapter:

https://docs.microsoft.com/en-us/ef/core/index

Summary
In this chapter, you learned how to connect to a database, how to execute a simple
LINQ query and process the results, how to add, modify, and delete data, and how
to build entity data models for an existing database, such as Northwind. In the next
chapter, you will learn how to write more advanced LINQ queries to select, filter,
sort, join, and group.

https://docs.microsoft.com/en-us/ef/core/index
https://docs.microsoft.com/en-us/ef/core/index

[395]

Chapter 12
Querying and Manipulating

Data Using LINQ
This chapter is about Language INtegrated Query (LINQ), a set of language
extensions that add the ability to work with sequences of items and then filter,
sort, and project them into different outputs.

This chapter will cover the following topics:

• Writing LINQ queries
• Working with sets using LINQ
• Using LINQ with EF Core
• Sweetening LINQ syntax with syntactic sugar
• Using multiple threads with parallel LINQ
• Creating your own LINQ extension methods
• Working with LINQ to XML

Writing LINQ queries
Although we wrote a few LINQ queries in Chapter 11, Working with Databases Using
Entity Framework Core, they weren't the focus, and so I didn't properly explain how
LINQ works, but let's now take time to properly understand them.

LINQ has several parts; some are required, and some are optional:

• Extension methods (required): These include examples such as Where,
OrderBy, and Select. These are what provide the functionality of LINQ.

• LINQ providers (required): These include LINQ to Objects, LINQ to Entities,
LINQ to XML, LINQ to OData, and LINQ to Amazon. These are what
convert standard LINQ operations into specific commands for different types
of data.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[396]

• Lambda expressions (optional): These can be used instead of named
methods to simplify LINQ extension method calls.

• LINQ query comprehension syntax (optional): These include from, in,
where, orderby, descending, and select. These are C# keywords that are
aliases for some of the LINQ extension methods, and their use can simplify
the queries you write, especially if you already have experience with other
query languages, such as Structured Query Language (SQL).

When programmers are first introduced to LINQ, they often believe that LINQ query
comprehension syntax is LINQ, but ironically, that is one of the parts of LINQ that is
optional!

Extending sequences with the Enumerable
class
The LINQ extension methods, such as Where and Select, are appended by the
Enumerable static class to any type, known as a sequence, that implements
IEnumerable<T>.

For example, an array of any type implements the IEnumerable<T> class,
where T is the type of item in the array, so all arrays support LINQ to query and
manipulate them.

All generic collections, such as List<T>, Dictionary<TKey, TValue>, Stack<T>,
and Queue<T>, implement IEnumerable<T>, so they can be queried and manipulated
with LINQ.

Enumerable defines more than 45 extension methods, as summarized in the
following table:

Method(s) Description
First, FirstOrDefault, Last,
LastOrDefault

Gets the first or last item in the sequence or returns
the default value for the type, for example, 0 for an
int, null for a reference type, if there is no first
or last item.

Where Returns a sequence of items that match a specified
filter.

Single, SingleOrDefault Returns an item that matches a specific filter
or throws an exception, or returns the default
value for the type, if there is not exactly one match.

Querying and Manipulating Data Using LINQ | 12

[397]

ElementAt,
ElementAtOrDefault

Returns an item at a specified index position or
throws an exception, or returns the default value for
the type, if there is not an item at that position.

Select, SelectMany Projects items into a different shape, that is, type, and
flattens a nested hierarchy of items.

OrderBy, OrderByDescending,
ThenBy, ThenByDescending

Sorts items by a specified property.

Reverse Reverses the order of items.
GroupBy, GroupJoin, Join Group and join sequences.
Skip, SkipWhile Skip a number of items or skip while an expression is

true.
Take, TakeWhile Take a number of items or take while an expression is

true.
Aggregate, Average, Count,
LongCount, Max, Min, Sum

Calculates aggregate values.

All, Any, Contains Returns true if all or any of the items match the
filter, or if the sequence contains a specified item.

Cast Converts items into a specified type.
OfType Removes items that do not match a specified type.
Except, Intersect, Union Performs operations that return sets. Sets cannot

have duplicate items. Although the inputs of these
methods can be any sequence so can have duplicates,
the result is always a set.

Append, Concat, Prepend Performs sequence combining operations.
Zip Performs a match operation based on the position of

items.
Distinct Removes duplicate items from the sequence.
ToArray, ToList,
ToDictionary, ToLookup

Convert the sequence into an array or collection.

Filtering entities with Where
The most common reason for using LINQ is to filter items in a sequence using the
Where extension method. Let's explore filtering by defining a sequence of names and
then applying LINQ operations on it.

1. In the Code folder, create a folder named Chapter12, with a subfolder named
LinqWithObjects.

2. In Visual Studio Code, save a workspace as Chapter12.code-workspace in
the Chapter12 folder.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[398]

3. Add the folder named LinqWithObjects to the workspace.
4. Navigate to Terminal | New Terminal.
5. In Terminal, enter the following command:

dotnet new console

6. In Program.cs, add a LinqWithArrayOfStrings method, which defines an
array of string values and then attempts to call the Where extension method
on it, as shown in the following code:
static void LinqWithArrayOfStrings()
{
 var names = new string[] { "Michael", "Pam", "Jim", "Dwight",
 "Angela", "Kevin", "Toby", "Creed" };

 var query = names.
}

7. As you type the Where method, note that it is missing from the IntelliSense
list of members of a string array, as shown in the following screenshot:

This is because Where is an extension method. It does not exist on the array
type. To make the Where extension method available, we must import the
System.Linq namespace.

8. Add the following statement to the top of the Program.cs file:
using System.Linq;

9. Retype the Where method and note that the IntelliSense list shows many
more methods, including the extension methods added by the Enumerable
class, as shown in the following screenshot:

Querying and Manipulating Data Using LINQ | 12

[399]

10. As you type the parentheses for the Where method, IntelliSense tells us
that to call Where, we must pass in an instance of a Func<string, bool>
delegate, as shown in the following screenshot:

11. Enter an expression to create a new instance of a Func<string, bool>
delegate, and for now note that we have not yet supplied a method name
because we will define it in the next step, as shown in the following code:
var query = names.Where(new Func<string, bool>())

The Func<string, bool> delegate tells us that for each string variable passed to
the method, the method must return a bool value. If the method returns true, it
indicates that we should include the string in the results, and if the method returns
false, it indicates that we should exclude it.

Targeting a named method
Let's define a method that only includes names that are longer than four characters.

1. Add a method to Program, as shown in the following code:
static bool NameLongerThanFour(string name)
{
 return name.Length > 4;
}

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[400]

2. Back in the LinqWithArrayOfStrings method, pass the method's name into
the Func<string, bool> delegate, and then loop through the query items,
as shown in the following code:
var query = names.Where(
 new Func<string, bool>(NameLongerThanFour));

foreach (string item in query)
{
 WriteLine(item);
}

3. In Main, call the LinqWithArrayOfStrings method, run the console
application, and view the results, noting that only names longer than four
letters are listed, as shown in the following output:

Michael

Dwight

Angela

Kevin

Creed

Simplifying the code by removing the explicit
delegate instantiation
We can simplify the code by deleting the explicit instantiation of the Func<string,
bool> delegate because the C# compiler can instantiate the delegate for us.

1. To help you learn by seeing progressively improved code, copy and paste the
query.

2. Comment out the first example, as shown in the following code:
// var query = names.Where(
// new Func<string, bool>(NameLongerThanFour));

3. Modify the copy to remove the explicit instantiation of the delegate, as
shown in the following code:
var query = names.Where(NameLongerThanFour);

4. Rerun the application and note that it has the same behavior.

Targeting a lambda expression
We can simplify our code even further using a lambda expression in place of
a named method.

Querying and Manipulating Data Using LINQ | 12

[401]

Although it can look complicated at first, a lambda expression is simply a nameless
function. It uses the => (read as "goes to") symbol to indicate the return value.

1. Copy and paste the query, comment the second example, and modify the
query, as shown in the following code:
var query = names.Where(name => name.Length > 4);

Note that the syntax for a lambda expression includes all the important parts
of the NameLongerThanFour method, but nothing more. A lambda expression
only needs to define the following:

 ° The names of input parameters.
 ° A return value expression

The type of the name input parameter is inferred from the fact that the
sequence contains string values, and the return type must be a bool value for
Where to work, so the expression after the => symbol must return a bool value.
The compiler does most of the work for us, so our code can be as concise as
possible.

2. Rerun the application and note that it has the same behavior.

Sorting entities
Other commonly used extension methods are OrderBy and ThenBy, used for sorting
a sequence.

Extension methods can be chained if the previous method returns another sequence,
that is, a type that implements the IEnumerable<T> interface.

Sorting by a single property using OrderBy
Let's continue working with the current project to explore sorting.

1. Append a call to OrderBy to the end of the existing query, as shown in the
following code:
var query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length);

Good Practice: Format the LINQ statement so that each extension
method call happens on its own line to make them easier to read.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[402]

2. Rerun the application and note that the names are now sorted by shortest
first, as shown in the following output:

Kevin

Creed

Dwight

Angela

Michael

To put the longest name first, you would use OrderByDescending.

Sorting by a subsequent property using ThenBy
We might want to sort by more than one property, for example, to sort names of the
same length in alphabetical order.

1. Add a call to the ThenBy method at the end of the existing query, as shown
highlighted in the following code:
var query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length)
 .ThenBy(name => name);

2. Rerun the application and note the slight difference in the following sort
order. Within a group of names of the same length, the names are sorted
alphabetically by the full value of the string, so Creed comes before Kevin,
and Angela comes before Dwight, as shown in the following output:

Creed

Kevin

Angela

Dwight

Michael

Filtering by type
Where is great for filtering by values, such as text and numbers. But what if the
sequence contains multiple types, and you want to filter by a specific type and
respect any inheritance hierarchy?

Imagine that you have a sequence of exceptions. Exceptions have a complex
hierarchy, as shown in the following diagram:

Querying and Manipulating Data Using LINQ | 12

[403]

Let's explore filtering by type.

1. In Program, add a LinqWithArrayOfExceptions method, which defines an
array of Exception-derived objects, as shown in the following code:
static void LinqWithArrayOfExceptions()
{
 var errors = new Exception[]
 {
 new ArgumentException(),
 new SystemException(),
 new IndexOutOfRangeException(),
 new InvalidOperationException(),

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[404]

 new NullReferenceException(),
 new InvalidCastException(),
 new OverflowException(),
 new DivideByZeroException(),
 new ApplicationException()
 };
}

2. Write statements using the OfType<T> extension method to filter exceptions
that are not arithmetic exceptions and write them to the console, as shown in
the following code:
var numberErrors = errors.OfType<ArithmeticException>();

foreach (var error in numberErrors)
{
 WriteLine(error);
}

3. In the Main method, comment out the call to the LinqWithArrayOfStrings
method and add a call to the LinqWithArrayOfExceptions method.

4. Run the console application and note that the results only include exceptions
of the ArithmeticException type, or the ArithmeticException-derived
types, as shown in the following output:

System.OverflowException: Arithmetic operation resulted in an
overflow.

System.DivideByZeroException: Attempted to divide by zero.

Working with sets and bags using LINQ
Sets are one of the most fundamental concepts in mathematics. A set is a collection of
one or more unique objects. A multiset or bag is a collection of one or more objects
that can have duplicates. You might remember being taught about Venn diagrams
in school. Common set operations include the intersect or union between sets.

Let's create a console application that will define three arrays of string values for
cohorts of apprentices and then perform some common set and multiset operations
on them.

1. Create a new console application project named LinqWithSets, add it to the
workspace for this chapter, and select the project as active for OmniSharp.

2. Import the following additional namespaces:
using System.Collections.Generic; // for IEnumerable<T>
using System.Linq; // for LINQ extension methods

Querying and Manipulating Data Using LINQ | 12

[405]

3. In Program, before the Main method, add the following method that outputs
any sequence of string variables as a comma-separated single string to the
console output, along with an optional description:
static void Output(IEnumerable<string> cohort,
 string description = "")
{
 if (!string.IsNullOrEmpty(description))
 {
 WriteLine(description);
 }
 Write(" ");
 WriteLine(string.Join(", ", cohort.ToArray()));
}

4. In Main, add statements to define three arrays of names, output them, and
then perform various set operations on them, as shown in the following code:
var cohort1 = new string[]
 { "Rachel", "Gareth", "Jonathan", "George" };
var cohort2 = new string[]
 { "Jack", "Stephen", "Daniel", "Jack", "Jared" };
var cohort3 = new string[]
 { "Declan", "Jack", "Jack", "Jasmine", "Conor" };

Output(cohort1, "Cohort 1");
Output(cohort2, "Cohort 2");
Output(cohort3, "Cohort 3");
WriteLine();
Output(cohort2.Distinct(), "cohort2.Distinct():");
WriteLine();
Output(cohort2.Union(cohort3), "cohort2.Union(cohort3):");
WriteLine();
Output(cohort2.Concat(cohort3), "cohort2.Concat(cohort3):");
WriteLine();
Output(cohort2.Intersect(cohort3), "cohort2.Intersect(cohort3):");
WriteLine();
Output(cohort2.Except(cohort3), "cohort2.Except(cohort3):");
WriteLine();
Output(cohort1.Zip(cohort2,(c1, c2) => $"{c1} matched with {c2}"),
 "cohort1.Zip(cohort2):");

5. Run the console application and view the results, as shown in the following
output:

Cohort 1

 Rachel, Gareth, Jonathan, George

Cohort 2

 Jack, Stephen, Daniel, Jack, Jared

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[406]

Cohort 3

 Declan, Jack, Jack, Jasmine, Conor

cohort2.Distinct():

 Jack, Stephen, Daniel, Jared

cohort2.Union(cohort3):

 Jack, Stephen, Daniel, Jared, Declan, Jasmine, Conor

cohort2.Concat(cohort3):

 Jack, Stephen, Daniel, Jack, Jared, Declan, Jack, Jack, Jasmine,
Conor

cohort2.Intersect(cohort3):

 Jack

cohort2.Except(cohort3):

 Stephen, Daniel, Jared

cohort1.Zip(cohort2):

 Rachel matched with Jack, Gareth matched with Stephen, Jonathan
matched with Daniel, George matched with Jack

With Zip, if there are unequal numbers of items in the two sequences, then some
items will not have a matching partner. Those without a partner will not be included
in the result.

Using LINQ with EF Core
To learn about projection, it is best to have some more complex sequences to work
with, so in the next project, we will use the Northwind sample database.

1. Create a new console application project named LinqWithEFCore, add
it to the workspace for this chapter, and select the project as active for
OmniSharp.

2. Modify the LinqWithEFCore.csproj file, as shown highlighted in the
following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>

Querying and Manipulating Data Using LINQ | 12

[407]

 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="3.0.0" />
 </ItemGroup>

</Project>

3. In Terminal, download the referenced package and compile the current
project, as shown in the following command:
dotnet build

4. Copy the Northwind.sql file into the LinqWithEFCore folder, and then
use Terminal to create the Northwind database by executing the following
command:

sqlite3 Northwind.db < Northwind.sql

Detailed instructions of how to create the Northwind database were in Chapter 11,
Working with Databases Using Entity Framework Core.

Building an EF Core model
Let's define an Entity Framework Core model to represent the database and tables
that we will work with. Your DbContext-derived class must have an overridden
method named OnConfiguring. This will set the database connection string.

1. Add three class files to the project named Northwind.cs, Category.cs, and
Product.cs.

2. Modify the class file named Northwind.cs, as shown in the following code:
using Microsoft.EntityFrameworkCore;

namespace Packt.Shared
{
 // this manages the connection to the database
 public class Northwind : DbContext
 {
 // these properties map to tables in the database
 public DbSet<Category> Categories { get; set; }
 public DbSet<Product> Products { get; set; }

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[408]

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 string path = System.IO.Path.Combine(
 System.Environment.CurrentDirectory, "Northwind.db");

 optionsBuilder.UseSqlite($"Filename={path}");
 }
 }
}

3. Modify the class file named Category.cs, as shown in the following code:
using System.ComponentModel.DataAnnotations;

namespace Packt.Shared
{
 public class Category
 {
 public int CategoryID { get; set; }

 [Required]
 [StringLength(15)]
 public string CategoryName { get; set; }

 public string Description { get; set; }
 }
}

4. Modify the class file named Product.cs, as shown in the following code:
using System.ComponentModel.DataAnnotations;

namespace Packt.Shared
{
 public class Product
 {
 public int ProductID { get; set; }

 [Required]
 [StringLength(40)]
 public string ProductName { get; set; }

 public int? SupplierID { get; set; }

 public int? CategoryID { get; set; }

 [StringLength(20)]
 public string QuantityPerUnit { get; set; }

Querying and Manipulating Data Using LINQ | 12

[409]

 public decimal? UnitPrice { get; set; }

 public short? UnitsInStock { get; set; }

 public short? UnitsOnOrder { get; set; }

 public short? ReorderLevel { get; set; }

 public bool Discontinued { get; set; }
 }
}

We have not defined relationships between the two entity classes. This is deliberate.
Later, you will use LINQ to join the two entity sets.

Filtering and sorting sequences
Now let's write statements to filter and sort sequences of rows from the tables.

1. Open the Program.cs file and import the following type and namespaces:
using static System.Console;
using Packt.Shared;
using Microsoft.EntityFrameworkCore;
using System.Linq;

2. Create a method to filter and sort products, as shown in the following code:
static void FilterAndSort()
{
 using (var db = new Northwind())
 {
 var query = db.Products
 .Where(product => product.UnitPrice < 10M)
 // IQueryable<Product>
 .OrderByDescending(product => product.UnitPrice);

 WriteLine("Products that cost less than $10:");
 foreach (var item in query)
 {
 WriteLine("{0}: {1} costs {2:$#,##0.00}",
 item.ProductID, item.ProductName, item.UnitPrice);
 }
 WriteLine();
 }
}

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[410]

DbSet<T> implements IQueryable<T>, which implements IEnumerable<T>, so
LINQ can be used to query and manipulate collections of entities in models built for
EF Core.

You might have also noticed that the sequences implement IQueryable<T> (or
IOrderedQueryable<T> after a call to an ordering LINQ method) instead of
IEnumerable<T> or IOrderedEnumerable<T>.

This is an indication that we are using a LINQ provider that builds the query in
memory using expression trees. They represent code in a tree-like data structure and
enable the creation of dynamic queries, which is useful for building LINQ queries for
external data providers like SQLite.

The LINQ query will be converted into another query language, such as SQL.
Enumerating the query with foreach or calling a method such as ToArray will force
execution of the query.

1. In Main, call the FilterAndSort method.
2. Run the console application and view the result, as shown in the following

output:

Products that cost less than $10:

41: Jack's New England Clam Chowder costs $9.65

45: Rogede sild costs $9.50

47: Zaanse koeken costs $9.50

19: Teatime Chocolate Biscuits costs $9.20

23: Tunnbröd costs $9.00

75: Rhönbräu Klosterbier costs $7.75

54: Tourtière costs $7.45

52: Filo Mix costs $7.00

13: Konbu costs $6.00

24: Guaraná Fantástica costs $4.50

33: Geitost costs $2.50

Although this query outputs the information we want, it does so inefficiently
because it gets all columns from the Products table instead of just the three columns
we need, which is the equivalent of the following SQL statement:

SELECT * FROM Products;

More Information: You can read more about expression
trees at the following link: https://docs.microsoft.com/
en-us/dotnet/csharp/programming-guide/concepts/
expression-trees/

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/expression-trees/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/expression-trees/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/expression-trees/

Querying and Manipulating Data Using LINQ | 12

[411]

In Chapter 11, Working with Databases Using Entity Framework Core, you learned how
to log the SQL commands executed against SQLite to see this for yourself.

Projecting sequences into new types
Before we look at projection, we need to review object initialization syntax. If you
have a class defined, then you can instantiate an object using new, the class name,
and curly braces to set initial values for fields and properties, as shown in the
following code:

var alice = new Person
{
 Name = "Alice Jones",
 DateOfBirth = new DateTime(1998, 3, 7)
};

C# 3.0 and later allows instances of anonymous types to be instantiated, as shown in
the following code:

var anonymouslyTypedObject = new
{
 Name = "Alice Jones",
 DateOfBirth = new DateTime(1998, 3, 7)
};

Although we did not specify a type name, the compiler could infer an anonymous
type from the setting of two properties named Name and DateOfBirth. This
capability is especially useful when writing LINQ queries to project an existing type
into a new type without having to explicitly define the new type. Since the type is
anonymous, this can only work with var-declared local variables.

Let's add a call to the Select method to make the SQL command executed against
the database table more efficient by projecting instances of the Product class into
instances of a new anonymous type with only three properties.

1. In Main, modify the LINQ query to use the Select method to return only the
three properties (that is, table columns) that we need, as shown highlighted
in the following code:
var query = db.Products
 .Where(product => product.UnitPrice < 10M) //
IQueryable<Product>
 .OrderByDescending(product => product.UnitPrice)
 // IOrderedQueryable<Product>
 .Select(product => new // anonymous type
 {

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[412]

 product.ProductID,
 product.ProductName,
 product.UnitPrice
 });

2. Run the console application and confirm that the output is the same as
before.

Joining and grouping sequences
There are two extension methods for joining and grouping:

• Join: This method has four parameters: the sequence that you want to
join with, the property or properties on the left sequence to match on, the
property or properties on the right sequence to match on, and a projection.

• GroupJoin: This method has the same parameters, but it combines the
matches into a group object with a Key property for the matching value and
an IEnumerable<T> type for the multiple matches.

Let's explore these methods when working with two tables: categories and products.

1. Create a method to select categories and products, join them and output
them, as shown in the following code:
static void JoinCategoriesAndProducts()
{
 using (var db = new Northwind())
 {
 // join every product to its category to return 77 matches
 var queryJoin = db.Categories.Join(
 inner: db.Products,
 outerKeySelector: category => category.CategoryID,
 innerKeySelector: product => product.CategoryID,
 resultSelector: (c, p) =>
 new { c.CategoryName, p.ProductName, p.ProductID });

 foreach (var item in queryJoin)
 {
 WriteLine("{0}: {1} is in {2}.",
 arg0: item.ProductID,
 arg1: item.ProductName,
 arg2: item.CategoryName);
 }
 }
}

Querying and Manipulating Data Using LINQ | 12

[413]

In a join there are two sequences, outer and inner. In the previous example,
categories is the outer sequence and products is the inner sequence.

2. In Main, comment out the call to FilterAndJoin and call
JoinCategoriesAndProducts.

3. Run the console application and view the results. Note that there is a single
line output for each of the 77 products, and the results show all products in
the Beverages category first, then the Condiments category, and so on, as
shown in the following output:
1: Chai is in Beverages.

2: Chang is in Beverages.

24: Guaraná Fantástica is in Beverages.

34: Sasquatch Ale is in Beverages.

35: Steeleye Stout is in Beverages.

38: Côte de Blaye is in Beverages.

39: Chartreuse verte is in Beverages.

43: Ipoh Coffee is in Beverages.

67: Laughing Lumberjack Lager is in Beverages.

70: Outback Lager is in Beverages.

75: Rhönbräu Klosterbier is in Beverages.

76: Lakkalikööri is in Beverages.

3: Aniseed Syrup is in Condiments.

4: Chef Anton's Cajun Seasoning is in Condiments.

4. At the end of the existing query, call the OrderBy method to sort by
ProductID, as shown in the following code:
 .OrderBy(cp => cp.ProductID);

5. Rerun the application and view the results, as shown in the following output
(edited to only include the first 10 items):
1: Chai is in Beverages.

2: Chang is in Beverages.

3: Aniseed Syrup is in Condiments.

4: Chef Anton's Cajun Seasoning is in Condiments.

5: Chef Anton's Gumbo Mix is in Condiments.

6: Grandma's Boysenberry Spread is in Condiments.

7: Uncle Bob's Organic Dried Pears is in Produce.

8: Northwoods Cranberry Sauce is in Condiments.

9: Mishi Kobe Niku is in Meat/Poultry.

10: Ikura is in Seafood.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[414]

6. Create a method to group and join, show the group name, and then show all
the items within each group, as shown in the following code:
static void GroupJoinCategoriesAndProducts()
{
 using (var db = new Northwind())
 {
 // group all products by their category to return 8 matches
 var queryGroup = db.Categories.AsEnumerable().GroupJoin(
 inner: db.Products,
 outerKeySelector: category => category.CategoryID,
 innerKeySelector: product => product.CategoryID,
 resultSelector: (c, matchingProducts) => new {
 c.CategoryName,
 Products = matchingProducts.OrderBy(p => p.ProductName)
 });

 foreach (var item in queryGroup)
 {
 WriteLine("{0} has {1} products.",
 arg0: item.CategoryName,
 arg1: item.Products.Count());

 foreach (var product in item.Products)
 {
 WriteLine($" {product.ProductName}");
 }
 }
 }
}

If we had not called the AsEnumerable method, then a runtime exception is
thrown, as shown in the following output:
Unhandled exception. System.NotImplementedException: The method or
operation is not implemented.

 at Microsoft.EntityFrameworkCore.Relational.Query.Pipeline.
RelationalQueryableMethodTranslatingExpressionVisitor.Translat
eGroupJoin(ShapedQueryExpression outer, ShapedQueryExpression
inner, LambdaExpression outerKeySelector, LambdaExpression
innerKeySelector, LambdaExpression resultSelector)

This is because not all LINQ extension methods can be converted from
expression trees into other query syntax like SQL. In these cases, we
can convert from IQueryable<T> to IEnumerable<T> by calling the
AsEnumerable method, which forces query processing to use LINQ to EF
Core only to bring the data into the application and then use LINQ to Objects
to execute more complex processing in-memory. But, often, this is less
efficient.

Querying and Manipulating Data Using LINQ | 12

[415]

7. In Main, comment the previous method call and call
GroupJoinCategoriesAndProducts.

8. Rerun the console application, view the results, and note that the products
inside each category have been sorted by their name, as defined in the query
and shown in the following partial output:

Beverages has 12 products.
 Chai
 Chang
 Chartreuse verte
 Côte de Blaye
 Guaraná Fantástica
 Ipoh Coffee
 Lakkalikööri
 Laughing Lumberjack Lager
 Outback Lager
 Rhönbräu Klosterbier
 Sasquatch Ale
 Steeleye Stout
Condiments has 12 products.
 Aniseed Syrup
 Chef Anton's Cajun Seasoning
 Chef Anton's Gumbo Mix

Aggregating sequences
There are LINQ extension methods to perform aggregation functions, such as
Average and Sum. Let's write some code to see some of these methods in action
aggregating information from the Products table.

1. Create a method to show the use of the aggregation extension methods, as
shown in the following code:
static void AggregateProducts()
{
 using (var db = new Northwind())
 {
 WriteLine("{0,-25} {1,10}",
 arg0: "Product count:",
 arg1: db.Products.Count());

 WriteLine("{0,-25} {1,10:$#,##0.00}",
 arg0: "Highest product price:",
 arg1: db.Products.Max(p => p.UnitPrice));

 WriteLine("{0,-25} {1,10:N0}",

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[416]

 arg0: "Sum of units in stock:",
 arg1: db.Products.Sum(p => p.UnitsInStock));

 WriteLine("{0,-25} {1,10:N0}",
 arg0: "Sum of units on order:",
 arg1: db.Products.Sum(p => p.UnitsOnOrder));

 WriteLine("{0,-25} {1,10:$#,##0.00}",
 arg0: "Average unit price:",
 arg1: db.Products.Average(p => p.UnitPrice));

 WriteLine("{0,-25} {1,10:$#,##0.00}",
 arg0: "Value of units in stock:",
 arg1: db.Products.AsEnumerable()
 .Sum(p => p.UnitPrice * p.UnitsInStock));
 }
}

2. In Main, comment the previous method and call AggregateProducts.
3. Run the console application and view the result, as shown in the following

output:

Product count: 77
Highest product price: $263.50
Sum of units in stock: 3,119
Sum of units on order: 780
Average unit price: $28.87
Value of units in stock: $74,050.85

In Entity Framework Core 3.0 and later, LINQ operations that cannot be translated to
SQL are no longer automatically evaluated on the client side, so you must explicitly
call AsEnumerable to force further processing of the query on the client.

Sweetening LINQ syntax with syntactic
sugar
C# 3.0 introduced some new language keywords in 2008 in order to make it easier
for programmers with experience with SQL to write LINQ queries. This syntactic
sugar is sometimes called the LINQ query comprehension syntax.

More Information: You can learn more about this breaking
change at the following link: https://docs.microsoft.com/
en-us/ef/core/what-is-new/ef-core-3.0/breaking-
changes-linq-queries-are-no-longer-evaluated-on-
the-client

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-3.0/breaking-changes
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-3.0/breaking-changes
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-3.0/breaking-changes
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-3.0/breaking-changes

Querying and Manipulating Data Using LINQ | 12

[417]

Consider the following array of string values:

var names = new string[] { "Michael", "Pam", "Jim", "Dwight",
"Angela", "Kevin", "Toby", "Creed" };

To filter and sort the names, you could use extension methods and lambda
expressions, as shown in the following code:

var query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length)
 .ThenBy(name => name);

Or you could achieve the same results by using query comprehension syntax, as
shown in the following code:

var query = from name in names
 where name.Length > 4
 orderby name.Length, name
 select name;

The compiler changes the query comprehension syntax to the equivalent extension
methods and lambda expressions for you.

The select keyword is always required for LINQ query comprehension syntax. The
Select extension method is optional when using extension methods and lambda
expressions because the whole item is implicitly selected.

Not all extension methods have a C# keyword equivalent, for example, the Skip and
Take extension methods, which are commonly used to implement paging for lots of
data.

A query that skips and takes cannot be written using only the query comprehension
syntax so we could write the query using all extension methods, as shown in the
following code:

var query = names
 .Where(name => name.Length > 4)
 .Skip(80)
 .Take(10);

More Information: The LINQ query comprehension syntax is
limited in functionality. It only provides C# keywords for the
most commonly used LINQ features. You must use extension
methods to access all the features of LINQ. You can read more
about why it is called comprehension syntax at the following
link: https://stackoverflow.com/questions/6229187/
linq-why-is-it-called-comprehension-syntax

https://stackoverflow.com/questions/6229187/linq-why-is-it-called-comprehension-syntax
https://stackoverflow.com/questions/6229187/linq-why-is-it-called-comprehension-syntax

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[418]

Or, you can wrap query comprehension syntax in parentheses and then switch to
using extension methods, as shown in the following code:

var query = (from name in names
 where name.Length > 4
 select name)
 .Skip(80)
 .Take(10);

Using multiple threads with parallel LINQ
By default, only one thread is used to execute a LINQ query. Parallel LINQ (PLINQ)
is an easy way to enable multiple threads to execute a LINQ query.

Creating an app that benefits from multiple
threads
To see it in action, we will start with some code that only uses a single thread to
square 200 million integers. We will use the StopWatch type to measure the change
in performance.

We will use operating system tools to monitor CPU and CPU core usage. If you do
not have multiple CPUs or at least multiple cores, then this exercise won't show
much!

1. Create a new console application project named LinqInParallel, add
it to the workspace for this chapter, and select the project as active for
OmniSharp.

2. Import the System.Diagnostics namespace so that we can use the
StopWatch type; System.Collections.Generic so that we can use the
IEnumerable<T> type, System.Linq so that we can use LINQ; and statically
import the System.Console type.

Good Practice: Learn both extension methods with lambda
expressions and the query comprehension syntax ways of writing
LINQ queries, because you are likely to have to maintain code that
uses both.

Good Practice: Do not assume that using parallel threads will
improve the performance of your applications. Always measure
real-world timings and resource usage.

Querying and Manipulating Data Using LINQ | 12

[419]

3. Add statements to Main to create a stopwatch to record timings, wait for
a key press before starting the timer, create 200 million integers, square each
of them, stop the timer, and display the elapsed milliseconds, as shown in the
following code:
var watch = Stopwatch.StartNew();
Write("Press ENTER to start: ");
ReadLine();
watch.Start();

IEnumerable<int> numbers = Enumerable.Range(1, 200_000_000);

var squares = numbers.Select(number => number * number).ToArray();

watch.Stop();
WriteLine("{0:#,##0} elapsed milliseconds.",
 watch.ElapsedMilliseconds);

4. Run the console application, but do not press Enter to start yet.

Using Windows 10
1. If you are using Windows 10, then right-click on the Windows Start button

or press Ctrl + Alt + Delete, and then click on Task Manager.
2. At the bottom of the Task Manager window, click on the More details

button. At the top of the Task Manager window, click on the Performance
tab.

3. Right-click on the CPU Utilization graph, choose Change graph to, and then
select Logical processors.

Using macOS
1. If you are using macOS, then launch Activity Monitor.
2. Navigate to View | Update Frequency | Very often (1 sec).
3. To see the CPU graphs, navigate to Window | CPU History.

For all operating systems
1. Rearrange Task Manager or CPU History or your Linux tool and Visual

Studio Code so that they are side by side.
2. Wait for the CPUs to settle and then press Enter to start the stopwatch and

run the query.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[420]

The result should be an amount of elapsed milliseconds, as shown in the
following output and screenshot:
Press ENTER to start.

173,689 elapsed milliseconds.

The Task Manager or CPU History windows should show that one or two
CPUs were used the most. Others may execute background tasks at the
same time, such as the garbage collector, so the other CPUs or cores won't be
completely flat, but the work is certainly not being evenly spread among all
the possible CPUs or cores.

3. In Main, modify the query to make a call to the AsParallel extension
method, as shown in the following code:
var squares = numbers.AsParallel()
 .Select(number => number * number).ToArray();

4. Run the application again.
5. Wait for the Task Manager or CPU History windows to settle and then press

Enter to start the stopwatch and run the query. This time, the application
should complete in less time (although it might not be as less as you might
hope for—managing those multiple threads takes extra effort!):
Press ENTER to start.

145,904 elapsed milliseconds.

Querying and Manipulating Data Using LINQ | 12

[421]

6. The Task Manager or CPU History windows should show that all CPUs
were used equally to execute the LINQ query, as shown in the following
screenshot:

You will learn more about managing multiple threads in Chapter 13, Improving
Performance and Scalability Using Multitasking.

Creating your own LINQ extension
methods
In Chapter 6, Implementing Interfaces and Inheriting Classes, you learned how to create
your own extension methods. To create LINQ extension methods, all you must do is
extend the IEnumerable<T> type.

We will look at the Average extension method as an example. Any school child will
tell you that average can mean one of three things:

• Mean: Sum the numbers and divide by the count.

Good Practice: Put your own extension methods in a separate class
library so that they can be easily deployed as their own assembly or
NuGet package.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[422]

• Mode: The most common number.
• Median: The number in the middle of the numbers when ordered.

Microsoft's implementation of the Average extension method calculates the mean.
We might want to define our own extension methods for Mode and Median.

1. In the LinqWithEFCore project, add a new class file named
MyLinqExtensions.cs.

2. Modify the class, as shown in the following code:
using System.Collections.Generic;

namespace System.Linq
{
 public static class MyLinqExtensions
 {
 // this is a chainable LINQ extension method
 public static IEnumerable<T> ProcessSequence<T>(
 this IEnumerable<T> sequence)
 {
 // you could do some processing here
 return sequence;
 }

 // these are scalar LINQ extension methods
 public static int? Median(this IEnumerable<int?> sequence)
 {
 var ordered = sequence.OrderBy(item => item);
 int middlePosition = ordered.Count() / 2;
 return ordered.ElementAt(middlePosition);
 }

 public static int? Median<T>(
 this IEnumerable<T> sequence, Func<T, int?> selector)
 {
 return sequence.Select(selector).Median();
 }

 public static decimal? Median(
 this IEnumerable<decimal?> sequence)
 {
 var ordered = sequence.OrderBy(item => item);
 int middlePosition = ordered.Count() / 2;
 return ordered.ElementAt(middlePosition);
 }

 public static decimal? Median<T>(

Querying and Manipulating Data Using LINQ | 12

[423]

 this IEnumerable<T> sequence, Func<T, decimal?> selector)
 {
 return sequence.Select(selector).Median();
 }

 public static int? Mode(this IEnumerable<int?> sequence)
 {
 var grouped = sequence.GroupBy(item => item);
 var orderedGroups = grouped.OrderBy(group => group.Count());
 return orderedGroups.FirstOrDefault().Key;
 }

 public static int? Mode<T>(
 this IEnumerable<T> sequence, Func<T, int?> selector)
 {
 return sequence.Select(selector).Mode();
 }

 public static decimal? Mode(
 this IEnumerable<decimal?> sequence)
 {
 var grouped = sequence.GroupBy(item => item);
 var orderedGroups = grouped.OrderBy(group => group.Count());
 return orderedGroups.FirstOrDefault().Key;
 }

 public static decimal? Mode<T>(
 this IEnumerable<T> sequence, Func<T, decimal?> selector)
 {
 return sequence.Select(selector).Mode();
 }
 }
}

If this class was in a separate class library, to use your LINQ extension
methods, you simply need to reference the class library assembly because the
System.Linq namespace is often already imported.

3. In Program.cs, in the FilterAndSort method, modify the LINQ query for
Products to call your custom chainable extension method, as shown in the
following code:
var query = db.Products
 .ProcessSequence()
 .Where(product => product.UnitPrice < 10M)
 .OrderByDescending(product => product.UnitPrice)
 .Select(product => new
 {
 product.ProductID,

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[424]

 product.ProductName,
 product.UnitPrice
 });

4. In the Main method, uncomment the FilterAndSort method and comment
out any calls to other methods.

5. Run the console application and note that you see the same output as before
because your method doesn't modify the sequence. But you now know how
to extend LINQ with your own functionality.

6. Create a method to output the mean, median, and mode, for UnitsInStock
and UnitPrice for products, using your custom extension methods and the
built-in Average extension method, as shown in the following code:
static void CustomExtensionMethods()
{
 using (var db = new Northwind())
 {
 WriteLine("Mean units in stock: {0:N0}",
 db.Products.Average(p => p.UnitsInStock));

 WriteLine("Mean unit price: {0:$#,##0.00}",
 db.Products.Average(p => p.UnitPrice));

 WriteLine("Median units in stock: {0:N0}",
 db.Products.Median(p => p.UnitsInStock));

 WriteLine("Median unit price: {0:$#,##0.00}",
 db.Products.Median(p => p.UnitPrice));

 WriteLine("Mode units in stock: {0:N0}",
 db.Products.Mode(p => p.UnitsInStock));

 WriteLine("Mode unit price: {0:$#,##0.00}",
 db.Products.Mode(p => p.UnitPrice));
 }
}

7. In Main, comment any previous method calls and call
CustomExtensionMethods.

8. Run the console application and view the result, as shown in the following
output:

Mean units in stock: 41
Mean unit price: $28.87
Median units in stock: 26
Median unit price: $19.50
Mode units in stock: 13
Mode unit price: $22.00

Querying and Manipulating Data Using LINQ | 12

[425]

Working with LINQ to XML
LINQ to XML is a LINQ provider that allows you to query and manipulate XML.

Generating XML using LINQ to XML
Let's create a method to convert the Products table into XML.

1. In Program.cs, import the System.Xml.Linq namespace.
2. Create a method to output the products in XML format, as shown in the

following code:
static void OutputProductsAsXml()
{
 using (var db = new Northwind())
 {
 var productsForXml = db.Products.ToArray();

 var xml = new XElement("products",
 from p in productsForXml
 select new XElement("product",
 new XAttribute("id", p.ProductID),
 new XAttribute("price", p.UnitPrice),
 new XElement("name", p.ProductName)));

 WriteLine(xml.ToString());
 }
}

3. In Main, comment the previous method call and call OutputProductsAsXml.
4. Run the console application, view the result, and note that the structure of

the XML generated matches the elements and attributes that the LINQ to
XML statement declaratively described in the preceding code, as shown in
the following partial output:

<products>

 <product id="1" price="18">

 <name>Chai</name>

 </product>

 <product id="2" price="19">

 <name>Chang</name>

 </product>

 ...

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[426]

Reading XML using LINQ to XML
You might want to use LINQ to XML to easily query or process XML files.

1. In the LinqWithEFCore project, add a file named settings.xml.
2. Modify its contents, as shown in the following markup:

<?xml version="1.0" encoding="utf-8" ?>
<appSettings>
 <add key="color" value="red" />
 <add key="size" value="large" />
 <add key="price" value="23.99" />
</appSettings>

3. Create a method to complete these tasks:
 ° Load the XML file.
 ° Use LINQ to XML to search for an element named appSettings and

its descendants named add.
 ° Project the XML into an array of an anonymous type with a Key and

Value property.
 ° Enumerate through the array to show the results:

static void ProcessSettings()
{
 XDocument doc = XDocument.Load("settings.xml");

 var appSettings = doc.Descendants("appSettings")
 .Descendants("add")
 .Select(node => new
 {
 Key = node.Attribute("key").Value,
 Value = node.Attribute("value").Value
 }).ToArray();

 foreach (var item in appSettings)
 {
 WriteLine($"{item.Key}: {item.Value}");
 }
}

4. In Main, comment the previous method call and call ProcessSettings.
5. Run the console application and view the result, as shown in the following

output:

color: red
size: large
price: 23.99

Querying and Manipulating Data Using LINQ | 12

[427]

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore with deeper research into the topics covered in
this chapter.

Exercise 12.1 – Test your knowledge
Answer the following questions:

1. What are the two required parts of LINQ?
2. Which LINQ extension method would you use to return a subset of

properties from a type?
3. Which LINQ extension method would you use to filter a sequence?
4. List five LINQ extension methods that perform aggregation.
5. What is the difference between the Select and SelectMany extension

methods?
6. What is the difference between IEnumerable<T> and IQueryable<T>? and

how do you switch between them
7. What does the last type parameter in the generic Func delegates represent?
8. What is the benefit of a LINQ extension method that ends with OrDefault?
9. Why is query comprehension syntax optional?
10. How can you create your own LINQ extension methods?

Exercise 12.2 – Practice querying with LINQ
Create a console application, named Exercise02, that prompts the user for a city
and then lists the company names for Northwind customers in that city, as shown in
the following output:

Enter the name of a city: London

There are 6 customers in London:

Around the Horn

B's Beverages

Consolidated Holdings

Eastern Connection

North/South

Seven Seas Imports

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[428]

Then, enhance the application by displaying a list of all unique cities that customers
already reside in as a prompt to the user before they enter their preferred city, as
shown in the following output:

Aachen, Albuquerque, Anchorage, Århus, Barcelona, Barquisimeto,
Bergamo, Berlin, Bern, Boise, Bräcke, Brandenburg, Bruxelles,
Buenos Aires, Butte, Campinas, Caracas, Charleroi, Cork, Cowes,
Cunewalde, Elgin, Eugene, Frankfurt a.M., Genève, Graz, Helsinki,
I. de Margarita, Kirkland, Kobenhavn, Köln, Lander, Leipzig,
Lille, Lisboa, London, Luleå, Lyon, Madrid, Mannheim, Marseille,
México D.F., Montréal, München, Münster, Nantes, Oulu, Paris,
Portland, Reggio Emilia, Reims, Resende, Rio de Janeiro, Salzburg,
San Cristóbal, San Francisco, Sao Paulo, Seattle, Sevilla,
Stavern, Strasbourg, Stuttgart, Torino, Toulouse, Tsawassen,
Vancouver, Versailles, Walla Walla, Warszawa

Exercise 12.3 – Explore topics
Use the following links to read more details about the topics covered in this
chapter:

• LINQ in C#: https://docs.microsoft.com/en-us/dotnet/csharp/linq/
linq-in-csharp

• 101 LINQ Samples: https://code.msdn.microsoft.com/101-LINQ-
Samples-3fb9811b

• Parallel LINQ (PLINQ): https://docs.microsoft.com/en-us/dotnet/
standard/parallel-programming/parallel-linq-plinq

• LINQ to XML Overview (C#): https://docs.microsoft.com/en-gb/
dotnet/csharp/programming-guide/concepts/linq/linq-to-xml-
overview

• LINQPad 6 for .NET Core 3.0: https://www.linqpad.net/LINQPad6.aspx

Summary
In this chapter, you learned how to write LINQ queries to select, project, filter, sort,
join, and group data in many different formats, including XML, which are tasks you
will perform every day.

In the next chapter, you will use the Task type to improve the performance of your
applications.

https://docs.microsoft.com/en-us/dotnet/csharp/linq/linq-in-csharp
https://docs.microsoft.com/en-us/dotnet/csharp/linq/linq-in-csharp
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/parallel-linq-plinq
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/parallel-linq-plinq
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx

[429]

Chapter 13
Improving Performance and

Scalability Using Multitasking
This chapter is about allowing multiple actions to occur at the same time to improve
performance, scalability, and user productivity for the applications that you build.

In this chapter, we will cover the following topics:

• Understanding processes, threads, and tasks
• Monitoring performance and resource usage
• Running tasks asynchronously
• Synchronizing access to shared resources
• Understanding async and await

Understanding processes, threads,
and tasks
A process, with one example being each of the console applications we have created,
has resources, like memory and threads allocated to it. A thread executes your code,
statement by statement. By default, each process only has one thread, and this can
cause problems when we need to do more than one task at the same time. Threads
are also responsible for keeping track of things like the currently authenticated user
and any internationalization rules that should be followed for the current language
and region.

Windows and most other modern operating systems use preemptive multitasking,
which simulates the parallel execution of tasks. It divides the processor time among
the threads, allocating a time slice to each thread one after another. The current
thread is suspended when its time slice finishes. The processor then allows another
thread to run for a time slice.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[430]

When Windows switches from one thread to another, it saves the context of the
thread and reloads the previously saved context of the next thread in the thread
queue. This takes both time and resources to complete.

Threads have a Priority property and a ThreadState property. In addition, there is
a ThreadPool class, which is for managing a pool of background worker threads, as
shown in the following diagram:

As a developer, if you have a small number of complex pieces of work and you want
complete control over them, then you can create and manage individual Thread
instances. If you have one main thread and multiple small pieces of work that can be
executed in the background, then you can add delegate instances that point to those
pieces of work implemented as methods to a queue, and they will be automatically
allocated to threads in the thread pool.

Threads may have to compete for and also wait for access to shared resources, such
as variables, files, and database objects.

Depending on the task, doubling the number of threads (workers) to perform a task
does not halve the number of seconds that it will take to complete that task. In fact, it
can increase the duration of the task, as pointed out in the following tweet:

More Information: You can read more about the thread pool at
the following link: https://docs.microsoft.com/en-us/
dotnet/standard/threading/the-managed-thread-pool

https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool

Improving Performance and Scalability Using Multitasking | 13

[431]

Monitoring performance and resource
usage
Before we can improve the performance of any code, we need to be able to monitor
its speed and efficiency in order to record a baseline that we can then measure
improvements from.

Evaluating the efficiency of types
What is the best type to use for a scenario? To answer this question, we need to
carefully consider what we mean by best, and through this, we should consider the
following factors:

• Functionality: This can be decided by checking whether the type provides
the features you need.

• Memory size: This can be decided by the number of bytes of memory the
type takes up.

Good Practice: Never assume that more threads will improve
performance! Run performance tests on a baseline code
implementation without multiple threads, and then again on a code
implementation with multiple threads. You should also perform
performance tests in a staging environment that is as close as
possible to the production environment.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[432]

• Performance: This can be decided by how fast the type is.
• Future needs: This depends on the changes in requirements and

maintainability.

There will be scenarios, such as when storing numbers, where multiple types have
the same functionality, so we will need to consider the memory and performance to
make a choice.

If we need to store millions of numbers, then the best type to use would be the one
that requires the least bytes of memory. But if we only need to store a few numbers,
yet we need to perform lots of calculations on them, then the best type to use would
be the one that runs fastest on a specific CPU.

You have seen the use of the sizeof() function, which shows the number of bytes
a single instance of a type uses in memory. When we are storing a large number
of values in more complex data structures, such as arrays and lists, then we need
a better way of measuring memory usage.

You can read lots of advice online and in books, but the only way to know for sure
what the best type would be for your code is to compare the types yourself.

In the next section, you will learn how to write the code to monitor the actual
memory requirements and the performance when using different types.

Today a short variable might be the best choice, but it might be an even better choice
to use an int variable, even though it takes twice as much space in the memory. This
is because we might need a wider range of values to be stored in the future.

There is another metric we should consider: maintenance. This is a measure of how
much effort another programmer would have to put in to understand and modify
your code. If you use a nonobvious type choice without explaining that choice with a
helpful comment, then it might confuse the programmer who comes along later and
needs to fix a bug or add a feature.

Monitoring performance and memory use
The System.Diagnostics namespace has lots of useful types for monitoring your
code. The first one we will look at is the Stopwatch type.

1. In the Code folder, create a folder named Chapter13 with two subfolders
named MonitoringLib and MonitoringApp.

2. In Visual Studio Code, save a workspace as Chapter13.code-workspace.

Improving Performance and Scalability Using Multitasking | 13

[433]

3. Add the folder named MonitoringLib to the workspace, open a new
Terminal window for it, and create a new class library project, as shown in
the following command:
dotnet new classlib

4. Add the folder named MonitoringApp to the workspace, open a new
Terminal window for it, and create a new console app project, as shown in
the following command:
dotnet new console

5. In the MonitoringLib project, rename the Class1.cs file to Recorder.cs.
6. In the MonitoringApp project, open MonitoringApp.csproj and add

a project reference to the MonitoringLib class library, as shown highlighted
in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference
 Include="..\MonitoringLib\MonitoringLib.csproj" />
 </ItemGroup>

</Project>

7. In Terminal, compile the projects, as shown in the following command:

dotnet build

Implementing the Recorder class
The Stopwatch type has some useful members, as shown in the following table:

Member Description

Restart method This resets the elapsed time to zero and then starts
the timer.

Stop method This stops the timer.

Elapsed property This is the elapsed time stored as a TimeSpan
format (for example, hours:minutes:seconds)

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[434]

ElapsedMilliseconds property This is the elapsed time in milliseconds stored as a
long.

The Process type has some useful members, as shown in the following table:

Member Description

VirtualMemorySize64 This displays the amount of virtual memory, in bytes,
allocated for the process.

WorkingSet64 This displays the amount of physical memory, in bytes,
allocated for the process.

To implement our Recorder class, we will use the Stopwatch and Process classes.

1. Open Recorder.cs, and change its contents to use a Stopwatch instance to
record timings and the current Process instance to record memory usage, as
shown in the following code:
using System;
using System.Diagnostics;
using static System.Console;
using static System.Diagnostics.Process;

namespace Packt.Shared
{
 public static class Recorder
 {
 static Stopwatch timer = new Stopwatch();
 static long bytesPhysicalBefore = 0;
 static long bytesVirtualBefore = 0;

 public static void Start()
 {
 // force two garbage collections to release memory that is
 // no longer referenced but has not been released yet
 GC.Collect();
 GC.WaitForPendingFinalizers();
 GC.Collect();

 // store the current physical and virtual memory use
 bytesPhysicalBefore = GetCurrentProcess().WorkingSet64;
 bytesVirtualBefore = GetCurrentProcess().
VirtualMemorySize64;
 timer.Restart();
 }

 public static void Stop()
 {

Improving Performance and Scalability Using Multitasking | 13

[435]

 timer.Stop();
 long bytesPhysicalAfter = GetCurrentProcess().WorkingSet64;
 long bytesVirtualAfter =
 GetCurrentProcess().VirtualMemorySize64;

 WriteLine("{0:N0} physical bytes used.",
 bytesPhysicalAfter - bytesPhysicalBefore);

 WriteLine("{0:N0} virtual bytes used.",
 bytesVirtualAfter - bytesVirtualBefore);

 WriteLine("{0} time span ellapsed.", timer.Elapsed);

 WriteLine("{0:N0} total milliseconds ellapsed.",
 timer.ElapsedMilliseconds);
 }
 }
}

The Start method of the Recorder class uses the garbage collector (the
GC class) type to ensure that any currently allocated but not referenced
memory is collected before recording the amount of used memory. This is an
advanced technique that you should almost never use in application code.

2. In the Program class, in Main, write statements to start and stop the Recorder
while generating an array of 10,000 integers, as shown in the following code:
using System.Linq;
using Packt.Shared;
using static System.Console;

namespace MonitoringApp
{
 class Program
 {
 static void Main(string[] args)
 {
 WriteLine("Processing. Please wait...");
 Recorder.Start();

 // simulate a process that requires some memory resources...
 int[] largeArrayOfInts =
 Enumerable.Range(1, 10_000).ToArray();

 // ...and takes some time to complete
 System.Threading.Thread.Sleep(
 new Random().Next(5, 10) * 1000);

 Recorder.Stop();

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[436]

 }
 }
}

3. Run the console application and view the result, as shown in the following
output:
Processing. Please wait...

655,360 physical bytes used.

536,576 virtual bytes used.

00:00:09.0038702 time span ellapsed.

9,003 total milliseconds ellapsed.

Measuring the efficiency of processing strings
Now that you've seen how the Stopwatch and Process types can be used to
monitor your code, we will use them to evaluate the best way to process string
variables.

1. Comment out the previous statements in the Main method by wrapping them
in /* */.

2. Add statements to the Main method to create an array of 50,000 int variables
and then concatenate them with commas as separators using a string and
StringBuilder class, as shown in the following code:
int[] numbers = Enumerable.Range(1, 50_000).ToArray();

Recorder.Start();
WriteLine("Using string with +");
string s = "";
for (int i = 0; i < numbers.Length; i++)
{
 s += numbers[i] + ", ";
}
Recorder.Stop();

Recorder.Start();
WriteLine("Using StringBuilder");
var builder = new System.Text.StringBuilder();
for (int i = 0; i < numbers.Length; i++)
{
 builder.Append(numbers[i]); builder.Append(", ");
}
Recorder.Stop();

Improving Performance and Scalability Using Multitasking | 13

[437]

3. Run the console application and view the result, as shown in the following
output:

Using string with +

11,231,232 physical bytes used.

29,843,456 virtual bytes used.

00:00:02.6908216 time span ellapsed.

2,690 total milliseconds ellapsed.

Using StringBuilder

4,096 physical bytes used.

0 virtual bytes used.

00:00:00.0023091 time span ellapsed.

2 total milliseconds ellapsed.

We can summarize the results as follows:

 ° The string class with the + operator used about 11 MB of physical
memory, 29 MB of virtual memory, and took 2.7 seconds.

 ° The StringBuilder class used 4 KB of physical memory, 0 virtual
memory, and took a little more than 2 milliseconds.

In this scenario, StringBuilder is more than 1,000 times faster and about 10,000
times more memory efficient when concatenating text!

Now that you've learned how to measure the performance and resource efficiency of
your code, let's learn about processes, threads, and tasks.

Running tasks asynchronously
To understand how multiple tasks can be run simultaneously (at the same time), we
will create a console application that needs to execute three methods.

There will be three methods that need to be executed: the first takes 3 seconds, the
second takes 2 seconds, and the third takes 1 second. To simulate that work, we can
use the Thread class to tell the current thread to go to sleep for a specified number of
milliseconds.

Good Practice: Avoid using the String.Concat method or the +
operator inside loops. Use StringBuilder instead.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[438]

Running multiple actions synchronously
Before we make the tasks run simultaneously, we will run them synchronously, that
is, one after the other.

1. Create a new console application named WorkingWithTasks, add its
folder to your Chapter13 workspace, and select the project as active for
OmniSharp.

2. In Program.cs, import namespace to work with threading and tasks, as
shown in the following code:
using System;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;
using static System.Console;

3. In the Program class, add the three methods, as shown in the following code:
static void MethodA()
{
 WriteLine("Starting Method A...");
 Thread.Sleep(3000); // simulate three seconds of work
 WriteLine("Finished Method A.");
}

static void MethodB()
{
 WriteLine("Starting Method B...");
 Thread.Sleep(2000); // simulate two seconds of work
 WriteLine("Finished Method B.");
}

static void MethodC()
{
 WriteLine("Starting Method C...");
 Thread.Sleep(1000); // simulate one second of work
 WriteLine("Finished Method C.");
}

4. In Main, add statements to define a stopwatch and output the milliseconds
elapsed, as shown in the following code:

Improving Performance and Scalability Using Multitasking | 13

[439]

static void Main(string[] args)
{
 var timer = Stopwatch.StartNew();

 WriteLine("Running methods synchronously on one thread.");

 MethodA();
 MethodB();
 MethodC();

 WriteLine($"{timer.ElapsedMilliseconds:#,##0}ms elapsed.");
}

5. Run the console application, view the result, and note that when there is only
one thread doing the work the total time required is just over 6 seconds, as
shown in the following output:

Running methods synchronously on one thread.

Starting Method A...

Finished Method A.

Starting Method B...

Finished Method B.

Starting Method C...

Finished Method C.

6,015ms elapsed.

Running multiple actions asynchronously
using tasks
The Thread class has been available since the first version of .NET and can be used
to create new threads and manage them, but it can be tricky to work with directly.

.NET Framework 4.0 introduced the Task class in 2010, which is a wrapper
around a thread that enables easier creating and management. Managing multiple
threads wrapped in tasks will allow our code to execute at the same time,
aka asynchronously.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[440]

Each Task has a Status property, and a CreationOptions property has a
ContinueWith method that can be customized with the TaskContinuationOptions
enum, and can be managed with the TaskFactory class, as shown in the following
diagram:

We will look at three ways to start the methods using Task instances. Each has
a slightly different syntax, but they all define a Task and start it.

1. Comment out the calls to the three methods and the associated console
message.

2. Add statements to create and start three tasks, one for each method, as
shown highlighted in the following code:
static void Main(string[] args)
{
 var timer = Stopwatch.StartNew();

 // WriteLine("Running methods synchronously on one thread.");

 // MethodA();
 // MethodB();
 // MethodC();

 WriteLine("Running methods asynchronously on multiple

Improving Performance and Scalability Using Multitasking | 13

[441]

threads.");

 Task taskA = new Task(MethodA);
 taskA.Start();
 Task taskB = Task.Factory.StartNew(MethodB);
 Task taskC = Task.Run(new Action(MethodC));

 WriteLine($"{timer.ElapsedMilliseconds:#,##0}ms elapsed.");
}

3. Run the console application, view the result, and note that the elapsed
milliseconds appear almost immediately. This is because each of the three
methods is now being executed by three new threads and the original thread
can, therefore, write the elapsed time before they finish, as shown in the
following output:

Running methods asynchronously on multiple threads.

Starting Method A...

Starting Method B...

Starting Method C...

3ms elapsed.

It is even possible that the console app will end before one or more of the tasks have
a chance to start and write to the console!

Waiting for tasks
Sometimes, you need to wait for a task to complete before continuing. To do this,
you can use the Wait method on a Task instance, or the WaitAll or WaitAny static
methods on an array of tasks, as described in the following table:

Method Description

t.Wait() This waits for the task instance named t to complete execution.

Task.
WaitAny(Task[])

This waits for any of the tasks in the array to complete
execution.

Task.
WaitAll(Task[])

This waits for all the tasks in the array to complete execution.

More Information: You can read more about the pros and cons
of different ways to start tasks at the following link: https://
devblogs.microsoft.com/pfxteam/task-factory-
startnew-vs-new-task-start/

https://devblogs.microsoft.com/pfxteam/task-factory-startnew-vs-new-task-start/
https://devblogs.microsoft.com/pfxteam/task-factory-startnew-vs-new-task-start/
https://devblogs.microsoft.com/pfxteam/task-factory-startnew-vs-new-task-start/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[442]

Let's see how we can use these wait methods to fix the problem with our
console app.

1. Add statements to the Main method (after creating the three tasks and before
outputting the elapsed time) to combine references to the three tasks into an
array and pass them to the WaitAll method, as shown in the following code:
Task[] tasks = { taskA, taskB, taskC };
Task.WaitAll(tasks);

Now, the original thread will pause on that statement, waiting for all three
tasks to finish before outputting the elapsed time.

2. Run the console application and view the result, as shown in the following
output:

Running methods asynchronously on multiple threads.

Starting Method C...

Starting Method A...

Starting Method B...

Finished Method C.

Finished Method B.

Finished Method A.

3,006ms elapsed.

The three new threads execute their code simultaneously, and they start in any order.
MethodC should finish first because it takes only 1 second, then MethodB, which takes
2 seconds, and finally MethodA, because it takes 3 seconds.

However, the actual CPU used has a big effect on the results. It is the CPU that
allocates time slices to each process to allow them to execute their threads. You have
no control over when the methods run.

Continuing with another task
If all three tasks can be performed at the same time, then waiting for all tasks to
finish will be all we need to do. However, often a task is dependent on the output
from another task. To handle this scenario, we need to define continuation tasks.

We will create some methods to simulate a call to a web service that returns a
monetary amount that then needs to be used to retrieve how many products cost
more than that amount in a database. The result returned from the first method
needs to be fed into the input of the second method. We will use the Random class
to wait for a random interval of between 2 and 4 seconds for each method call to
simulate the work.

Improving Performance and Scalability Using Multitasking | 13

[443]

1. Add two methods to the Program class that simulate calling a web service
and a database stored procedure, as shown in the following code:
static decimal CallWebService()
{
 WriteLine("Starting call to web service...");
 Thread.Sleep((new Random()).Next(2000, 4000));
 WriteLine("Finished call to web service.");
 return 89.99M;
}

static string CallStoredProcedure(decimal amount)
{
 WriteLine("Starting call to stored procedure...");
 Thread.Sleep((new Random()).Next(2000, 4000));
 WriteLine("Finished call to stored procedure.");
 return $"12 products cost more than {amount:C}.";
}

2. In the Main method, comment out the previous three tasks by wrapping them
in multiline comment characters, /* */. Leave the statement that outputs the
elapsed milliseconds.

3. Add statements before the existing statement to output the total time elapsed
and then call ReadLine to wait for the user to press Enter, as shown in the
following code:
WriteLine("Passing the result of one task as an input into
another.");

var taskCallWebServiceAndThenStoredProcedure =
 Task.Factory.StartNew(CallWebService)
 .ContinueWith(previousTask =>
 CallStoredProcedure(previousTask.Result));

WriteLine($"Result: {taskCallWebServiceAndThenStoredProcedure.
Result}");

4. Run the console application and view the result, as shown in the following
output:

Passing the result of one task as an input into another.

Starting call to web service...

Finished call to web service.

Starting call to stored procedure...

Finished call to stored procedure.

Result: 12 products cost more than £89.99.

5,971ms elapsed.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[444]

Nested and child tasks
As well as defining dependencies between tasks, you can define nested and child
tasks. A nested task is a task that is created inside another task. A child task is
a nested task that must finish before its parent task is allowed to finish.

Let's explore how these types of task work.

1. Create a new console application named NestedAndChildTasks, add it to the
Chapter13 workspace, and select the project as active for OmniSharp.

2. In Program.cs, import namespaces to work with threads and tasks, as shown
in the following code:
using System;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;
using static System.Console;

3. Add two methods, one of which starts a task to run the other, as shown in the
following code:
static void OuterMethod()
{
 WriteLine("Outer method starting...");
 var inner = Task.Factory.StartNew(InnerMethod);
 WriteLine("Outer method finished.");
}

static void InnerMethod()
{
 WriteLine("Inner method starting...");
 Thread.Sleep(2000);
 WriteLine("Inner method finished.");
}

4. In Main, add statements to start a task to run the outer method and wait for it
to finish before stopping, as shown in the following code:
var outer = Task.Factory.StartNew(OuterMethod);
outer.Wait();
WriteLine("Console app is stopping.");

5. Run the console application and view the result, as shown in the following
output:
Outer method starting...

Outer method finished.

Console app is stopping.

Inner method starting...

Improving Performance and Scalability Using Multitasking | 13

[445]

Note that, although we wait for the outer task to finish, its inner task does not
have to finish as well. In fact, the outer task might finish, and the console app
could end, before the inner task even starts! To link these nested tasks, we
must use a special option.

6. Modify the existing code that defines the inner task to add a
TaskCreationOption value of AttachedToParent, as shown highlighted in
the following code:
var inner = Task.Factory.StartNew(InnerMethod,
 TaskCreationOptions.AttachedToParent);

7. Run the console application, view the result, and note that the inner task
must finish before the outer task can, as shown in the following output:

Outer method starting...

Outer method finished.

Inner method starting...

Inner method finished.

Console app is stopping.

The OuterMethod can finish before the InnerMethod, as shown by its writing to the
console, but its task must wait, as shown by the console not stopping until both the
outer and inner tasks finish.

Synchronizing access to shared
resources
When you have multiple threads executing at the same time, there is a possibility
that two or more of the threads may access the same variable or another resource
at the same time, and as a result, may cause a problem. For this reason, you should
carefully consider how to make your code thread safe.

The simplest mechanism for implementing thread safety is to use an object variable
as a flag or traffic light to indicate when a shared resource has an exclusive lock
applied.

In William Golding's Lord of the Flies, Piggy and Ralph spot a conch shell and use it to
call a meeting. The boys impose a "rule of the conch" on themselves, deciding that no
one can speak unless they're holding the conch.

I like to name the object variable I use for implementing thread-safe code the "conch."
When a thread has the conch, no other thread can access the shared resource(s)
represented by that conch.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[446]

We will explore a couple of types that can be used to synchronize access to resources:

• Monitor: A flag to prevent multiple threads accessing a resource
simultaneously within the same process.

• Interlocked: An object for manipulating simple numeric types at the CPU
level.

Accessing a resource from multiple threads
1. Create a console application named SynchronizingResourceAccess, add it

to the Chapter13 workspace, and select the project as active for OmniSharp.
2. Import namespaces for working with threads and tasks, as shown in the

following code:
using System;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;
using static System.Console;

3. In Program, add statements to do the following:
 ° Declare and instantiate an object to generate random wait times.
 ° Declare a string variable to store a message (this is the shared

resource).
 ° Declare two methods that add a letter, A or B, to the shared string

five times in a loop, and wait for a random interval of up to 2 seconds
for each iteration:

static Random r = new Random();
static string Message; // a shared resource

static void MethodA()
{
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(r.Next(2000));
 Message += "A";
 Write(".");
 }
}

static void MethodB()
{
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(r.Next(2000));
 Message += "B";

Improving Performance and Scalability Using Multitasking | 13

[447]

 Write(".");
 }
}

4. In Main, execute both methods on separate threads using a pair of tasks and
wait for them to complete before outputting the elapsed milliseconds, as
shown in the following code:
WriteLine("Please wait for the tasks to complete.");
Stopwatch watch = Stopwatch.StartNew();

Task a = Task.Factory.StartNew(MethodA);
Task b = Task.Factory.StartNew(MethodB);

Task.WaitAll(new Task[] { a, b });

WriteLine();
WriteLine($"Results: {Message}.");
WriteLine($"{watch.ElapsedMilliseconds:#,##0} elapsed
milliseconds.");

5. Run the console application and view the result, as shown in the following
output:

Please wait for the tasks to complete.

..........

Results: BABABAABBA.

5,753 elapsed milliseconds.

This shows that both threads were modifying the message concurrently. In an actual
application, this could be a problem. But we can prevent concurrent access by applying
a mutually exclusive lock to the resource, which we will do in the following section.

Applying a mutually exclusive lock to a
resource
Now, let's use a conch to ensure that only one thread has access to the share resource
at a time.

1. In Program, declare and instantiate an object variable to act as a conch, as
shown in the following code:
static object conch = new object();

2. In both MethodA and MethodB, add a lock statement around the for
statement, as shown highlighted in the following code:
lock (conch)

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[448]

{
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(r.Next(2000));
 Message += "A";
 Write(".");
 }
}

3. Run the console application and view the result, as shown in the following
output:

Please wait for the tasks to complete.

..........

Results: BBBBBAAAAA.

10,345 elapsed milliseconds.

Although the time elapsed was longer, only one method at a time could access
the shared resource. Either MethodA or MethodB can start first. Once a method has
finished its work on the shared resource, then the conch gets released, and the other
method has the chance to do its work.

Understanding the lock statement and
avoiding deadlocks
You might wonder how the lock statement works when it locks an object variable, as
shown in the following code:

lock (conch)
{
 // work with shared resource
}

The C# compiler changes the lock statement into a try-finally statement that
uses the Monitor class to enter and exit the conch object variable, as shown in the
following code:

try
{
 Monitor.Enter(conch);
 // work with shared resource
}
finally
{
 Monitor.Exit(conch);
}

Improving Performance and Scalability Using Multitasking | 13

[449]

Knowing how the lock statement works internally is important because using the
lock statement can cause a deadlock.

Deadlocks occur when there are two or more shared resources (and therefore
conches), and the following sequence of events happens:

• Thread X locks conch A.
• Thread Y locks conch B.
• Thread X attempts to lock conch B but is blocked because thread Y already

has it.
• Thread Y attempts to lock conch A but is blocked because thread X already

has it.

A proven way to prevent deadlocks is to specify a timeout when attempting to get a
lock. To do this, you must manually use the Monitor class instead of using the lock
statement.

1. Modify your code to replace the lock statements with code that tries to enter
the conch with a timeout, as shown in the following code:
try
{
 Monitor.TryEnter(conch, TimeSpan.FromSeconds(15));

 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(r.Next(2000));
 Message += "A";
 Write(".");
 }
}
finally
{
 Monitor.Exit(conch);
}

2. Run the console application and view the result, which should return the
same results as before (although either A or B could grab the conch first) but
is better code because it will avoid potential deadlocks.

Good Practice: Only use the lock keyword if you can write your
code such that it avoids potential deadlocks. If you cannot avoid
potential deadlocks, then always use the Monitor.TryEnter
method instead of lock, in combination with a try-finally
statement, so that you can supply a timeout and one of the threads
will back out of a deadlock if it occurs.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[450]

Making CPU operations atomic
Atomic is from the Greek word atomos, which means undividable. Is the C#
increment operator atomic, as shown in the following code?

int x = 3;
x++; // is this an atomic CPU operation?

It is not atomic! Incrementing an integer requires the following three CPU
operations:

1. Load a value from an instance variable into a register.
2. Increment the value.
3. Store the value in the instance variable.

A thread could be preempted after executing the first two steps. A second thread
could then execute all three steps. When the first thread resumes execution, it will
overwrite the value in the variable, and the effect of the increment or decrement
performed by the second thread will be lost!

There is a type named Interlocked that can perform atomic actions on value types,
such as integers and floats.

1. Declare another shared resource that will count how many operations have
occurred, as shown in the following code:
static int Counter; // another shared resource

2. In both methods, inside the for statement and after modifying the string
value, add a statement to safely increment the counter, as shown in the
following code:
Interlocked.Increment(ref Counter);

3. After outputting the elapsed time, write the current value of the counter to
the console, as shown in the following code:
WriteLine($"{Counter} string modifications.");

4. Run the console application and view the result, as shown in the following
partial output:

10 string modifications.

Observant readers will realize that the existing conch object variable protects all
shared resources accessed within a block of code locked by the conch, and therefore
it is actually unnecessary to use Interlocked in this specific example. But if we
had not already been protecting another shared resource like Message then using
Interlocked would be necessary.

Improving Performance and Scalability Using Multitasking | 13

[451]

Applying other types of synchronization
Monitor and Interlocked are mutually exclusive locks that are simple and effective,
but sometimes, you need more advanced options to synchronize access to shared
resources, as shown in the following table:

Type Description

ReaderWriterLock and
ReaderWriterLockSlim
(recommended)

These allow multiple threads to be in read mode, one thread to
be in the write mode with exclusive ownership of the lock, and
one thread that has read access to be in the upgradeable read
mode, from which the thread can upgrade to the write mode
without having to relinquish its read access to the resource.

Mutex Like Monitor, this provides exclusive access to a shared
resource, except it is used for inter-process synchronization.

Semaphore and
SemaphoreSlim

These limit the number of threads that can access a resource
or pool of resources concurrently by defining slots.

AutoResetEvent and
ManualResetEvent

Event wait handles allow threads to synchronize activities by
signaling each other and by waiting for each other's signals.

Understanding async and await
C# 5 introduced two keywords to simplify working with the Task type. They are
especially useful for the following:

• Implementing multitasking for a graphical user interface (GUI)
• Improving the scalability of web applications and web services

In Chapter 16, Building Websites Using the Model-View-Controller Pattern, we will
explore how the async and await keywords can improve scalability in websites.

In Chapter 20, Building Windows Desktop Apps, we will explore how the async and
await keywords can implement multitasking with a GUI. But for now, let's learn the
theory of why these two C# keywords were introduced, and then later you will see
them used in practice.

Improving responsiveness for console apps
One of the limitations with console applications is that you can only use the await
keyword inside methods that are marked as async..., and C# 7 and earlier do not
allow the Main method to be marked as async! Luckily, a new feature introduced in
C# 7.1 was support for async in Main.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[452]

1. Create a console app named AsyncConsole, add it to the Chapter13
workspace, and select the project as active for OmniSharp.

2. Import namespaces for making HTTP requests and working with tasks, and
statically import Console, as shown in the following code:
using System.Net.Http;
using System.Threading.Tasks;
using static System.Console;

3. In the Main method, add statements to create an HttpClient instance, make
a request for Apple's home page, and output how many bytes it has, as
shown in the following code:
var client = new HttpClient();

HttpResponseMessage response =
 await client.GetAsync("http://www.apple.com/");

WriteLine("Apple's home page has {0:N0} bytes.",
 response.Content.Headers.ContentLength);

4. Build the project and note the error message, as shown in the following
output:
Program.cs(14,9): error CS4033: The 'await' operator can only be
used within an async method. Consider marking this method with the
'async' modifier and changing its return type to 'Task'. [/Users/
markjprice/Code/Chapter13/AsyncConsole/AsyncConsole.csproj]

5. Add the async keyword to the Main method and change its return type to
Task.

6. Build the project and note that it now builds successfully.
7. Run the console application and view the result, as shown in the following

output:

Apple's home page has 40,252 bytes.

Improving responsiveness for GUI apps
So far in this book, we have only built console applications. Life for a programmer
gets more complicated when building web applications, web services, and apps with
GUIs such as Windows desktop and mobile apps.

One reason for this is that for a GUI app, there is a special thread: the user interface
(UI) thread.

There are two rules for working in GUIs:

http://www.apple.com/

Improving Performance and Scalability Using Multitasking | 13

[453]

• Do not perform long-running tasks on the UI thread.
• Do not access UI elements on any thread except the UI thread.

To handle these rules, programmers used to have to write complex code to ensure
that long-running tasks were executed by a non-UI thread, but once complete, the
results of the task were safely passed to the UI thread to present to the user. It could
quickly get messy!

Luckily, with C# 5 and later, you have the use of async and await. They allow you
to continue to write your code as if it is synchronous, which keeps your code clean
and easy to understand, but underneath, the C# compiler creates a complex state
machine and keeps track of running threads. It's kind of magical!

Improving scalability for web applications and
web services
The async and await keywords can also be applied on the server side when building
websites, applications, and services. From the client application's point of view,
nothing changes (or they might even notice a small increase in the time for a request
to return). So, from a single client's point of view, the use of async and await to
implement multitasking on the server side makes their experience worse!

On the server side, additional, cheaper worker threads are created to wait for long-
running tasks to finish so that expensive I/O threads can handle other client requests
instead of being blocked. This improves the overall scalability of a web application or
service. More clients can be supported simultaneously.

Common types that support multitasking
There are many common types that have asynchronous methods that you can await,
as shown in the following table:

Type Methods

DbContext<T> AddAsync, AddRangeAsync, FindAsync, and SaveChangesAsync

DbSet<T>
AddAsync, AddRangeAsync, ForEachAsync, SumAsync,
ToListAsync, ToDictionaryAsync, AverageAsync, and
CountAsync

HttpClient GetAsync, PostAsync, PutAsync, DeleteAsync, and SendAsync

StreamReader ReadAsync, ReadLineAsync, and ReadToEndAsync

StreamWriter WriteAsync, WriteLineAsync, and FlushAsync

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[454]

Using await in catch blocks
In C# 5, it was only possible to use the await keyword in a try block, but not in a
catch block. In C# 6 and later, it is now possible to use await in both the try and
catch blocks.

Working with async streams
Before C# 8.0 and .NET Core 3.0, the await keyword only worked with tasks that
return scalar values. Async stream support in .NET Standard 2.1 allows an async
method to return a sequence of values.

Let's see a simulated example.

1. Create a console app named AsyncEnumerable, add it to the Chapter13
workspace, and select the project as active for OmniSharp.

2. Import namespaces for working with tasks, and statically import Console, as
shown in the following code:
using System.Collections.Generic;
using System.Threading.Tasks;
using static System.Console;

3. Create a method that yield returns a random sequence of three numbers
asynchronously, as shown in the following code:
static async IAsyncEnumerable<int> GetNumbers()
{
 var r = new Random();

 // simulate work
 System.Threading.Thread.Sleep(r.Next(1000, 2000));
 yield return r.Next(0, 101);

 System.Threading.Thread.Sleep(r.Next(1000, 2000));
 yield return r.Next(0, 101);

 System.Threading.Thread.Sleep(r.Next(1000, 2000));
 yield return r.Next(0, 101);
}

Good Practice: Any time you see a method that ends in the suffix
Async, check to see whether it returns Task or Task<T>. If it does,
then you should use it instead of the synchronous non-Async
suffixed method. Remember to call it using await and decorate
your method with async.

Improving Performance and Scalability Using Multitasking | 13

[455]

4. In the Main method, add statements to enumerate the sequence of numbers,
as shown in the following code:
static async Task Main(string[] args)
{
 await foreach (int number in GetNumbers())
 {
 WriteLine($"Number: {number}");
 }
}

5. Run the console application and view the result, as shown in the following
output:

Number: 509

Number: 813

Number: 307

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with deeper research.

Exercise 13.1 – Test your knowledge
Answer the following questions:

1. What information can you find out about a process?
2. How accurate is the Stopwatch class?
3. By convention, what suffix should be applied to a method that returns Task

or Task<T>?
4. To use the await keyword inside a method, what keyword must be applied

to the method declaration?
5. How do you create a child task?
6. Why should you avoid the lock keyword?
7. When should you use the Interlocked class?
8. When should you use the Mutex class instead of the Monitor class?
9. What is the benefit of using async and await in a website or web service?
10. Can you cancel a task? How?

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[456]

Exercise 13.2 – Explore topics
Use the following links to read more about this chapter's topics:

• Threads and threading: https://docs.microsoft.com/en-us/dotnet/
standard/threading/threads-and-threading

• Async in depth: https://docs.microsoft.com/en-us/dotnet/standard/
async-in-depth

• await (C# Reference): https://docs.microsoft.com/en-us/dotnet/
csharp/language-reference/keywords/await

• Parallel Programming in .NET: https://docs.microsoft.com/en-us/
dotnet/standard/parallel-programming/

• Overview of synchronization primitives: https://docs.microsoft.com/
en-us/dotnet/standard/threading/overview-of-synchronization-
primitives

Summary
In this chapter, you have learned not only how to define and start a task, but also
how to wait for one or more tasks to finish, and how to control task completion
order. You've also learned how to synchronize access to shared resources, and the
theory behind async and await.

In the remaining chapters, you will learn how to create applications for the App
Models supported by .NET Core, such as websites, web applications, and web
services. As a bonus, you will also learn how you can build Windows desktop
apps using .NET Core 3.0 and cross-platform mobile apps using Xamarin.Forms.

https://docs.microsoft.com/en-us/dotnet/standard/threading/threads-and-threading
https://docs.microsoft.com/en-us/dotnet/standard/threading/threads-and-threading
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives

[457]

Chapter 14
Practical Applications

of C# and .NET
The third part of this book is about practical applications of C# and .NET. You
will learn how to build complete cross-platform applications such as websites,
web services, Windows desktop and mobile apps, and how to add intelligence
to them with machine learning. Microsoft calls platforms for building applications
App Models.

In this chapter, we will cover the following topics:

• Understanding app models for C# and .NET
• New features in ASP.NET Core
• Understanding SignalR
• Understanding Blazor
• Understanding the bonus chapters
• Building an entity data model for Northwind

Understanding app models for C# and
.NET
Since this book is about C# 8.0 and .NET Core 3.0, we will learn about app models
that use them to build the practical applications that we will encounter in the
remaining chapters of this book.

More Information: Microsoft has extensive guidance for
implementing App Models such as ASP.NET Web Applications,
Xamarin Mobile Apps, and UWP Apps in its .NET Application
Architecture Guidance documentation, which you can read
at the following link: https://www.microsoft.com/net/
learn/architecture

https://www.microsoft.com/net/learn/architecture
https://www.microsoft.com/net/learn/architecture

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[458]

Building websites using ASP.NET Core
Websites are made up of multiple web pages loaded statically from the filesystem or
generated dynamically by a server-side technology such as ASP.NET Core. A web
browser makes GET requests using URLs that identify each page and can manipulate
data stored on the server using the POST, PUT, and DELETE requests.

With many websites, the web browser is treated as a presentation layer, with almost all
of the processing performed on the server side. A small amount of JavaScript might be
used on the client side to implement some presentation features, such as carousels.

ASP.NET Core 3.0 provides three technologies for building websites:

• ASP.NET Core Razor Pages and Razor class libraries are ways to
dynamically generate HTML for simple websites. You will learn about them
in detail in Chapter 15, Building Websites Using ASP.NET Core Razor Pages.

• ASP.NET Core MVC is an implementation of the Model-View-Controller
design pattern that is popular for developing complex websites. You will
learn about it in detail in Chapter 16, Building Websites Using the Model-View-
Controller Pattern.

• Blazor lets you build server-side or client-side components and user
interfaces using C# instead of JavaScript. Blazor is still very new, and is not
included in this edition of the book.

Building websites using a web content
management system
Most websites have a lot of content, and if developers had to be involved every
time some content needed to be changed, that would not scale well. A web Content
Management System (CMS) enables developers to define content structure and
templates to provide consistency and good design, while making it easy for a non-
technical content owner to manage the actual content. They can create new pages
or blocks of content, and update existing content, knowing it will look great for the
visitors with minimal effort.

There are a multitude of CMSs available for all web platforms, like WordPress for
PHP or Django for Python. Enterprise-level CMSs for .NET Framework include
Episerver and Sitecore, but neither are yet available for .NET Core. CMSs that
support .NET Core include Piranha CMS, Squidex, and Orchard Core.

The key benefit of using a CMS is that it provides a friendly content management
user interface. Content owners log in to the website and manage the content
themselves. The content is then rendered and returned to visitors using ASP.NET
MVC controllers and views.

Practical Applications of C# and .NET | 14

[459]

In summary, C# and .NET can be used on both the server-side and the client-side to
build websites, as shown in the following diagram:

Understanding web applications
Web applications, also known as Single-Page Applications (SPAs), are made up
of a single web page built with a frontend technology such as Angular, React, Vue,
or a proprietary JavaScript library that can make requests to a backend web service
for getting more data when needed and posting updated data, using common
serialization formats, such as XML and JSON. The canonical examples are Google
web apps like Gmail, Maps, and Docs.

With a web application, the client-side uses JavaScript libraries to implement
sophisticated user interactions, but most of the important processing and data access
still happens on the server-side, because the web browser has limited access to local
system resources.

.NET Core has project templates for JavaScript-based SPAs, but we will not spend
any time learning how to build JavaScript-based SPAs in this book, even though
these are commonly used with ASP.NET Core as the backend.

More Information: To learn more about building frontends
to .NET Core using JavaScript SPAs, Packt has two books of
interest, which you can read about at the following links:

ASP.NET Core 2 and Vue.js: https://www.packtpub.com/
application-development/hands-aspnet-core-2-and-
vuejs

ASP.NET Core 2 and Angular 5: https://www.packtpub.
com/application-development/aspnet-core-2-and-
angular-5

https://www.packtpub.com/application-development/hands-aspnet-core-2-and-vuejs
https://www.packtpub.com/application-development/hands-aspnet-core-2-and-vuejs
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[460]

Building and consuming web services
Although we will not learn about JavaScript-based SPAs, we will learn how to build
a web service using ASP.NET Core Web API, call that web service from the server-
side code in our ASP.NET Core websites, and then later, we will call that web service
from Windows desktop and cross-platform mobile apps.

Building intelligent apps
In a traditional app, the algorithms it uses to process its data are designed and
implemented by a human. Humans are good at many things, but writing complex
algorithms is not one of them, especially algorithms for spotting useful patterns in
vast quantities of data.

Machine learning algorithms that work with custom models like those provided by
Microsoft's ML.NET for .NET Core can add intelligence to your apps. We will use
ML.NET algorithms with custom models to process the tracked behavior of visitors
to a website and then make recommendations for other pages that they might be
interested in. It will work rather like how Netflix recommends films and TV shows
you might like based on your previous behavior and the behavior of people who
have expressed similar interests to you.

New features for ASP.NET Core
Over the past few years, Microsoft has rapidly expanded the capabilities of
ASP.NET Core. You should note which .NET platforms are supported, as
shown in the following list:

• ASP.NET 1.0 to 2.2 runs on either .NET Core or .NET Framework.
• ASP.NET Core 3.0 only runs on .NET Core 3.0.

ASP.NET Core 1.0
ASP.NET Core 1.0 was released in June 2016 and focused on implementing an API
suitable for building modern cross-platform web and services for Windows, macOS,
and Linux.

More Information: You can read the ASP.NET Core 1.0
announcement at the following link: https://blogs.msdn.
microsoft.com/webdev/2016/06/27/announcing-asp-
net-core-1-0/

https://blogs.msdn.microsoft.com/webdev/2016/06/27/announcing-asp-net-core-1-0/
https://blogs.msdn.microsoft.com/webdev/2016/06/27/announcing-asp-net-core-1-0/

Practical Applications of C# and .NET | 14

[461]

ASP.NET Core 1.1
ASP.NET Core 1.1 was released in November 2016 and focused on bug fixes and
general improvements to features and performance.

ASP.NET Core 2.0
ASP.NET Core 2.0 was released in August 2017 and focused on adding new features
such as Razor Pages, bundling assemblies into a Microsoft.AspNetCore.All
metapackage, targeting .NET Standard 2.0, providing a new authentication model,
and performance improvements. The biggest new feature is covered in Chapter 15,
Building Websites Using ASP.NET Core Razor Pages.

ASP.NET Core 2.1
ASP.NET Core 2.1 was released in May 2018 and focused on adding new features
such as SignalR for real-time communication, Razor class libraries, ASP.NET Core
Identity, and better support for HTTPS and the European Union's General Data
Protection Regulation (GDPR), including the topics listed in the following table:

Feature Chapter Topic

SignalR 14 Understanding SignalR
Razor class libraries 15 Using Razor class libraries
GDPR support 16 Creating and exploring an ASP.NET Core

MVC website
Identity UI library and
scaffolding

16 Exploring an ASP.NET Core MVC website

Integration tests 16 Testing an ASP.NET Core MVC website
[ApiController],
ActionResult<T>

18 Creating an ASP.NET Core Web API project

More Information: You can read the ASP.NET Core 1.1
announcement at the following link: https://blogs.msdn.
microsoft.com/webdev/2016/11/16/announcing-asp-
net-core-1-1/

More Information: You can read the ASP.NET Core 2.0
announcement at the following link: https://blogs.msdn.
microsoft.com/webdev/2017/08/14/announcing-asp-
net-core-2-0/

https://blogs.msdn.microsoft.com/webdev/2016/11/16/announcing-asp-net-core-1-1/
https://blogs.msdn.microsoft.com/webdev/2016/11/16/announcing-asp-net-core-1-1/
https://blogs.msdn.microsoft.com/webdev/2016/11/16/announcing-asp-net-core-1-1/
https://blogs.msdn.microsoft.com/webdev/2017/08/14/announcing-asp-net-core-2-0/
https://blogs.msdn.microsoft.com/webdev/2017/08/14/announcing-asp-net-core-2-0/
https://blogs.msdn.microsoft.com/webdev/2017/08/14/announcing-asp-net-core-2-0/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[462]

Problem details 18 Implementing a Web API controller
IHttpClientFactory 18 Configuring HTTP clients using

HttpClientFactory

ASP.NET Core 2.2
ASP.NET Core 2.2 was released in December 2018 and focused on improving the
building of RESTful HTTP APIs, updating the project templates to Bootstrap 4
and Angular 6, an optimized configuration for hosting in Azure, and performance
improvements, including the topics listed in the following table:

Feature Chapter Topic

HTTP/2 in Kestrel 15 Classic ASP.NET versus modern ASP.NET Core
In-process hosting model 15 Creating an ASP.NET Core project
Health Check API 18 Implementing Health Check API
Open API Analyzers 18 Implementing Open API analyzers and conventions
Endpoint Routing 18 Understanding endpoint routing

ASP.NET Core 3.0
ASP.NET Core 3.0 was released in September 2019 and focused on fully leveraging
.NET Core 3.0, which means it can no longer support .NET Framework, and added
useful refinements, including the topics listed in the following table:

Feature Chapter Topic

Blazor; server- and client-side 14 Understanding Blazor
Static assets in Razor class libraries 15 Using Razor class libraries
New options for MVC service registration 16 Understanding ASP.NET Core

MVC startup

More Information: You can read the ASP.NET Core 2.1
announcement at the following link: https://blogs.msdn.
microsoft.com/webdev/2018/05/30/asp-net-core-2-1-
0-now-available/

More Information: You can read the ASP.NET Core 2.2
announcement at the following link: https://blogs.msdn.
microsoft.com/webdev/2018/12/04/asp-net-core-2-2-
available-today/

https://blogs.msdn.microsoft.com/webdev/2018/05/30/asp-net-core-2-1-0-now-available/
https://blogs.msdn.microsoft.com/webdev/2018/05/30/asp-net-core-2-1-0-now-available/
https://blogs.msdn.microsoft.com/webdev/2018/05/30/asp-net-core-2-1-0-now-available/
https://blogs.msdn.microsoft.com/webdev/2018/12/04/asp-net-core-2-2-available-today/
https://blogs.msdn.microsoft.com/webdev/2018/12/04/asp-net-core-2-2-available-today/
https://blogs.msdn.microsoft.com/webdev/2018/12/04/asp-net-core-2-2-available-today/

Practical Applications of C# and .NET | 14

[463]

Understanding SignalR
In the early days of the Web in the 1990s, browsers had to make a full-page HTTP
GET request to the web server to get fresh information to show to the visitor.

In late 1999, Microsoft released Internet Explorer 5.0 with a component named
XMLHttpRequest that could make asynchronous HTTP calls in the background.
This alongside dynamic HTML (DHTML) allowed parts of the web page to be
updated with fresh data smoothly.

The benefits of this technique were obvious and soon all browsers added the same
component. Google took maximum advantage of this capability to build clever
web applications such as Google Maps and Gmail. A few years later, the technique
became popularly known as Asynchronous JavaScript and XML (AJAX).

AJAX still uses HTTP to communicate, however, and that has limitations. First,
HTTP is a request-response communication protocol, meaning that the server cannot
push data to the client. It must wait for the client to make a request. Second, HTTP
request and response messages have headers with lots of potentially unnecessary
overhead. Third, HTTP typically requires a new underlying TCP connection to be
created on each request.

WebSocket is full-duplex, meaning that either client or server can initiate
communicating new data. WebSocket uses the same TCP connection for the lifecycle
of the connection. It is also more efficient in the message sizes that it sends because
they are minimally framed with 2 bytes.

WebSocket works over HTTP ports 80 and 443 so it is compatible with the HTTP
protocol and the WebSocket handshake uses the HTTP Upgrade header to switch
from the HTTP protocol to the WebSocket protocol.

Modern web apps are expected to deliver up-to-date information. Live chat is the
canonical example, but there are lots of potential applications, from stock prices to
games.

More Information: You can read the ASP.NET Core 3.0
announcement at the following link: https://blogs.msdn.
microsoft.com/webdev/2018/10/29/a-first-look-at-
changes-coming-in-asp-net-core-3-0/

More Information: You can read more about WebSocket at the
following link: https://en.wikipedia.org/wiki/WebSocket

https://blogs.msdn.microsoft.com/webdev/2018/10/29/a-first-look-at-changes-coming-in-asp-net-core-3-0/
https://blogs.msdn.microsoft.com/webdev/2018/10/29/a-first-look-at-changes-coming-in-asp-net-core-3-0/
https://blogs.msdn.microsoft.com/webdev/2018/10/29/a-first-look-at-changes-coming-in-asp-net-core-3-0/
https://en.wikipedia.org/wiki/WebSocket

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[464]

Whenever you need the server to push updates to the web page, you need a web-
compatible real-time communication technology. WebSocket could be used but it is
not supported by all clients.

ASP.NET Core SignalR is an open-source library that simplifies adding real-
time web functionality to apps by being an abstraction over multiple underlying
communication technologies, which allows you to add real-time communication
capabilities using C# code.

The developer does not need to understand or implement the underlying technology
used, and SignalR will automatically switch between underlying technologies
depending on what the visitor's web browser supports. For example, SignalR will
use WebSocket when it's available, and gracefully falls back on other technologies
such as AJAX long polling when it isn't, while your application code stays the same.

SignalR is an API for server-to-client remote procedure calls (RPC). The RPCs call
JavaScript functions on clients from server-side .NET Core code. SignalR has hubs
to define the pipeline and handles the message dispatching automatically using two
built-in hub protocols: JSON and a binary one based on MessagePack.

On the server-side, SignalR runs everywhere that ASP.NET Core runs: Windows,
macOS, or Linux servers. SignalR supports the following client platforms:

• JavaScript clients for current browsers including Chrome, Firefox, Safari,
Edge, and Internet Explorer 11.

• .NET clients including Xamarin for Android and iOS mobile apps.
• Java 8 and later.

Understanding Blazor
Blazor lets you build shared components and interactive web user interfaces using
C# instead of JavaScript. In April 2019, Microsoft announced that Blazor "is no longer
experimental and we are committing to ship it as a supported web UI framework
including support for running client-side in the browser on WebAssembly."

More Information: You can read more about MessagePack at the
following link: https://msgpack.org

More Information: You can read more about SignalR at the
following link: https://docs.microsoft.com/en-us/
aspnet/core/signalr/introduction?view=aspnetco
re-3.0

https://msgpack.org
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction?view=aspnetcore-3.0

Practical Applications of C# and .NET | 14

[465]

JavaScript and friends
Traditionally, any code that needs to execute in a web browser is written using
the JavaScript programming language or a higher-level technology that transpiles
(transforms or compiles) into JavaScript. This is because all browsers have supported
JavaScript for about two decades, so it has become the lowest-common denominator
for implementing business logic on the client-side.

JavaScript does have some issues, however. First, although it has superficial
similarities to C-style languages like C# and Java, it is actually very different once
you dig beneath the surface. Second, it is a dynamically-typed pseudo-functional
language that uses prototypes instead of class inheritance for object reuse. It might
look Human, but you will get a surprise when it's revealed to actually be a Skrull.

Wouldn't it be great if we could use the same language and libraries in a web
browser as we do on the server-side?

Silverlight – C# and .NET using a plugin
Microsoft made a previous attempt at achieving this goal with a technology named
Silverlight. When Silverlight 2.0 was released in 2008, a C# and .NET developer
could use their skills to build libraries and visual components that were executed in
the web browser by the Silverlight plugin.

By 2011 and Silverlight 5.0, Apple's success with the iPhone and Steve Job's hatred of
browser plugins like Flash eventually led to Microsoft abandoning Silverlight since,
like Flash, Silverlight is banned from iPhones and iPads.

WebAssembly – a target for Blazor
A recent development in browsers has given Microsoft the opportunity to make
another attempt. In 2017, the WebAssembly Consensus was completed and all major
browsers now support it: Chromium (Chrome, Edge, Opera, Brave), Firefox, and
WebKit (Safari). It is not supported by Microsoft's Internet Explorer because it is a
legacy web browser.

WebAssembly (Wasm) is a binary instruction format for a virtual machine that
provides a way to run code written in multiple languages on the web at near native
speed. Wasm is designed as a portable target for the compilation of high-level
languages like C#.

More Information: You can learn more about WebAssembly at
the following link: https://webassembly.org

https://webassembly.org

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[466]

Blazor on the server-side or client-side
Blazor is a single programming or app model with two hosting models:

• Server-side Blazor runs on the server-side using SignalR to communicate
with the client-side and it shipped as part of .NET Core 3.0.

• Client-side Blazor runs on the client-side using WebAssembly and it will ship
as part of a future .NET Core release.

This means that a web developer can write Blazor components once, and then run
them either on the server-side or client-side.

Since the most interesting hosting option for Blazor might not ship until .NET 5.0 in
2020, I decided to wait until the publication of the next edition to write a whole new
chapter about the Blazor technology.

Understanding the bonus chapters
The bonus chapters in this book are the last two chapters:

• Chapter 20, Building Windows Desktop Apps
• Chapter 21, Building Cross-Platform Mobile Apps Using Xamarin.Forms

Since this book is about modern cross-platform development using C# 8.0 and .NET
Core 3.0, technically, it should not include coverage of Windows desktop apps
because they are Windows-only. Nor should it include coverage of cross-platform
mobile apps because they use Xamarin instead of .NET Core.

In Chapters 1 to 19 we are using cross-platform Visual Studio Code to build all the
apps. Windows desktop apps are built using Visual Studio 2019 on Windows 10.
Cross-platform mobile apps are built using Visual Studio 2019 for Mac and require
macOS to compile.

More Information: You can read the official documentation for
Blazor at the following link: https://dotnet.microsoft.
com/apps/aspnet/web-apps/client

More Information: You can find lots of Blazor resources at the
community-driven Awesome Blazor site at the following link:
https://github.com/AdrienTorris/awesome-blazor

https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://github.com/AdrienTorris/awesome-blazor
https://github.com/AdrienTorris/awesome-blazor

Practical Applications of C# and .NET | 14

[467]

But Windows and mobile are important platforms for current and future client app
development using C# and .NET, so I did not want to take away the opportunity to
introduce you to them.

Building Windows desktop apps
With the first version of C# and .NET Framework released in 2002, Microsoft
provided a technology for building Windows desktop applications named Windows
Forms. (The equivalent at the time for web development was named Web Forms,
hence the complementary names).

In 2007, Microsoft released a more powerful technology for building Windows
desktop applications, named Windows Presentation Foundation (WPF). WPF can use
eXtensible Application Markup Language (XAML) to specify its user interface, which
is easy for both humans and code to understand. Visual Studio 2019 is built with WPF.

There are many enterprise applications built using Windows Forms and WPF that
need to be maintained or enhanced with new features, but until now they were
stuck on .NET Framework, which is now a legacy platform. With .NET Core 3.0 and
Windows Desktop Pack, these apps can now use the full modern capabilities of .NET
Core (and in future .NET 5.0).

In 2015 Microsoft released Windows 10, and with it a new technology named
Universal Windows Platform (UWP). UWP can use a custom fork of .NET Core
that is not cross-platform but provides full access to the underlying Windows APIs.

UWP apps can only execute on the Windows 10 platform, not earlier versions of
Windows. UWP apps can also run on Xbox and Windows Mixed Reality headsets
with motion controllers.

With Windows apps, the client side can provide extremely sophisticated user
interactions, and has full access to all local system resources; so the app only needs
the server side if the app needs to implement cross-device functionality, for example,
creating a document on a tablet device, and continuing to work on the document on
a desktop device, or having gameplay progress shared across devices.

Building cross-platform mobile apps
There are two major mobile platforms: Apple's iOS and Google's Android, each with
their own different programming languages and platform APIs.

Cross-platform mobile apps can be built once for the Xamarin platform using C#,
and then can run on both Apple and Android mobile platforms. Xamarin.Forms
makes it even easier to develop mobile apps by sharing user interface components as
well as business logic.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[468]

Mobile apps have similar benefits as Windows apps, except they are cross-platform,
not just cross-device. Much of the XAML for defining the user interface can be shared
with WPF and UWP apps.

The apps can exist on their own, but they usually call web services to provide an
experience that spans across all of your computing devices, from servers and laptops
to phones and gaming systems.

Once .NET 5.0 is released in late 2020, you will be able to create cross-platform
mobile apps that target the same .NET 5.0 APIs as used by console apps, websites,
web services, and Windows desktop apps, and it will be executed by the Xamarin
runtime on mobile devices.

Building an entity data model for
Northwind
Practical applications usually need to work with data in a relational database or
another data store. In this chapter, we will define an entity data model for the
Northwind database stored in SQLite. It will be used in most of the apps that we
create in subsequent chapters.

Although macOS includes an installation of SQLite by default, if you are using
Windows or a variety of Linux then you might need to download, install, and
configure SQLite for your operating system. Instructions to do so can be found in
Chapter 11, Working with Databases Using Entity Framework Core.

Creating a class library for Northwind entity
models
You will now define entity data models in a .NET Standard 2.0 class library so that
they can be reused in other types of projects including client-side app models such
as Windows desktop and mobile apps:

1. In your existing Code folder, create a folder named PracticalApps.

Good Practice: You should create a separate class library project
for your entity data models that does not have a dependency on
anything except .NET Standard 2.0. This allows easier sharing
between backend servers and frontend clients without the client
needing to reference Entity Framework Core 3.0, that is dependent
on .NET Standard 2.1.

Practical Applications of C# and .NET | 14

[469]

2. In Visual Studio, open the PracticalApps folder.
3. Create the Northwind.db file by copying the Northwind.sql file into the

PracticalApps folder, and then enter the following command in Terminal:
sqlite3 Northwind.db < Northwind.sql

4. In the PracticalApps folder, create a folder named NorthwindEntitiesLib.
5. In Visual Studio Code, navigate to File | Save Workspace As…, enter the

name PracticalApps, change to the PracticalApps folder, and click Save.
6. Add the NorthwindEntitiesLib folder to the workspace.
7. Navigate to Terminal | New Terminal and select NorthwindEntitiesLib.
8. In Terminal, enter the following command: dotnet new classlib
9. Delete the Class1.cs file.
10. Add the following class files to the NorthwindEntitiesLib project:

Category.cs, Customer.cs, Employee.cs, Order.cs, OrderDetail.cs,
Product.cs, Shipper.cs, and Supplier.cs. To save time, you could get
these files from the GitHub repository for this book.

11. Category.cs should have three scalar properties for a category, and a
property for related products, as shown in the following code:
using System.Collections.Generic;

namespace Packt.Shared
{
 public class Category
 {
 public int CategoryID { get; set; }
 public string CategoryName { get; set; }
 public string Description { get; set; }

 // related entities
 public ICollection<Product> Products { get; set; }
 }
}

12. Customer.cs should have 11 scalar properties for a customer, and a property
for related orders, as shown in the following code:
using System.Collections.Generic;

namespace Packt.Shared
{
 public class Customer
 {
 public string CustomerID { get; set; }

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[470]

 public string CompanyName { get; set; }
 public string ContactName { get; set; }
 public string ContactTitle { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string Region { get; set; }
 public string PostalCode { get; set; }
 public string Country { get; set; }
 public string Phone { get; set; }
 public string Fax { get; set; }

 // related entities
 public ICollection<Order> Orders { get; set; }
 }
}

13. Employee.cs should have 15 scalar properties for an employee, and a
property for related orders, as shown in the following code:
using System;
using System.Collections.Generic;

namespace Packt.Shared
{
 public class Employee
 {
 public int EmployeeID { get; set; }
 public string LastName { get; set; }
 public string FirstName { get; set; }
 public string Title { get; set; }
 public string TitleOfCourtesy { get; set; }
 public DateTime? BirthDate { get; set; }
 public DateTime? HireDate { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string Region { get; set; }
 public string PostalCode { get; set; }
 public string Country { get; set; }
 public string HomePhone { get; set; }
 public string Extension { get; set; }
 public string Notes { get; set; }

 // related entities
 public ICollection<Order> Orders { get; set; }
 }
}

14. Order.cs should have eight scalar properties for an order, and four
properties for related order details, the customer who made the order, the
employee who took the order, and the company that shipped the order, as
shown in the following code:

Practical Applications of C# and .NET | 14

[471]

using System;
using System.Collections.Generic;

namespace Packt.Shared
{
 public class Order
 {
 public int OrderID { get; set; }
 public string CustomerID { get; set; }
 public int EmployeeID { get; set; }
 public DateTime? OrderDate { get; set; }
 public DateTime? RequiredDate { get; set; }
 public DateTime? ShippedDate { get; set; }
 public int ShipVia { get; set; }
 public decimal? Freight { get; set; } = 0;

 // related entities
 public Customer Customer { get; set; }
 public Employee Employee { get; set; }
 public Shipper Shipper { get; set; }
 public ICollection<OrderDetail> OrderDetails { get; set; }
 }
}

15. OrderDetail.cs should have five scalar properties for an order detail, and
two properties for the related order and product, as shown in the following
code:
namespace Packt.Shared
{
 public class OrderDetail
 {
 public int OrderID { get; set; }
 public int ProductID { get; set; }
 public decimal UnitPrice { get; set; } = 0;
 public short Quantity { get; set; } = 1;
 public double Discount { get; set; } = 0;

 // related entities
 public Order Order { get; set; }
 public Product Product { get; set; }
 }
}

16. Product.cs should have 10 scalar properties for a product, and two properties
for the related category and supplier, as shown in the following code:
namespace Packt.Shared
{
 public class Product
 {
 public int ProductID { get; set; }
 public string ProductName { get; set; }
 public int? SupplierID { get; set; }

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[472]

 public int? CategoryID { get; set; }
 public string QuantityPerUnit { get; set; }
 public decimal? UnitPrice { get; set; } = 0;
 public short? UnitsInStock { get; set; } = 0;
 public short? UnitsOnOrder { get; set; } = 0;
 public short? ReorderLevel { get; set; } = 0;
 public bool Discontinued { get; set; } = false;

 // related entities
 public Category Category { get; set; }
 public Supplier Supplier { get; set; }
 }
}

17. Shipper.cs should have three scalar properties for a shipper, and a property
for the related orders, as shown in the following code:
using System.Collections.Generic;

namespace Packt.Shared
{
 public class Shipper
 {
 public int ShipperID { get; set; }
 public string ShipperName { get; set; }
 public string Phone { get; set; }

 // related entities
 public ICollection<Order> Orders { get; set; }
 }
}

18. Supplier.cs should have 12 scalar properties for a supplier, and a property
for the related products, as shown in the following code:
using System.Collections.Generic;

namespace Packt.Shared
{
 public class Supplier
 {
 public int SupplierID { get; set; }
 public string CompanyName { get; set; }
 public string ContactName { get; set; }
 public string ContactTitle { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string Region { get; set; }
 public string PostalCode { get; set; }
 public string Country { get; set; }
 public string Phone { get; set; }
 public string Fax { get; set; }
 public string HomePage { get; set; }

Practical Applications of C# and .NET | 14

[473]

 // related entities
 public ICollection<Product> Products { get; set; }
 }
}

Creating a class library for a Northwind
database context
You will now define a database context class library dependent on EF Core, which
therefore needs to target .NET Standard 2.1:

1. In the PracticalApps folder, create a folder named NorthwindContextLib.
2. Add the NorthwindContextLib folder to the workspace.
3. Navigate to View | Command Palette, enter and select OmniSharp: Select

Project, and select the NorthwindContextLib project.
4. Navigate to Terminal | New Terminal and select NorthwindContextLib.
5. In Terminal, enter the following command: dotnet new classlib
6. Modify NorthwindContextLib.csproj to target .NET Standard 2.1, and add

a reference to the NorthwindEntitiesLib project and the Entity Framework
Core package for SQLite, as shown in the following markup:
<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard2.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference Include=
 "..\NorthwindEntitiesLib\NorthwindEntitiesLib.csproj" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SQLite"
 Version="3.0.0" />
 </ItemGroup>

</Project>

7. In Terminal, restore packages and compile the class libraries to check for
errors by entering the following command: dotnet build

8. In the NorthwindContextLib project, rename the Class1.cs class file as
Northwind.cs.

9. Add statements to define properties to represent all the Northwind tables,
and define validation rules and relationships between entities, as shown in
the following code:
using Microsoft.EntityFrameworkCore;

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[474]

namespace Packt.Shared
{
 public class Northwind : DbContext
 {
 public DbSet<Category> Categories { get; set; }
 public DbSet<Customer> Customers { get; set; }
 public DbSet<Employee> Employees { get; set; }
 public DbSet<Order> Orders { get; set; }
 public DbSet<OrderDetail> OrderDetails { get; set; }
 public DbSet<Product> Products { get; set; }
 public DbSet<Shipper> Shippers { get; set; }
 public DbSet<Supplier> Suppliers { get; set; }

 public Northwind(DbContextOptions<Northwind> options)
 : base(options) { }

 protected override void OnModelCreating(
 ModelBuilder modelBuilder)
 {
 base.OnModelCreating(modelBuilder);

 modelBuilder.Entity<Category>()
 .Property(c => c.CategoryName)
 .IsRequired()
 .HasMaxLength(15);

 // define a one-to-many relationship
 modelBuilder.Entity<Category>()
 .HasMany(c => c.Products)
 .WithOne(p => p.Category);

 modelBuilder.Entity<Customer>()
 .Property(c => c.CustomerID)
 .IsRequired()
 .HasMaxLength(5);

 modelBuilder.Entity<Customer>()
 .Property(c => c.CompanyName)
 .IsRequired()
 .HasMaxLength(40);

 modelBuilder.Entity<Customer>()
 .Property(c => c.ContactName)
 .HasMaxLength(30);

 modelBuilder.Entity<Customer>()
 .Property(c => c.Country)
 .HasMaxLength(15);

 // define a one-to-many relationship
 modelBuilder.Entity<Customer>()
 .HasMany(c => c.Orders)
 .WithOne(o => o.Customer);

Practical Applications of C# and .NET | 14

[475]

 modelBuilder.Entity<Employee>()
 .Property(c => c.LastName)
 .IsRequired()
 .HasMaxLength(20);

 modelBuilder.Entity<Employee>()
 .Property(c => c.FirstName)
 .IsRequired()
 .HasMaxLength(10);

 modelBuilder.Entity<Employee>()
 .Property(c => c.Country)
 .HasMaxLength(15);

 // define a one-to-many relationship
 modelBuilder.Entity<Employee>()
 .HasMany(e => e.Orders)
 .WithOne(o => o.Employee);

 modelBuilder.Entity<Product>()
 .Property(c => c.ProductName)
 .IsRequired()
 .HasMaxLength(40);

 modelBuilder.Entity<Product>()
 .HasOne(p => p.Category)
 .WithMany(c => c.Products);

 modelBuilder.Entity<Product>()
 .HasOne(p => p.Supplier)
 .WithMany(s => s.Products);

 // define a one-to-many relationship
 // with a property key that does not
 // follow naming conventions
 modelBuilder.Entity<Order>()
 .HasOne(o => o.Shipper)
 .WithMany(s => s.Orders)
 .HasForeignKey(o => o.ShipVia);

 // the table name has a space in it
 modelBuilder.Entity<OrderDetail>()
 .ToTable("Order Details");

 // define multi-column primary key
 // for Order Details table
 modelBuilder.Entity<OrderDetail>()
 .HasKey(od => new { od.OrderID, od.ProductID });

 modelBuilder.Entity<Supplier>()
 .Property(c => c.CompanyName)
 .IsRequired()
 .HasMaxLength(40);

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[476]

 modelBuilder.Entity<Supplier>()
 .HasMany(s => s.Products)
 .WithOne(p => p.Supplier);
 }
 }
}

10. In Terminal, compile the class libraries to check for errors by entering the
following command: dotnet build

We will set the database connection string in any projects such as websites that need
to work with the Northwind database, so that it does not need to be done in the
Northwind class, but the class derived from DbContext must have a constructor with
a DbContextOptions parameter for this to work.

Summary
In this chapter, you have been introduced to some of the app models that you can
use to build practical applications using C# and .NET Core, and you have created
two class libraries to define an entity data model for working with the Northwind
database.

In the following chapters, you will learn the details about how to build the following:

• Simple websites with static HTML pages and dynamic Razor Pages.
• Complex websites with the Model-View-Controller (MVC) design pattern.
• Complex websites with content that can be managed by end users with

a Content Management System (CMS).
• Web services that can be called by any platform that can make an HTTP

request and clients of those services.
• Intelligent apps with machine learning.
• Windows desktop apps with Windows Forms, WPF, and UWP.
• Cross-platform mobile apps with Xamarin.Forms.

[477]

Chapter 15
Building Websites Using

ASP.NET Core Razor Pages
This chapter is about building websites with a modern HTTP architecture on the
server side using Microsoft ASP.NET Core. You will learn about building simple
websites using the ASP.NET Core Razor Pages feature introduced with .NET Core
2.0 and the Razor class library feature introduced with .NET Core 2.1.

This chapter will cover the following topics:

• Understanding web development
• Understanding ASP.NET Core
• Exploring Razor Pages
• Using Entity Framework Core with ASP.NET Core
• Using Razor class libraries

Understanding web development
Developing for the web is developing with Hypertext Transfer Protocol (HTTP).

Understanding HTTP
To communicate with a web server, the client, also known as the user agent, makes
calls over the network using HTTP. As such, HTTP is the technical underpinning of
the web. So, when we talk about web applications or web services, we mean that they
use HTTP to communicate between a client (often a web browser) and a server.

A client makes an HTTP request for a resource, such as a page, uniquely identified
by a Uniform Resource Locator (URL), and the server sends back an HTTP response,
as shown in the following diagram:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[478]

You can use Google Chrome and other browsers to record requests and responses.

Let's explore how to use Google Chrome to make HTTP requests.

1. Start Google Chrome.
2. To show developer tools in Chrome, do the following:

 ° On macOS, press Alt + Cmd + I
 ° On Windows, press F12 or Ctrl + Shift + I

3. Click on the Network tab, and Chrome should immediately start recording
the network traffic between your browser and any web servers, as shown in
the following screenshot:

Good Practice: Google Chrome is available on more operating
systems than any other browser, and it has powerful, built-in
developer tools, so it is a good first choice of browser for testing
your websites. Always test your web application with Chrome
and at least two other browsers, for example, Firefox and Safari
for macOS and iPhone. Microsoft Edge will switch from using
Microsoft's own rendering engine to using Chromium in 2019 so it is
less important to test with it. If Microsoft's Internet Explorer is used
at all, it tends to mostly be inside organizations for intranets.

Building Websites Using ASP.NET Core Razor Pages | 15

[479]

4. In Chrome's address box, enter the following URL: https://dotnet.
microsoft.com/learn/web

5. In the Developer tools window, in the list of recorded requests, scroll to the
top and click on the first entry, as shown in the following screenshot:

https://dotnet.microsoft.com/learn/web
https://dotnet.microsoft.com/learn/web

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[480]

6. On the right-hand side, click on the Headers tab, and you will see details
about the request and the response, as shown in the following screenshot:

Note the following aspects:

 ° Request Method is GET. Other methods that HTTP defines include
POST, PUT, DELETE, HEAD, and PATCH.

 ° Status Code is 200 OK. This means that the server found the resource
that the browser requested and has returned it in the body of the
response. Other status codes that you might see in response to a GET
request include 301 Moved Permanently, 400 Bad Request, 401
Unauthorized, and 404 Not Found.

 ° Request Headers sent by the browser to the web server include:

Building Websites Using ASP.NET Core Razor Pages | 15

[481]

• accept, which lists what formats the browser accepts. In this case,
the browser is saying it understands HTML, XHTML, XML, and
some image formats, but it will accept all other files */*. Default
weightings, also known as quality values, are 1.0. XML is specified
with a quality value of 0.9 so it is preferred less than HTML or
XHTML. All other file types are given a quality value of 0.8 so
are least preferred.

• accept-encoding, which lists what compression algorithms the
browser understands. In this case, GZIP, DEFLATE, and Brotli.

• accept-language, which lists the human languages it would prefer
the content to use. In this case, US English which has a default
quality value of 1.0, and then any dialect of English that has an
explicitly specified quality value of 0.9.

 ° A Google Analytics cookie, named _ga, is being sent to the server
so that the website can track me, along with lots of other cookies.

 ° The server has sent back the HTML web page response compressed
using the GZIP algorithm because it knows that the client can
decompress that format.

7. Close Chrome.

Client-side web development
When building websites, a developer needs to know more than just C# and .NET
Core. On the client (that is, in the web browser), you will use a combination of the
following technologies:

• HTML5: This is used for the content and structure of a web page.
• CSS3: This is used for the styles applied to elements on the web page.
• JavaScript: This is used to code any business logic needed on the web page,

for example, validating form input or making calls to a web service to fetch
more data needed by the web page.

Although HTML5, CSS3, and JavaScript are the fundamental components of
frontend web development, there are many additional technologies that can
make frontend web development more productive, including Bootstrap and CSS
preprocessors like SASS and LESS for styling, Microsoft's TypeScript language
for writing more robust code, and JavaScript libraries like jQuery, Angular, React,
and Vue. All these higher-level technologies ultimately translate or compile to the
underlying three core technologies, so they work across all modern browsers.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[482]

As part of the build and deploy process, you will likely use technologies like
Node.js; Node Package Manager (NPM) and Bower, which are both client-side
package managers; and Webpack, which is a popular module bundler, a tool for
compiling, transforming, and bundling website source files.

Understanding ASP.NET Core
Microsoft ASP.NET Core is part of a history of Microsoft technologies used to build
websites and web services that have evolved over the years:

• Active Server Pages (ASP) was released in 1996 and was Microsoft's first
attempt at a platform for dynamic server-side execution of website code.
ASP files contain a mix of HTML and code that executes on the server written
in the VBScript language.

• ASP.NET Web Forms was released in 2002 with the .NET Framework,
and is designed to enable non-web developers, such as those familiar with
Visual Basic, to quickly create websites by dragging and dropping visual
components and writing event-driven code in Visual Basic or C#. Web Forms
can only be hosted on Windows, but it is still used today in products such as
Microsoft SharePoint. It should be avoided for new web projects in favor of
ASP.NET Core.

• Windows Communication Foundation (WCF) was released in 2006 and
enables developers to build SOAP and REST services. SOAP is powerful but
complex, so it should be avoided unless you need advanced features, such as
distributed transactions and complex messaging topologies.

• ASP.NET MVC was released in 2009 and is designed to cleanly separate the
concerns of web developers between the models, which temporarily store
the data; the views that present the data using various formats in the UI; and
the controllers, which fetch the model and pass it to a view. This separation
enables improved reuse and unit testing.

• ASP.NET Web API was released in 2012 and enables developers to create
HTTP services, also known as REST services that are simpler and more
scalable than SOAP services.

More Information: This book is about C# and .NET Core, so
we will cover some of the basics of frontend web development,
but for more detail, try HTML5 and CSS3: Building Responsive
Websites at: https://www.packtpub.com/web-development/
html5-and-css3-building-responsive-websites.

https://www.packtpub.com/web-development/html5-and-css3-building-responsive-websites
https://www.packtpub.com/web-development/html5-and-css3-building-responsive-websites

Building Websites Using ASP.NET Core Razor Pages | 15

[483]

• ASP.NET SignalR was released in 2013 and enables real-time
communication in websites by abstracting underlying technologies and
techniques, such as WebSockets and Long Polling. This enables website
features like live chat or updates to time-sensitive data like stock prices
across a wide variety of web browsers even when they do not support
an underlying technology like Web Sockets.

• ASP.NET Core was released in 2016 and combines MVC, Web API, and
SignalR, running on .NET Core. Therefore, it can execute cross-platform.
ASP.NET Core has many project templates to get you started with its
supported technologies.

ASP.NET Core 2.0 to 2.2 can run on .NET Framework 4.6.1 or later (Windows only)
as well as .NET Core 2.0 or later (cross-platform). ASP.NET Core 3.0 only supports
.NET Core 3.0.

Classic ASP.NET versus modern ASP.NET
Core
Until now, ASP.NET has been built on top of a large assembly in the .NET
Framework named System.Web.dll and it is tightly coupled to Microsoft's
Windows-only web server named Internet Information Services (IIS). Over
the years, this assembly has accumulated a lot of features, many of which are
not suitable for modern cross-platform development.

ASP.NET Core is a major redesign of ASP.NET. It removes the dependency on
the System.Web.dll assembly and IIS and is composed of modular lightweight
packages, just like the rest of .NET Core.

You can develop and run ASP.NET Core applications cross-platform on Windows,
macOS, and Linux. Microsoft has even created a cross-platform, super-performant
web server named Kestrel, and the entire stack is open source.

Good Practice: Choose ASP.NET Core to develop websites and
web services because it includes web-related technologies that are
modern and cross-platform.

More Information: You can read more about Kestrel, including
its HTTP/2 support, at the following link: https://docs.
microsoft.com/en-us/aspnet/core/fundamentals/
servers/kestrel.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[484]

ASP.NET Core 2.2 or later projects default to the new in-process hosting model. This
gives a 400% performance improvement when hosting in Microsoft IIS, but Microsoft
still recommends using Kestrel for even better performance.

I recommend that you work through the chapters in the rest of the book sequentially
because later chapters will reference projects in earlier chapters, and you will build
up sufficient knowledge and skill to tackle the trickier problems in later chapters.

Creating an ASP.NET Core project
We will create an ASP.NET Core project that will show a list of suppliers from the
Northwind database.

The dotnet tool has many project templates that do a lot of work for you, but it can
be difficult to discern which work best in a given situation, so we will start with
the simplest web template and slowly add features step by step so that you can
understand all the pieces.

1. In your existing PracticalApps folder, create a subfolder named
NorthwindWeb, and add it to the PracticalApps workspace.

2. Navigate to Terminal | New Terminal and select NorthwindWeb.
3. In Terminal, enter the following command to create an ASP.NET Core

Empty website: dotnet new web
4. In Terminal, enter the following command to restore packages and compile

the website: dotnet build
5. Edit NorthwindWeb.csproj, and note the SDK is Microsoft.NET.Sdk.Web,

as shown in the following markup:
<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

</Project>

In ASP.NET Core 1.0, you would need to include lots of references. With
ASP.NET Core 2.0, you would need a package reference named Microsoft.
AspNetCore.All. With ASP.NET Core 3.0, simply using this Web SDK is
enough.

6. Open Program.cs, and note the following:
 ° A website is like a console application, with a Main method as its

entry point.

Building Websites Using ASP.NET Core Razor Pages | 15

[485]

 ° A website has a CreateHostBuilder method that specifies a Startup
class that is used to configure the website, which is then built and
run, as shown in the following code:

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(
 string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

7. Open Startup.cs, and note its two methods:
 ° The ConfigureServices method is currently empty. We will use

it later to add services like MVC.
 ° The Configure method currently does three things: first, it

configures that when developing, any unhandled exceptions will
be shown in the browser window for the developer to see its details;
second, it uses routing; and third, it uses endpoints to wait for
requests, and then for each HTTP GET request it asynchronously
responds by returning the plain text "Hello World!", as shown in
the following code:

public class Startup
{
 // This method gets called by the runtime.
 // Use this method to add services to the container.
 public void ConfigureServices(
 IServiceCollection services)
 {
 }

 // This method gets called by the runtime.
 // Use this method to configure the HTTP request pipeline.
 public void Configure(
 IApplicationBuilder app, IWebHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[486]

 app.UseDeveloperExceptionPage();
 }

 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 });
 }
}

8. Close the Startup.cs class file.

Testing and securing the website
We will now test the functionality of the ASP.NET Core Empty website project.
We will also enable encryption of all traffic between the browser and web server for
privacy by switching from HTTP to HTTPS. HTTPS is the secure encrypted version
of HTTP.

1. In Terminal, enter the dotnet run command, and note the web server has
started listening on ports 5000 and 5001, as shown in the following output:
info: Microsoft.Hosting.Lifetime[0]

 Now listening on: https://localhost:5001

info: Microsoft.Hosting.Lifetime[0]

 Now listening on: http://localhost:5000

info: Microsoft.Hosting.Lifetime[0]

 Application started. Press Ctrl+C to shut down.

info: Microsoft.Hosting.Lifetime[0]

 Hosting environment: Development

info: Microsoft.Hosting.Lifetime[0]

 Content root path: /Users/markjprice/Code/PracticalApps/
NorthwindWeb

2. Start Chrome.
3. Enter the address http://localhost:5000/, and note the response is Hello

World! in plain text, from the cross-platform Kestrel web server, as shown in
the following screenshot:

Building Websites Using ASP.NET Core Razor Pages | 15

[487]

4. Enter the address https://localhost:5001/, and note the response is a
privacy error, as shown in the following screenshot:

This is because we have not configured a certificate that the browser can
trust to encrypt and decrypt HTTP traffic (so if you do not see this error,
it is because you have already configured a certificate). In a production
environment you would want to pay a company like Verisign for one
because they provide liability protection and technical support.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[488]

During development, you can tell your OS to trust a temporary development
certificate provided by ASP.NET Core.

5. In Visual Studio Code, press Ctrl + C to stop the web server.
6. In Terminal, enter the dotnet dev-certs https --trust command,

and note the message, Trusting the HTTPS development certificate was
requested. You might be prompted to enter your password and a valid
HTTPS certificate may already be present.

7. If Chrome is still running, close and restart it to ensure it has read the new
certificate.

8. In Startup.cs, in the Configure method, add an else statement to enable
HSTS when not in development, as shown highlighted in the following code:
if (env.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
}
else
{
 app.UseHsts();
}

HTTP Strict Transport Security (HSTS) is an opt-in security enhancement.
If a website specifies it and a browser supports it, then it forces all
communication over HTTPS and prevents the visitor from using untrusted or
invalid certificates.

9. Add a statement after the call to app.UseRouting to redirect HTTP requests
to HTTPS, as shown in the following code:
app.UseHttpsRedirection();

10. In Terminal, enter the dotnet run command to start the web server.
11. In Chrome, request the address http://localhost:5000/, and note how

the server responds with a 307 Temporary Redirect to port 5001, and that the
certificate is now valid and trusted, as shown in the following screenshot:

More Information: If you do not mind reapplying for a new
certificate every 90 days then you can get a free certificate from
the following link: https://letsencrypt.org.

https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org

Building Websites Using ASP.NET Core Razor Pages | 15

[489]

12. Close Chrome.
13. In Visual Studio Code, press Ctrl + C to stop the web server.

Remember to stop the Kestrel web server whenever you have finished testing
a website.

Enabling static and default files
A website that only ever returns a single plain text message isn't very useful!

At a minimum, it ought to return static HTML pages, CSS that the web pages will
use for styling, and any other static resources such as images and videos.

You will now create a folder for your static website resources and a basic index page
that uses Bootstrap for styling.

1. In the NorthwindWeb folder, create a folder named wwwroot.

More Information: Web technologies like Bootstrap commonly
use a Content Delivery Network (CDN) to efficiently deliver
their source files globally. You can read more about CDNs at the
following link: https://en.wikipedia.org/wiki/Content_
delivery_network.

https://en.wikipedia.org/wiki/Content_delivery_network
https://en.wikipedia.org/wiki/Content_delivery_network

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[490]

2. Add a new file to the wwwroot folder named index.html.
3. Modify its content to link to CDN-hosted Bootstrap for styling, and use

modern good practices such as setting the viewport, as shown in the
following markup:

<!DOCTYPE html>
<html lang="en">
<head>
 <!-- Required meta tags -->
 <meta charset="utf-8" />
 <meta name="viewport" content=
 "width=device-width, initial-scale=1, shrink-to-fit=no" />

 <!-- Bootstrap CSS -->
 <link rel="stylesheet" href="https://stackpath.bootstrapcdn.
com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-gg
OyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">

 <title>Welcome ASP.NET Core!</title>
</head>
<body>
 <div class="container">
 <div class="jumbotron">
 <h1 class="display-3">Welcome to Northwind!</h1>
 <p class="lead">We supply products to our customers.</p>
 <hr />
 <p>Our customers include restaurants, hotels, and cruise
lines.</p>
 <p>
 <a class="btn btn-primary"
 href="https://www.asp.net/">Learn more
 </p>
 </div>
 </div>
</body>
</html>

If you were to start the website now, and enter http://localhost:5000/index.
html in the address box, the website would return a 404 Not Found error saying no
web page was found. To enable the website to return static files such as index.html,
we must explicitly configure that feature.

More Information: To get the latest <link> element for
Bootstrap, copy and paste it from the Getting Started
- Introduction page at the following link: https://
getbootstrap.com/.

https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/

Building Websites Using ASP.NET Core Razor Pages | 15

[491]

Even if we enable static files, if you were to start the website and enter http://
localhost:5000/ in the address box, the website would return a 404 Not Found
error because the web server doesn't know what to return by default if no named file
is requested.

You will now enable static files and explicitly configure default files.

1. In Startup.cs, in the Configure method, comment the statement that maps
a GET request to returning the Hello World! plain text response, and add
statements to enable static files and default files, as shown highlighted in the
following code:
public void Configure(
 IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseHsts();
 }

 app.UseRouting();

 app.UseHttpsRedirection();

 app.UseDefaultFiles(); // index.html, default.html, and so on
 app.UseStaticFiles();

 app.UseEndpoints(endpoints =>
 {
 // endpoints.MapGet("/", async context =>
 // {
 // await context.Response.WriteAsync("Hello World!");
 // });
 });
}

The call to UseDefaultFiles must be before the call to UseStaticFiles, or
it won't work!

2. Start the website by entering dotnet run in Terminal.
3. In Chrome, enter http://localhost:5000/, and note that you are

redirected to the HTTPS address on port 5001, and the index.html file is
now returned because it is one of the possible default files for this website.

http://localhost:5000/
http://localhost:5000/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[492]

If all web pages are static, that is, they only get changed manually by a web editor, then
our website programming work is complete. But almost all websites need dynamic
content, which means a web page that is generated at runtime by executing code.

The easiest way to do that is to use a feature of ASP.NET Core named Razor Pages.

Exploring Razor Pages
Razor Pages allow a developer to easily mix HTML markup with C# code
statements. That is why they use the .cshtml file extension.

By default, ASP.NET Core looks for Razor Pages in a folder named Pages.

Enabling Razor Pages
You will now change the static HTML page into a dynamic Razor Page, and then add
and enable the Razor Pages service.

1. In the NorthwindWeb project, create a folder named Pages.
2. Move the index.html file into the Pages folder.
3. Rename the file extension from .html to .cshtml.
4. In Startup.cs, in the ConfigureServices method, add statements to add

Razor Pages and its related services like model binding, authorization,
antiforgery, views, and tag helpers, as shown highlighted in the following
code:
public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages();
}

5. In Startup.cs, in the Configure method, in the configuration to use
endpoints, add a statement to use MapRazorPages, as shown highlighted in
the following code:

app.UseEndpoints(endpoints =>
{
// endpoints.MapGet("/", async context =>
// {
// await context.Response.WriteAsync("Hello World!");
// });
 endpoints.MapRazorPages();
});

Building Websites Using ASP.NET Core Razor Pages | 15

[493]

Defining a Razor Page
In the HTML markup of a web page, Razor syntax is indicated by the @ symbol.

Razor Pages can be described as follows:

• They require the @page directive at the top of the file.
• They can have an @functions section that defines any of the following:

 ° Properties for storing data values, like in a class definition. An
instance of that class is automatically instantiated named Model that
can have its properties set in special methods and you can get the
property values in the markup.

 ° Methods named OnGet, OnPost, OnDelete, and so on, that execute
when HTTP requests are made such as GET, POST, and DELETE.

Let's now convert the static HTML page into a Razor page.

1. In Visual Studio Code, open index.cshtml.

2. Add the @page statement to the top of the file.

3. After the @page statement, add an @functions statement block.

4. Define a property to store the name of the current day as a string value.

5. Define a method to set DayName that executes when an HTTP GET request is
made for the page, as shown in the following code:
@page

@functions

{

 public string DayName { get; set; }

 public void OnGet()

 {

 Model.DayName = DateTime.Now.ToString("dddd");

 }

}

6. Output the day name inside one of the paragraphs, as shown highlighted in
the following markup:
<p>It's @Model.DayName! Our customers include restaurants, hotels,
and cruise lines.</p>

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[494]

7. Start the website, visit it with Chrome, and note the current day name is
output on the page, as shown in the following screenshot:

Using shared layouts with Razor Pages
Most websites have more than one page. If every page had to contain all of the
boilerplate markup that is currently in index.cshtml, that would become a pain to
manage. So, ASP.NET Core has layouts.

To use layouts, we must create a Razor file to define the default layout for all
Razor Pages (and all MVC views) and store it in a Shared folder so that it can be easily
found by convention. The name of this file can be anything, but _Layout.cshtml is
good practice. We must also create a specially named file to set the default layout for
all Razor Pages (and all MVC views). This file must be named _ViewStart.cshtml.

1. In the Pages folder, create a file named _ViewStart.cshtml.
2. Modify its content, as shown in the following markup:

@{
 Layout = "_Layout";
}

3. In the Pages folder, create a folder named Shared.
4. In the Shared folder, create a file named _Layout.cshtml.
5. Modify the content of _Layout.cshtml (it is similar to index.cshtml so you

can copy and paste from there), as shown in the following markup:
<!DOCTYPE html>
<html lang="en">
<head>

Building Websites Using ASP.NET Core Razor Pages | 15

[495]

 <!-- Required meta tags -->
 <meta charset="utf-8" />
 <meta name="viewport" content=
"width=device-width, initial-scale=1, shrink-to-fit=no" />

 <!-- Bootstrap CSS -->
 <link rel="stylesheet" href="https://stackpath.bootstrapcdn.
com/bootstrap/4.3.1/css/bootstrap.min.css" integrity="sha384-gg
OyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">

 <title>@ViewData["Title"]</title>
</head>
<body>
 <div class="container">
 @RenderBody()
 <hr />
 <footer>
 <p>Copyright © 2019 - @ViewData["Title"]</p>
 </footer>
 </div>
 <!-- JavaScript to enable features like carousel -->
 <!-- jQuery first, then Popper.js, then Bootstrap JS -->
 <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRv
H+8abtTE1Pi6jizo" crossorigin="anonymous"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/
popper.js/1.14.7/umd/popper.min.js" integrity="sha384-UO2eT0
CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
crossorigin="anonymous"></script>
 <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/
js/bootstrap.min.js" integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoII
y6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM" crossorigin="anonymous"></
script>

 @RenderSection("Scripts", required: false)
</body>
</html>

While reviewing the preceding markup, note the following:

 ° <title> is set dynamically using server-side code from a dictionary
named ViewData. This is a simple way to pass data between different
parts of an ASP.NET Core website. In this case, the data will be set in
a Razor Page class file and then output in the shared layout.

 ° @RenderBody() marks the insertion point for the page being
requested.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[496]

 ° A horizontal rule and footer will appear at the bottom of each page.
 ° At the bottom of the layout are some scripts to implement some cool

features of Bootstrap that we will use later like a carousel of images.
 ° After the <script> elements for Bootstrap, we have defined a section

named Scripts so that a Razor Page can optionally inject additional
scripts that it needs.

6. Modify index.cshtml to remove all HTML markup except <div
class="jumbotron"> and its contents, and leave the C# code in the @
functions block that you added earlier.

7. Add a statement to the OnGet method to store a page title in the ViewData
dictionary, and modify the button to navigate to a suppliers page (which we
will create in the next section), as shown highlighted in the following markup:
@page
@functions
{
 public string DayName { get; set; }

 public void OnGet()
 {
 ViewData["Title"] = "Northwind Website";
 Model.DayName = DateTime.Now.ToString("dddd");
 }
}
<div class="jumbotron">
 <h1 class="display-3">Welcome to Northwind!</h1>
 <p class="lead">We supply products to our customers.</p>
 <hr />
 <p>It's @Model.DayName! Our customers include restaurants,
hotels, and cruise lines.</p>
 <p>
 Learn more about
our suppliers
 </p>
</div>

8. Start the website, visit it with Chrome, and note that it has similar behavior
as before, although clicking the button for suppliers will give a 404 Not
Found error because we have not created that page yet.

Using code-behind files with Razor Pages
Sometimes, it is better to separate the HTML markup from the data and executable
code, so Razor Pages allows code-behind class files.

Building Websites Using ASP.NET Core Razor Pages | 15

[497]

You will now create a page that shows a list of suppliers. In this example, we are
focusing on learning about code-behind files. In the next topic, we will load the list
of suppliers from a database, but for now, we will simulate that with a hard-coded
array of string values.

1. In the Pages folder, add two new files named suppliers.cshtml and
suppliers.cshtml.cs.

2. Add statements to suppliers.cshtml.cs, as shown in the following code:
using Microsoft.AspNetCore.Mvc.RazorPages;
using System.Collections.Generic;

namespace NorthwindWeb.Pages
{
 public class SuppliersModel : PageModel
 {
 public IEnumerable<string> Suppliers { get; set; }

 public void OnGet()
 {
 ViewData["Title"] = "Northwind Web Site - Suppliers";

 Suppliers = new[] {
 "Alpha Co", "Beta Limited", "Gamma Corp"
 };
 }
 }
}

While reviewing the preceding markup, note the following:

 ° SuppliersModel inherits from PageModel, so it has members
such as the ViewData dictionary for sharing data. You can click on
PageModel and press F12 to see that it has lots more useful features,
like the entire HttpContext of the current request.

 ° SuppliersModel defines a property for storing a collection of string
values named Suppliers.

 ° When a HTTP GET request is made for this Razor Page, the
Suppliers property is populated with some example supplier
names.

3. Modify the contents of suppliers.cshtml, as shown in the following
markup:
@page
@model NorthwindWeb.Pages.SuppliersModel
<div class="row">

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[498]

 <h1 class="display-2">Suppliers</h1>
 <table class="table">
 <thead class="thead-inverse">
 <tr><th>Company Name</th></tr>
 </thead>
 <tbody>
 @foreach(string name in Model.Suppliers)
 {
 <tr><td>@name</td></tr>
 }
 </tbody>
 </table>
</div>

While reviewing the preceding markup, note the following:

 ° The model type for this Razor Page is set to SuppliersModel.
 ° The page outputs an HTML table with Bootstrap styles.
 ° The data rows in the table are generated by looping through the

Suppliers property of Model.

4. Start the website, visit it using Chrome, click on the button to learn more
about suppliers, and note the table of suppliers, as shown in the following
screenshot:

Using Entity Framework Core with
ASP.NET Core
Entity Framework Core is a natural way to get real data into a website. In Chapter 14,
Practical Applications of C# and .NET, you created two class libraries: one for the entity
models and one for the Northwind database context.

Building Websites Using ASP.NET Core Razor Pages | 15

[499]

Configure Entity Framework Core as a service
Functionality like Entity Framework Core database contexts that are needed by
ASP.NET Core must be registered as a service during website startup.

1. In the NorthwindWeb project, modify NorthwindWeb.csproj to add a
reference to the NorthwindContextLib project, as shown highlighted in the
following markup:
<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference Include=
 "..\NorthwindContextLib\NorthwindContextLib.csproj" />
 </ItemGroup>

</Project>

2. Navigate to Terminal | New Terminal and select NorthwindWeb.
3. In Terminal, restore packages and compile the project by entering the

following command: dotnet build
4. Open Startup.cs and import the System.IO, Microsoft.

EntityFrameworkCore and Packt.Shared namespaces, as shown in the
following code:
using System.IO;
using Microsoft.EntityFrameworkCore;
using Packt.Shared;

5. Add a statement to the ConfigureServices method to register the
Northwind database context class to use SQLite as its database provider and
specify its database connection string, as shown in the following code:
string databasePath = Path.Combine("..", "Northwind.db");

services.AddDbContext<Northwind>(options =>
 options.UseSqlite($"Data Source={databasePath}"));

6. In the NorthwindWeb project, in the Pages folder, open suppliers.cshtml.
cs, and import the Packt.Shared and System.Linq namespaces, as shown
in the following code:
using System.Linq;
using Packt.Shared;

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[500]

7. In the SuppliersModel class, add a private field and a constructor to get the
Northwind database context, as shown in the following code:
private Northwind db;

public SuppliersModel(Northwind injectedContext)
{
 db = injectedContext;
}

8. In the OnGet method, modify the statements to get the names of suppliers by
selecting the company names from the Suppliers property of the database
context, as shown highlighted in the following code:
public void OnGet()
{
 ViewData["Title"] = "Northwind Web Site - Suppliers";

 Suppliers = db.Suppliers.Select(s => s.CompanyName);
}

9. In Terminal, enter the command dotnet run to start the website, in Chrome,
enter http://localhost:5000/, click the button to go to the Suppliers
page, and note that the supplier table now loads from the database, as shown
in the following screenshot:

Manipulating data using Razor pages
You will now add functionality to insert a new supplier.

Enabling a model to insert entities
First, you will modify the supplier model so that it responds to HTTP POST requests
when a visitor submits a form to insert a new supplier.

http://localhost:5000/

Building Websites Using ASP.NET Core Razor Pages | 15

[501]

1. In the NorthwindWeb project, in the Pages folder, open suppliers.cshtml.
cs and import the following namespace:
using Microsoft.AspNetCore.Mvc;

2. In the SuppliersModel class, add a property to store a supplier, and a
method named OnPost that adds the supplier if its model is valid, as shown
in the following code:
[BindProperty]

public Supplier Supplier { get; set; }

public IActionResult OnPost()

{

 if (ModelState.IsValid)

 {

 db.Suppliers.Add(Supplier);

 db.SaveChanges();

 return RedirectToPage("/suppliers");

 }

 return Page();

}

While reviewing the preceding code, note the following:

 ° We added a property named Supplier that is decorated with the
[BindProperty] attribute so that we can easily connect HTML
elements on the web page to properties in the Supplier class.

 ° We added a method that responds to HTTP POST requests. It checks
that all property values conform to validation rules and then adds
the supplier to the existing table and saves changed to the database
context. This will generate an SQL statement to perform the insert
into the database. Then it redirects to the Suppliers page so that the
visitor sees the newly added supplier.

Defining a form to insert new suppliers
Second, you will modify the Razor page to define a form that a visitor can fill in and
submit to insert a new supplier.

1. Open suppliers.cshtml, and add tag helpers after the @model declaration
so that we can use tag helpers like asp-for on this Razor page, as shown in
the following markup:
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[502]

2. At the bottom of the file, add a form to insert a new supplier, and use the
asp-for tag helper to connect the CompanyName property of the Supplier
class to the input box, as shown in the following markup:
<div class="row">
 <p>Enter a name for a new supplier:</p>
 <form method="POST">
 <div><input asp-for="Supplier.CompanyName" /></div>
 <input type="submit" />
 </form>
</div>

While reviewing the preceding markup, note the following:

 ° The <form> element with a POST method is normal HTML so an
<input type="submit" /> element inside it will make an HTTP
POST request back to the current page with values of any other
elements inside that form.

 ° An <input> element with a tag helper named asp-for enables data
binding to the model behind the Razor page.

3. Start the website, click Learn more about our suppliers, scroll down the table
of suppliers to the bottom of the form to add a new supplier, enter Bob's
Burgers, and click on Submit, as shown in the following screenshot:

4. Note that you are redirected back to the Suppliers list with the new supplier
added.

5. Close the browser.

Building Websites Using ASP.NET Core Razor Pages | 15

[503]

Using Razor class libraries
Everything related to a Razor page can be compiled into a class library for easier
reuse. With .NET Core 3.0 and later this can now include static files. A website can
either use the Razor page's view as defined in the class library or override it.

1. Create a subfolder in PracticalApps named NorthwindEmployees.
2. In Visual Studio Code, add the NorthwindEmployees folder to the

PracticalApps workspace.
3. Navigate to Terminal | New Terminal and select NorthwindEmployees.
4. In Terminal, enter the following command to create a Razor Class Library

project: dotnet new razorclasslib
5. Edit NorthwindEmployees.csproj, and add a reference to the

NorthwindContextLib project, as shown in the following markup:
<ItemGroup>
 <ProjectReference Include=
 "..\NorthwindContextLib\NorthwindContextLib.csproj" />
</ItemGroup>

6. In Terminal, enter the following command to restore packages and compile
the project: dotnet build

7. In Explorer, expand the Areas folder, and rename the MyFeature folder to
PacktFeatures.

8. In Explorer, expand the PacktFeatures folder, and in the Pages subfolder,
add a new file named _ViewStart.cshtml.

9. Modify its content, as shown in the following markup:
@{
 Layout = "_Layout";
}

10. In the Pages subfolder, rename Page1.cshtml to employees.cshtml, and
rename Page1.cshtml.cs to employees.cshtml.cs.

11. Modify employees.cshtml.cs, to define a page model with an array of
Employee entity instances loaded from the Northwind database, as shown in
the following code:
using Microsoft.AspNetCore.Mvc.RazorPages; // PageModel
using Packt.Shared; // Employee
using System.Linq; // ToArray()
using System.Collections.Generic; // IEnumerable<T>

namespace PacktFeatures.Pages

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[504]

{
 public class EmployeesPageModel : PageModel
 {
 private Northwind db;

 public EmployeesPageModel(Northwind injectedContext)
 {
 db = injectedContext;
 }

 public IEnumerable<Employee> Employees { get; set; }

 public void OnGet()
 {
 Employees = db.Employees.ToArray();
 }
 }
}

12. Modify employees.cshtml, as shown in the following markup:
@page
@using Packt.Shared
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@model PacktFeatures.Pages.EmployeesPageModel
<div class="row">
 <h1 class="display-2">Employees</h2>
</div>
<div class="row">
 @foreach(Employee in Model.Employees)
 {
 <div class="col-sm-3">
 <partial name="_Employee" model="employee" />
 </div>
 }
</div>

While reviewing the preceding markup, note the following:

 ° We import the Packt.Shared namespace so that we can use classes
in it like Employee.

 ° We add support for tag helpers so that we can use the <partial>
element.

 ° We declare the model type for this Razor page to use the class that
you just defined.

 ° We enumerate through the Employees in the model, outputting each
one using a partial view. Partial views are like small pieces of a Razor
page and you will create one in the next few steps.

Building Websites Using ASP.NET Core Razor Pages | 15

[505]

13. In the Pages folder, create a Shared folder.
14. In the Shared folder, create a file named _Employee.cshtml.
15. Modify _Employee.cshtml, as shown in the following markup:

@model Packt.Shared.Employee
<div class="card border-dark mb-3"
 style="max-width: 18rem;">
 <div class="card-header">@Model.FirstName
 @Model.LastName</div>
 <div class="card-body text-dark">
 <h5 class="card-title">@Model.Country</h5>
 <p class="card-text">@Model.Notes</p>
 </div>
</div>

While reviewing the preceding markup, note the following:

• By convention, the names of partial views start with an underscore.
• If you put a partial view in the Shared folder then it can be found

automatically.
• The model type for this partial view is an Employee entity.
• We use Bootstrap card styles to output information about each employee.

Using a Razor class library
You will now reference and use the Razor class library in the website project.

1. Modify the NorthwindWeb.csproj file to add a reference to the
NorthwindEmployees project, as shown highlighted in the following
markup:
<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference Include=

More Information: The <partial> tag helper was introduced in
ASP.NET Core 2.1. You can read more about it at the following
link: https://docs.microsoft.com/en-us/aspnet/core/
mvc/views/tag-helpers/built-in/partial-tag-helper.

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/built-in/partial-tag-helper
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/built-in/partial-tag-helper
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/built-in/partial-tag-helper

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[506]

 "..\NorthwindContextLib\NorthwindContextLib.csproj" />
 <ProjectReference Include=
 "..\NorthwindEmployees\NorthwindEmployees.csproj" />
 </ItemGroup>

</Project>

2. Modify Pages\index.cshtml to add a link to the employees page after the
link to the suppliers page, as shown in the following markup:
<p>
 <a class="btn btn-primary"
 href="packtfeatures/employees">
 Contact our employees

</p>

3. Start the website, visit the website using Chrome, and click the button to see
the cards of employees, as shown in the following screenshot:

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with deeper research.

Exercise 15.1 – Test your knowledge
Answer the following questions:

1. List six method names that can be specific in an HTTP request.
2. List six status codes and their descriptions that can be returned in an HTTP

response.

Building Websites Using ASP.NET Core Razor Pages | 15

[507]

3. In ASP.NET Core, what is the Startup class used for?
4. What does the acronym HSTS stand for and what does it do?
5. How do you enable static HTML pages for a website?
6. How do you mix C# code into the middle of HTML to create a dynamic

page?
7. How can you define shared layouts for Razor Pages?
8. How can you separate the markup from the code behind in a Razor Page?
9. How do you configure an Entity Framework Core data context for use with

an ASP.NET Core website?
10. How can you reuse Razor Pages with ASP.NET Core 2.2 or later?

Exercise 15.2 – Practice building a data-driven
web page
Add a Razor Page to the NorthwindWeb website that enables the user to see a list of
customers grouped by country. When the user clicks on a customer record, they then
see a page showing the full contact details of that customer, and a list of their orders.

Exercise 15.3 – Explore topics
Use the following links to read more details about this chapter's topics:

• ASP.NET Core fundamentals: https://docs.microsoft.com/en-us/
aspnet/core/fundamentals/

• Static files in ASP.NET Core: https://docs.microsoft.com/en-us/
aspnet/core/fundamentals/static-files

• Introduction to Razor Pages in ASP.NET Core: https://docs.microsoft.
com/en-us/aspnet/core/razor-pages/

• Razor syntax reference for ASP.NET Core: https://docs.microsoft.com/
en-us/aspnet/core/mvc/views/razor

• Layout in ASP.NET Core: https://docs.microsoft.com/en-us/aspnet/
core/mvc/views/layout

• Tag Helpers in ASP.NET Core: https://docs.microsoft.com/en-us/
aspnet/core/mvc/views/tag-helpers/intro

• ASP.NET Core Razor Pages with EF Core: https://docs.microsoft.com/
en-us/aspnet/core/data/ef-rp/

• ASP.NET Core Schedule and Roadmap: https://github.com/aspnet/
AspNetCore/wiki/Roadmap

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/static-files
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/static-files
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/static-files
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/layout
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/layout
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/intro
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/intro
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/intro
https://docs.microsoft.com/en-us/aspnet/core/data/ef-rp/
https://docs.microsoft.com/en-us/aspnet/core/data/ef-rp/
https://docs.microsoft.com/en-us/aspnet/core/data/ef-rp/
https://github.com/aspnet/AspNetCore/wiki/Roadmap
https://github.com/aspnet/AspNetCore/wiki/Roadmap
https://github.com/aspnet/AspNetCore/wiki/Roadmap
https://github.com/aspnet/AspNetCore/wiki/Roadmap

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[508]

Summary
In this chapter, you learned about the foundations of web development using HTTP,
how to build a simple website that returns static files, and you used ASP.NET Core
Razor Pages with Entity Framework Core to create web pages that were dynamically
generated from information in a database.

In the next chapter, you will learn how to build more complex websites using
ASP.NET Core MVC, which separates the technical concerns of building a website
into models, views, and controllers to make them easier to manage.

[509]

Chapter 16
Building Websites Using the

Model-View-Controller
Pattern

This chapter is about building websites with a modern HTTP architecture on the
server side using Microsoft ASP.NET Core MVC, including the startup configuration,
authentication, authorization, routes, models, views, and controllers that make up
ASP.NET Core MVC.

This chapter will cover the following topics:

• Setting up an ASP.NET Core MVC website
• Exploring an ASP.NET Core MVC website
• Customizing an ASP.NET Core MVC website
• Using other project templates

Setting up an ASP.NET Core MVC website
ASP.NET Core Razor Pages are great for simple websites. For more complex websites,
it would be better to have a more formal structure to manage that complexity.

This is where the Model-View-Controller (MVC) design pattern is useful. It uses
technologies similar to Razor Pages, but allows a cleaner separation between
technical concerns, as shown in the following list:

• Models: Classes that represent the data entities and view models used in the
website.

• Views: Razor files, that is, .cshtml files, that render data in view models into
HTML web pages. Blazor uses the .razor file extension, but do not confuse
them with Razor files!

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[510]

• Controllers: Classes that execute code when an HTTP request arrives at the
web server. The code usually creates a view model that may contain entity
models and passes it to a view to generate an HTTP response to send back
to the web browser or other client.

The best way to understand MVC is to see a working example.

Creating and exploring an ASP.NET Core MVC
website
You will use the mvc project template to create an ASP.NET Core MVC application
with a database for authenticating and authorizing users.

1. In the folder named PracticalApps, create a folder named NorthwindMvc.

2. In Visual Studio Code, open the PracticalApps workspace and then add
the NorthwindMvc folder to the workspace.

3. Navigate to Terminal | New Terminal and select NorthwindMvc.

4. In Terminal, create a new MVC website project with authentication stored
in a SQLite database, as shown in the following command:
dotnet new mvc --auth Individual

You can enter the following command to see other options for this template:
dotnet new mvc --help

5. In Terminal, enter the command dotnet run to start the website.

6. Start Chrome and open developer tools.

7. Navigate to http://localhost:5000/ and note the following, as shown
in the following screenshot:

 ° Requests for HTTP are automatically redirected to HTTPS.

 ° The navigation menu at the top with links to: Home, Privacy,
Register, and Login. If the viewport width is 575 pixels or less then
the navigation collapses into a hamburger menu.

 ° The temporary message about privacy and cookie use policy that can
be hidden by clicking Accept.

 ° The title of the website shown in the header and footer.

http://localhost:5000/

Building Websites Using the Model-View-Controller Pattern | 16

[511]

8. Click Register, enter an email and password, and click the Register button.
I use Pa$$w0rd in exploring scenarios like this.
By default, passwords must have at least one non-alphanumeric character,
they must have at least one digit ('0'-'9'), and they must have at least one
uppercase ('A'-'Z').
The MVC project template follows best practice for double-opt-in (DOI),
meaning that after filling in an email and password to register, an email is
sent to the email address, and the visitor must click a link in that email to
confirm that they want to register.
We have not yet configured an email provider to send that email, so we must
simulate that step.

9. Click the link with the text Click here to confirm your account and note that
you are redirected to a Confirm email web page that you can customize.

10. In the top navigation menu click Login, enter your email and password (note
that there is an optional check box to remember you, and there are links if the
visitor has forgotten their password or they want to register as a new visitor),
and then click the Log in button.

11. Click your email in the top navigation menu to navigate to an account
management page, and note that you can set a phone number, change your
email address, change your password, enable two-factor authentication (if
you add an authenticator app), and download and delete your personal data,
as shown in the following screenshot:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[512]

12. Close the browser.
13. In Terminal, press Ctrl + C to stop the console application and shut down

the Kestrel web server that is hosting your ASP.NET Core website.

Reviewing the ASP.NET Core MVC website
In Visual Studio Code, look at the EXPLORER pane, as shown in the following
screenshot:

More Information: Some of these built-in features of the basic
MVC project template make it easier for your website to be
compliant with modern privacy requirements like the European
Union's General Data Protection Regulation (GDPR) that
became active in May 2018. You can read more at the following
link: https://docs.microsoft.com/en-us/aspnet/core/
security/gdpr

More Information: You can read more about ASP.NET
Core's support for authenticator apps at the following link:
https://docs.microsoft.com/en-us/aspnet/core/
security/authentication/identity-enable-
qrcodes?view=aspnetcore-3.0

https://docs.microsoft.com/en-us/aspnet/core/security/gdpr
https://docs.microsoft.com/en-us/aspnet/core/security/gdpr
https://docs.microsoft.com/en-us/aspnet/core/security/gdpr
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity-enable-qrcodes?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity-enable-qrcodes?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity-enable-qrcodes?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity-enable-qrcodes?view=aspnetcore-3.0

Building Websites Using the Model-View-Controller Pattern | 16

[513]

We will look in more detail at some of these parts later, but for now, note the
following:

• Areas: This folder contains files needed for features like ASP.NET Core
Identity for authentication.

• bin, obj: These folders contain the compiled assemblies for the project.
• Controllers: This folder contains C# classes that have methods

(known as actions) that fetch a model and pass it to a view, for example,
HomeController.cs.

• Data: This folder contains Entity Framework Core migration classes
used by the ASP.NET Core Identity system to provide data storage for
authentication and authorization, for example, ApplicationDbContext.cs.

• Models: This folder contains C# classes that represent all of the data
gathered together by a controller and passed to a view, for example,
ErrorViewModel.cs.

• Properties: This folder contains a configuration file for IIS and launching
the website during development named launchSettings.json.

• Views: This folder contains the .cshtml Razor files that combine HTML and
C# code to dynamically generate HTML responses. The _ViewStart file sets
the default layout and the _ViewImports imports common namespaces used
in all views like tag helpers.

 ° Home: This subfolder contains Razor files for the home and privacy
pages.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[514]

 ° Shared: This subfolder contains Razor files for the shared layout, an
error page, and some partial views for logging in, accepting privacy
policy, and managing the consent cookie.

• wwwroot: This folder contains static content used in the website, such as CSS
for styling, images, JavaScript, and a favicon.ico file.

• app.db: This is the SQLite database that stores registered visitors.
• appsettings.json and appsettings.Development.json: These files

contain settings that your website can load at runtime, for example,
the database connection string for the ASP.NET Identity system and
logging levels.

• NorthwindMvc.csproj: This file contains project settings like use of the Web
.NET SDK, an entry to ensure that the app.db file is copied to the website's
output folder, and a list of NuGet packages that your project requires,
including:

 ° Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore

 ° Microsoft.AspNetCore.Identity.EntityFrameworkCore

 ° Microsoft.AspNetCore.Identity.UI

 ° Microsoft.EntityFrameworkCore.Sqlite

 ° Microsoft.EntityFrameworkCore.Tools

• Program.cs: This file defines a class that contains the Main entry point that
builds a pipeline for processing incoming HTTP requests and hosts the
website using default options like configuring the Kestrel web server and
loading appsettings. While building the host it calls the UseStartup<T>()
method to specify another class that performs additional configuration.

• Startup.cs: This file adds and configures services that your website needs,
for example, ASP.NET Identity for authentication, SQLite for data storage,
and so on, and routes for your application.

Reviewing the ASP.NET Core Identity database
If you installed an SQLite tool such as SQLiteStudio, then you can open the database
and see the tables that the ASP.NET Core Identity system uses to register users and
roles, including the AspNetUsers table used to store the registered visitor, as shown
in the following screenshot:

More Information: You can read more about default
configuration of web hosts at the following link: https://
docs.microsoft.com/en-us/aspnet/core/fundamentals/
host/web-host?view=aspnetcore-3.0

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/web-host?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/web-host?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/web-host?view=aspnetcore-3.0

Building Websites Using the Model-View-Controller Pattern | 16

[515]

Exploring an ASP.NET Core MVC website
Let's walk through the parts that make up a modern ASP.NET Core MVC website.

Understanding ASP.NET Core MVC startup
Appropriately enough, we will start by exploring the MVC website's default startup
configuration.

1. Open the Startup.cs file.
2. Note that the ConfigureServices method adds an application database

context using SQLite with its database connection string loaded from the
appsettings.json file for its data storage, adds ASP.NET Identity for
authentication and configures it to use the application database, and adds
support for MVC controllers with views as well as Razor Pages, as shown in
the following code:
public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlite(
 Configuration
 .GetConnectionString("DefaultConnection")));

Good Practice: The ASP.NET Core MVC project template follows
good practice by storing a hash of the password instead of the
password itself, as you learned how to do in Chapter 10, Protecting
Your Data and Applications.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[516]

 services.AddDefaultIdentity<IdentityUser>(options =>
 options.SignIn.RequireConfirmedAccount = true)
 .AddEntityFrameworkStores<ApplicationDbContext>();

 services.AddControllersWithViews();
 services.AddRazorPages();
}

Although we will not create any Razor Pages in this chapter, we need to
leave the method call that adds Razor Page support because our MVC
website uses ASP.NET Core Identity for authentication and authorization,
and it uses a Razor Class Library for its user interface components, like
visitor registration and log in.

3. The call to AddDbContext is an example of registering a dependency service.
ASP.NET Core implements the dependency injection (DI) design pattern
so that controllers can request needed services through their constructors.
Developers register those services in the ConfigureServices method.

4. Next, we have the Configure method, which configures a detailed exception
and database error page if the website runs in development, or a friendlier
error page and HSTS for production. HTTPS redirection, static files, routing,
and ASP.NET Identity are enabled, and an MVC default route and Razor
Pages are configured, as shown in the following code:

public void Configure(IApplicationBuilder app,
 IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 }
 else

More Information: You can learn more about the Identity
UI library that is distributed as a Razor class library and can
be overridden by a website at the following link: https://
docs.microsoft.com/en-us/aspnet/core/security/
authentication/scaffold-identity?tabs=netcore-cli

More Information: You can read more about dependency
injection at the following link: https://docs.microsoft.
com/en-us/aspnet/core/fundamentals/dependency-
injection?view=aspnetcore-3.0

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity?tabs=netcore-cli
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity?tabs=netcore-cli
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/scaffold-identity?tabs=netcore-cli
https://docs.microsoft.com/en-gb/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-3.0
https://docs.microsoft.com/en-gb/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-3.0
https://docs.microsoft.com/en-gb/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-3.0

Building Websites Using the Model-View-Controller Pattern | 16

[517]

 {
 app.UseExceptionHandler("/Home/Error");
 // The default HSTS value is 30 days.
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthentication();
 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");

 endpoints.MapRazorPages();
 });
}

We learned about most of these methods in Chapter 15, Building Websites Using
ASP.NET Core Razor Pages. The most important new method in the Configure
method is MapControllerRoute, which maps a default route for use by MVC.
This route is very flexible, because it will map to almost any incoming URL, as
you will see in the next section.

Understanding the default MVC route
The responsibility of a route is to discover the name of a controller class to instantiate
and an action method to execute to generate an HTTP response.

A default route is configured for MVC, as shown in the following code:

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

More Information: You can read more about configuring
middleware at the following link: https://docs.microsoft.
com/en-us/aspnet/core/fundamentals/middleware/
index?view=aspnetcore-3.0

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/index?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/index?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/index?view=aspnetcore-3.0

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[518]

The route template has parts in curly brackets {} called segments, and they are like
named parameters of a method. The value of these segments can be any string.

The route template looks at any URL path requested by the browser and matches
it to extract the name of a controller, the name of an action, and an optional id
value (the ? symbol makes it optional).

If the user hasn't entered these names, it uses defaults of Home for the controller and
Index for the action (the = assignment sets a default for a named segment).

The following table contains example URLs and how the default route would work
out the names of a controller and action:

URL Controller Action ID

/ Home Index

/Muppet Muppet Index

/Muppet/Kermit Muppet Kermit

/Muppet/Kermit/Green Muppet Kermit Green

/Products Products Index

/Products/Detail Products Detail

/Products/Detail/3 Products Detail 3

Segments in URLs are not case-sensitive.

Understanding controllers and actions
In ASP.NET Core MVC, the C stands for controller. From the route and an incoming
URL, ASP.NET Core MVC knows the name of the controller, so it will then look
for a class that is decorated with the [Controller] attribute or derives from a
class decorated with that attribute, for example, ControllerBase, as shown in the
following code:

namespace Microsoft.AspNetCore.Mvc
{
 //
 // Summary:
 // A base class for an MVC controller without view support.
 [Controller]
 public abstract class ControllerBase

To simplify the requirements, Microsoft supplies a class named Controller that
your classes can inherit from if they also need view support.

Building Websites Using the Model-View-Controller Pattern | 16

[519]

The responsibilities of a controller are as follows:

• Identify the services that the controller needs in order to be in a valid state
and to function properly in their class constructor(s).

• Use the action name to identify a method to execute.
• Extract parameters from the HTTP request.
• Use the parameters to fetch any additional data needed to construct a view

model and pass it to the appropriate view for the client. For example, if the
client is a web browser, then a view that renders HTML would be most
appropriate. Other clients might prefer alternative renderings like document
formats such as a PDF file or an Excel file, or data formats like JSON or XML.

• Return the results from the view to the client as an HTTP response with an
appropriate status code.

Let's review the controller used to generate the home, privacy, and error pages.

1. Expand the Controllers folder.
2. Open the file named HomeController.cs.
3. Note, as shown in the following code, that:

 ° A private field is declared to store a reference to a logger for the
HomeController that is set in a constructor.

 ° All three action methods call a method named View() and return the
results as an IActionResult interface to the client.

 ° The Error action method passes a view model into its view with a
request ID used for tracing. The error response will not be cached.

public class HomeController : Controller
{
 private readonly ILogger<HomeController> _logger;

 public HomeController(ILogger<HomeController> logger)
 {
 _logger = logger;
 }

 public IActionResult Index()
 {
 return View();
 }

 public IActionResult Privacy()
 {

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[520]

 return View();
 }

 [ResponseCache(Duration = 0,
 Location = ResponseCacheLocation.None, NoStore = true)]
 public IActionResult Error()
 {
 return View(new ErrorViewModel { RequestId =
 Activity.Current?.Id ?? HttpContext.TraceIdentifier });
 }
}

If the visitor enters / or /Home, then it is the equivalent of /Home/Index because
those were the defaults.

Controllers are where the business logic of your website runs, so it is important to
test the correctness of that logic using unit tests as you learned in Chapter 4, Writing,
Debugging, and Testing Functions.

Understanding filters
When you need to add some functionality to multiple controllers and actions then
you can use or define your own filters that are implemented as an attribute class.

Filters can be applied at the following levels:

• Action-level by decorating the method with the attribute. This will only affect
the one method.

• Controller-level by decorating the class with the attribute. This will affect all
methods of this controller.

• Global-level by adding an instance of the attribute to the Filters collection
of the IServiceCollection in the ConfigureServices method of the
Startup class. This will affect all methods of all controllers in the project.

More Information: You can read more about how to unit
test controllers at the following link: https://docs.
microsoft.com/en-us/aspnet/core/mvc/controllers/
testing?view=aspnetcore-3.0

More Information: You can read more about filters
at the following link: https://docs.microsoft.
com/en-us/aspnet/core/mvc/controllers/
filters?view=aspnetcore-3.0

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/testing?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/testing?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/testing?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters?view=aspnetcore-3.0

Building Websites Using the Model-View-Controller Pattern | 16

[521]

Using a filter to secure an action method
For example, you might want to ensure that one particular method of a controller
can only be called by members of certain security roles. You do this by decorating
the method with the [Authorize] attribute, as shown in the following code:

[Authorize(Roles = "Sales,Marketing")]
public IActionResult SalesAndMarketingEmployeesOnly()
{
 return View();
}

Using a filter to cache a response
You might want to cache the HTTP response that is generated by an action method
by decorating the method with the [ResponseCache] attribute, as shown in the
following code:

[ResponseCache(Duration = 3600, // in seconds = 1 hour
 Location = ResponseCacheLocation.Any)]
public IActionResult AboutUs()
{
 return View();
}

You control where the response is cached and for how long by setting parameters as
shown in the following list:

• Duration: In seconds. This sets the max-age HTTP response header.
• Location: One of the ResponseCacheLocation values, Any, Client, or None.

This sets the cache-control HTTP response header.
• NoStore: If true, this ignores Duration and Location and sets the

cache-control HTTP response header to no-store.

More Information: You can read more about authorization at
the following link: https://docs.microsoft.com/en-us/
aspnet/core/security/authorization/introduction?vi
ew=aspnetcore-3.0

More Information: You can read more about response
caching at the following link: https://docs.microsoft.
com/en-us/aspnet/core/performance/caching/
response?view=aspnetcore-3.0

https://docs.microsoft.com/en-us/aspnet/core/security/authorization/introduction?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/introduction?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/introduction?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/response?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/response?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/response?view=aspnetcore-3.0

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[522]

Using a filter to define a custom route
You might want to define a simplified route for an action method instead of using
the default route.

For example, to show the privacy page currently requires the following URL path
which specifies both the controller and action:

https://localhost:5001/home/privacy

We could decorate the action method to make the route simpler, as shown in the
following code:

[Route("private")]

public IActionResult Privacy()

{

 return View();

}

Now, we can use the following URL path, which specifies the custom route:

https://localhost:5001/private

Understanding entity and view models
In ASP.NET Core MVC, the M stands for model. Models represent the data required
to respond to a request. Entity models represent entities in a data store like SQLite.
Based on the request, one or more entities might need to be retrieved from data
storage. All of the data that we want to show in response to a request is the MVC
model, sometimes called a view model, because it is a model that is passed into
a view for rendering into a response format like HTML or JSON.

For example, the following HTTP GET request might mean that the browser
is asking for the product details page for product number 3:

http://www.example.com/products/details/3

The controller would need to use the ID value 3 to retrieve the entity for that
product and pass it to a view that can then turn the model into HTML for display
in the browser.

Imagine that when a user comes to our website, we want to show them a carousel
of categories, a list of products, and a count of the number of visitors we have had
this month.

http://www.example.com/products/details/3
http://www.example.com/products/details/3

Building Websites Using the Model-View-Controller Pattern | 16

[523]

We will reference the Entity Framework Core entity data model for the Northwind
database that you created in Chapter 15, Building Websites Using ASP.NET Core
Razor Pages.

1. In the NorthwindMvc project, open NorthwindMvc.csproj.
2. Add a project reference to NorthwindContextLib, as shown in the following

markup:
<ItemGroup>
 <ProjectReference Include=
 "..\NorthwindContextLib\NorthwindContextLib.csproj" />
</ItemGroup>

3. In Terminal, enter the following command to rebuild the project:
dotnet build

4. Modify Startup.cs, to import the System.IO and Packt.Shared
namespaces and add a statement to the ConfigureServices method to
configure the Northwind database context, as shown in the following code:
string databasePath = Path.Combine("..", "Northwind.db");

services.AddDbContext<Northwind>(options =>
 options.UseSqlite($"Data Source={databasePath}"));

5. Add a class file to the Models folder and name it HomeIndexViewModel.cs.

6. Modify the class definition to have three properties for a count of the number
of visitors, and lists of categories and products, as shown in the following code:
using System.Collections.Generic;
using Packt.Shared;

namespace NorthwindMvc.Models
{
 public class HomeIndexViewModel
 {
 public int VisitorCount;
 public IList<Category> Categories { get; set; }
 public IList<Product> Products { get; set; }
 }
}

Good Practice: Although the ErrorViewModel class
created by the MVC project template does not follow this
convention, I recommend that you use the naming convention
{Controller}{Action}ViewModel for your view model
classes.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[524]

7. Open the HomeController class.
8. Import the Packt.Shared namespace.
9. Add a field to store a reference to a Northwind instance, and initialize it in

the constructor, as shown highlighted in the following code:
public class HomeController : Controller
{
 private readonly ILogger<HomeController> _logger;

 private Northwind db;

 public HomeController(ILogger<HomeController> logger,
 Northwind injectedContext)
 {
 _logger = logger;
 db = injectedContext;
 }

ASP.NET Core will use constructor parameter injection to pass an instance of
the Northwind database context using the database path you specified in the
Startup class.

10. Modify the contents of the Index action method to create an instance of the
view model for this method, simulating a visitor count using the Random class
to generate a number between 1 and 1001, and using the Northwind database
to get lists of categories and products, as shown in the following code:

var model = new HomeIndexViewModel
{
 VisitorCount = (new Random()).Next(1, 1001),
 Categories = db.Categories.ToList(),
 Products = db.Products.ToList()
};

return View(model); // pass model to view

When the View() method is called in a controller's action method, ASP.NET Core
MVC looks in the Views folder for a subfolder with the same name as the current
controller, that is, Home. It then looks for a file with the same name as the current
action, that is, Index.cshtml.

Understanding views
In ASP.NET Core MVC, the V stands for view. The responsibility of a view is to
transform a model into HTML or other formats.

Building Websites Using the Model-View-Controller Pattern | 16

[525]

There are multiple view engines that could be used to do this. The default view
engine is called Razor, and it uses the @ symbol to indicate server-side code
execution.

The Razor Pages feature introduced with ASP.NET Core 2.0 uses the same view
engine and so can use the same Razor syntax.

Let's modify the home page view to render the lists of categories and products.

1. Expand the Views folder, and then expand the Home folder.
2. Open the Index.cshtml file and note the block of C# code wrapped in

@{ }. This will execute first and can be used to store data that needs to be
passed into a shared layout file like the title of the web page, as shown in the
following code:
@{
 ViewData["Title"] = "Home Page";
}

3. Note the static HTML content in the <div> element that uses Bootstrap for
styling.

Just as with Razor Pages, there is a file named _ViewStart.cshtml that gets
executed by the View() method. It is used to set defaults that apply to all views.

For example, it sets the Layout property of all views to a shared layout file,
as shown in the following markup:

@{
 Layout = "_Layout";
}

4. In the Shared folder, open the _Layout.cshtml file.
5. Note that the title is being read from the ViewData dictionary that was set

earlier in the Index.cshtml view.
6. Note the rendering of links to support Bootstrap and a site stylesheet, where

~ means the wwwroot folder, as shown in the following markup:
<link rel="stylesheet"
 href="~/lib/bootstrap/dist/css/bootstrap.css" />
<link rel="stylesheet" href="~/css/site.css" />

Good Practice: As well as defining your own styles, base your styles
on a common library, such as Bootstrap, that implements responsive
design.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[526]

7. Note the rendering of a navigation bar in the header, as shown in the
following markup:
<body>
 <header>
 <nav class="navbar ...">

8. Note the rendering of a collapsible <div> containing a partial view for
logging in and hyperlinks to allow users to navigate between pages, as
shown in the following markup:
<div class=
 "navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">
 <partial name="_LoginPartial" />
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area=""
 asp-controller="Home" asp-action="Index">Home

 <li class="nav-item">
 <a class="nav-link text-dark"
 asp-area=""
 asp-controller="Home"
 asp-action="Privacy">Privacy

</div>

The <a> elements use tag helper attributes named asp-controller and
asp-action to specify the controller name and action name that will execute
when the link is clicked on. If you want to navigate to a feature in a Razor
Class Library, then you use asp-area to specify the feature name.

9. Note the rendering of the body inside the <main> element, as shown in the
following markup:
<div class="container">
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
</div>

The @RenderBody() method call injects the contents of a specific Razor view
for a page like the Index.cshtml file at that point in the shared layout.

More Information: You can read about why it is good to put
<script> elements at the bottom of the <body> at the following
link: https://stackoverflow.com/questions/436411/
where-should-i-put-script-tags-in-html-markup

https://stackoverflow.com/questions/436411/where-should-i-put-script-tags-in-html-markup
https://stackoverflow.com/questions/436411/where-should-i-put-script-tags-in-html-markup
https://stackoverflow.com/questions/436411/where-should-i-put-script-tags-in-html-markup

Building Websites Using the Model-View-Controller Pattern | 16

[527]

10. Note the rendering of <script> elements at the bottom of the page so that
it doesn't slow down the display of the page and that you can add your own
script blocks into an optional defined section named scripts, as shown in
the following markup:
<script src="~/lib/jquery/dist/jquery.js"></script>

<script src="~/lib/bootstrap/dist/js/bootstrap.bundle.js">

</script>

<script src="~/js/site.js" asp-append-version="true"></script>

@RenderSection("scripts", required: false)

When asp-append-version is specified with a true value in any element along with
a src attribute, the Image Tag Helper is invoked (it does not only affect images!)

It works by automatically appending a query string value named v that is generated
from a hash of the referenced source file, as shown in the following example
generated output:

<script src="~/js/site.js?

v=Kl_dqr9NVtnMdsM2MUg4qthUnWZm5T1fCEimBPWDNgM"></script>

If even a single byte within the site.js file changes then its hash value will be
different, and therefore if a browser or CDN is caching the script file then it will
bust the cached copy and replace it with the new version.

Customizing an ASP.NET Core MVC
website
Now that you've reviewed the structure of a basic MVC website, you will customize
it. You have already added code to retrieve entities from the Northwind database,
so the next task is to output that information in the home page.

More Information: You can read how cache busting using query
strings works at the following link: https://stackoverflow.
com/questions/9692665/cache-busting-via-params

More Information: To find suitable images for the eight
categories, I searched on a site that has free stock photos for
commercial use with no attribution required, at the following
link: https://www.pexels.com

https://stackoverflow.com/questions/9692665/cache-busting-via-params
https://stackoverflow.com/questions/9692665/cache-busting-via-params
https://www.pexels.com/
https://www.pexels.com/
https://www.pexels.com/
https://www.pexels.com/
https://www.pexels.com/
https://www.pexels.com

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[528]

Defining a custom style
The home page will show a list of the 77 products in the Northwind database. To
make efficient use of space we want to show the list in three columns. To do this we
need to customize the stylesheet for the website.

1. In the wwwroot\css folder, open the site.css file.
2. At the bottom of the file, add a new style that will apply to an element with

the newspaper ID, as shown in the following code:
#newspaper
{
 column-count: 3;
}

Setting up the category images
The Northwind database includes a table of categories, but they do not have images,
and websites look better with some colorful pictures.

1. In the wwwroot folder, create a folder named images.
2. In the images folder, add eight image files named category1.jpeg,

category2.jpeg, and so on, up to category8.jpeg.

Understanding Razor syntax
Before we customize the home page view, let's review an example Razor file that
has an initial Razor code block that instantiates an order with price and quantity
and then outputs information about the order in the web page, as shown in the
following markup:

@{
 var order = new Order
 {
 OrderID = 123,
 Product = "Sushi",
 Price = 8.49M,
 Quantity = 3
 };
}
<div>Your order for @order.Quantity of @order.Product has a total cost
of $@order.Price * @order.Quantity</div>

More Information: You can download images from the GitHub
repository for this book at the following link: https://github.
com/markjprice/cs8dotnetcore3/tree/master/Assets

https://github.com/markjprice/cs7dotnetcore2/tree/master/Assets
https://github.com/markjprice/cs7dotnetcore2/tree/master/Assets
https://github.com/markjprice/cs7dotnetcore2/tree/master/Assets
https://github.com/markjprice/cs8dotnetcore3/tree/master/Assets
https://github.com/markjprice/cs7dotnetcore2/tree/master/Assets
https://github.com/markjprice/cs8dotnetcore3/tree/master/Assets
https://github.com/markjprice/cs8dotnetcore3/tree/master/Assets

Building Websites Using the Model-View-Controller Pattern | 16

[529]

The preceding Razor file would result in the following incorrect output:

Your order for 3 of Sushi has a total cost of $8.49 * 3

Although Razor markup can include the value of any single property using the
@object.property syntax, you should wrap expressions in parentheses, as shown
in the following markup:

<div>Your order for @order.Quantity of @order.Product has a total cost
of $@(order.Price * @order.Quantity)</div>

The preceding Razor expression results in the following correct output:

Your order for 3 of Sushi has a total cost of $25.47

Defining a typed view
To improve the IntelliSense when writing a view, you can define what type the view
can expect using a @model directive at the top.

1. In the Views\Home folder, open Index.cshtml.
2. At the top of the file, add a statement to set the model type to use the

HomeIndexViewModel, as shown in the following code:
@model NorthwindMvc.Models.HomeIndexViewModel

Now, whenever we type Model in this view, the Visual Studio Code
C# extension will know the correct type for the model and will provide
IntelliSense for it.

While entering code in a view, remember the following:

 ° To declare the type for the model, use @model (with lowercase m).
 ° To interact with the model instance, use @Model (with uppercase M).

Let's continue customizing the view for the home page.

3. In the initial Razor code block, add a statement to declare a string variable
for the current item and replace the existing <div> element with the new
markup to output categories in a carousel and products as an unordered list,
as shown in the following markup:
@model NorthwindMvc.Models.HomeIndexViewModel
@{
 ViewData["Title"] = "Home Page";
 string currentItem = "";
}
<div id="categories" class="carousel slide" data-ride="carousel"

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[530]

 data-interval="3000" data-keyboard="true">
 <ol class="carousel-indicators">
 @for (int c = 0; c < Model.Categories.Count; c++)
 {
 if (c == 0)
 {
 currentItem = "active";
 }
 else
 {
 currentItem = "";
 }
 <li data-target="#categories" data-slide-to="@c"
 class="@currentItem">
 }

 <div class="carousel-inner">
 @for (int c = 0; c < Model.Categories.Count; c++)
 {
 if (c == 0)
 {
 currentItem = "active";
 }
 else
 {
 currentItem = "";
 }
 <div class="carousel-item @currentItem">
 <img class="d-block w-100" src=
"~/images/category@(Model.Categories[c].CategoryID).jpeg"
 alt="@Model.Categories[c].CategoryName" />
 <div class="carousel-caption d-none d-md-block">
 <h2>@Model.Categories[c].CategoryName</h2>
 <h3>@Model.Categories[c].Description</h3>
 <p>
 <a class="btn btn-primary"
href="/category/@Model.Categories[c].CategoryID">View
 </p>
 </div>
 </div>
 }
 </div>
 <a class="carousel-control-prev" href="#categories"
 role="button" data-slide="prev">
 <span class="carousel-control-prev-icon"
 aria-hidden="true">
 Previous

 <a class="carousel-control-next" href="#categories"
 role="button" data-slide="next">
 <span class="carousel-control-next-icon"
 aria-hidden="true">

Building Websites Using the Model-View-Controller Pattern | 16

[531]

 Next

</div>
<div class="row">
 <div class="col-md-12">
 <h1>Northwind</h1>
 <p class="lead">
 We have had @Model.VisitorCount visitors this month.
 </p>
 <h2>Products</h2>
 <div id="newspaper">

 @foreach (var item in @Model.Products)
 {

 <a asp-controller="Home"
 asp-action="ProductDetail"
 asp-route-id="@item.ProductID">
 @item.ProductName costs
 @item.UnitPrice.Value.ToString("C")

 }

 </div>
 </div>
</div>

While reviewing the preceding Razor markup, note the following:

• It is easy to mix static HTML elements such as and with C# code
to output the carousel of categories and the list of product names.

• The <div> element with the id attribute of newspaper will use the custom
style that we defined earlier, so all of the content in that element will display
in three columns.

• The element for each category uses parentheses around a Razor
expression to ensure that the compiler does not include the .jpeg as part of
the expression, as shown in the following markup:
"~/images/category@(Model.Categories[c].CategoryID).jpeg"

• The <a> elements for the product links use tag helpers to generate URL
paths. Clicks on these hyperlinks will be handled by the Home controller and
its ProductDetail action method. This action method does not exist yet, but
you will add it later in this chapter. The ID of the product is passed as a route
segment named id, as shown in the following URL path for Ipoh Coffee:

https://localhost:5001/Home/ProductDetail/43

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[532]

Testing the customized home page
Let's see the result of our customized home page.

1. Start the website by entering the following command: dotnet run
2. Start Chrome and navigate to http://localhost:5000
3. Note the home page has a rotating carousel showing categories, a random

number of visitors, and a list of products in three columns, as shown in the
following screenshot:

At the moment, clicking on any of the categories or product links gives
404 Not Found errors, so let's see how we can pass parameters so that we
can see the details of a product or category.

4. Close Chrome.
5. Stop the website by pressing Ctrl + C in Terminal.

http://localhost:5000
http://localhost:5000
http://localhost:5000

Building Websites Using the Model-View-Controller Pattern | 16

[533]

Passing parameters using a route value
One way to pass a simple parameter is to use the id segment defined in the default
route.

1. In the HomeController class, add an action method named ProductDetail,
as shown in the following code:
public IActionResult ProductDetail(int? id)
{
 if (!id.HasValue)
 {
 return NotFound("You must pass a product ID in the route, for
example, /Home/ProductDetail/21");
 }

 var model = db.Products
 .SingleOrDefault(p => p.ProductID == id);

 if (model == null)
 {
 return NotFound($"Product with ID of {id} not found.");
 }

 return View(model); // pass model to view and then return result
}

Note the following:
 ° This method uses a feature of ASP.NET Core called model binding

to automatically match the id passed in the route to the parameter
named id in the method.

 ° Inside the method, we check to see whether id is null, and if so, we
call the NotFound method to return a 404 status code with a custom
message explaining the correct URL path format.

 ° Otherwise, we can connect to the database and try to retrieve a
product using the id variable.

 ° If we find a product, we pass it to a view; otherwise, we call the
NotFound method to return a 404 status code and a custom message
explaining that a product with that ID was not found in the database.

If the view is named to match the action method and is placed in a folder that
matches the controller name then ASP.NET Core MVC's conventions will
find it automatically.

2. Inside the Views/Home folder, add a new file named ProductDetail.cshtml.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[534]

3. Modify the contents, as shown in the following markup:
@model Packt.Shared.Product
@{
 ViewData["Title"] = "Product Detail - " + Model.ProductName;
}
<h2>Product Detail</h2>
<hr />
<div>
 <dl class="dl-horizontal">
 <dt>Product ID</dt>
 <dd>@Model.ProductID</dd>
 <dt>Product Name</dt>
 <dd>@Model.ProductName</dd>
 <dt>Category ID</dt>
 <dd>@Model.CategoryID</dd>
 <dt>Unit Price</dt>
 <dd>@Model.UnitPrice.Value.ToString("C")</dd>
 <dt>Units In Stock</dt>
 <dd>@Model.UnitsInStock</dd>
 </dl>
</div>

4. Start the website by entering the following command: dotnet run.
5. Start Chrome and navigate to http://localhost:5000.
6. When the home page appears with the list of products, click on one of them,

for example, the second product, Chang.
7. Note the URL path in the browser's address bar, the page title shown in

the browser tab, and the product details page, as shown in the following
screenshot:

Building Websites Using the Model-View-Controller Pattern | 16

[535]

8. Toggle on the developer tools pane.
9. Edit the URL in the address box of Chrome to request a product ID that does

not exist, like 99, and note the 404 Not Found status code and custom error
response, as shown in the following screenshot:

Understanding model binders
Model binders are very powerful, and the default one does a lot for you. After the
default route identifies a controller class to instantiate and an action method to call, if
that method has parameters then those parameters need to have values set.

Model binders do this by looking for parameter values passed in the HTTP request
as any of the following types of parameters:

• Route parameter, like id as we did in the previous section, as shown in the
following URL path: /Home/ProductDetail/2

• Query string parameter, as shown in the following URL path:
/Home/ProductDetail?id=2

• Form parameter, as shown in the following markup:

<form action="post" action="/Home/ProductDetail">
 <input type="text" name="id" />
 <input type="submit" />
</form>

Model binders can populate almost any type:

• Simple types like int, string, DateTime, and bool.
• Complex types defined by class or struct.
• Collections types like arrays and lists.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[536]

Let's create a somewhat artificial example to illustrate what can be achieved using
the default model binder.

1. In the Models folder, add a new file named Thing.cs.
2. Modify the contents to define a class with two properties for a nullable

number named ID and a string named color, as shown in the following
code:
namespace NorthwindMvc.Models
{
 public class Thing
 {
 public int? ID { get; set; }

 public string Color { get; set; }
 }
}

3. Open HomeController.cs and add two new action methods, one to show
a page with a form and one to display it with a parameter using your new
model type, as shown in the following code:
public IActionResult ModelBinding()
{
 return View(); // the page with a form to submit
}

public IActionResult ModelBinding(Thing thing)
{
 return View(thing); // show the model bound thing
}

4. In the Views\Home folder, add a new file named ModelBinding.cshtml.
5. Modify its contents, as shown in the following markup:

@model NorthwindMvc.Models.Thing
@{
 ViewData["Title"] = "Model Binding Demo";
}
<h1>@ViewData["Title"]</h1>
<div>
 Enter values for your thing in the following form:
</div>
<form method="POST" action="/home/modelbinding?id=3">
 <input name="color" value="Red" />
 <input type="submit" />
</form>
@if (Model != null)
{

Building Websites Using the Model-View-Controller Pattern | 16

[537]

<h2>Submitted Thing</h2>
<hr />
<div>
 <dl class="dl-horizontal">
 <dt>Model.ID</dt>
 <dd>@Model.ID</dd>
 <dt>Model.Color</dt>
 <dd>@Model.Color</dd>
 </dl>
</div>
}

6. Start the website, start Chrome, and navigate to: https://localhost:5001/
home/modelbinding

7. Note the unhandled exception about an ambiguous match, as shown in the
following screenshot:

Although the C# compiler can differentiate between the two methods
by noting that the signatures are different, from HTTP's point of view,
both methods are potential matches. We need an HTTP-specific way to
disambiguate the action methods. We could do this by creating different
names for the actions, or by specifying that one method should be used for a
specific HTTP verb like GET, POST, or DELETE.

8. Stop the website.
9. In HomeController.cs, decorate the second ModelBinding action method

to indicate that it should be used for processing HTTP POST requests, that is,
when a form is submitted, as shown highlighted in the following code:
[HttpPost]
public IActionResult ModelBinding(Thing thing)

https://localhost:5001/home/modelbinding
https://localhost:5001/home/modelbinding
https://localhost:5001/home/modelbinding
https://localhost:5001/home/modelbinding
https://localhost:5001/home/modelbinding

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[538]

10. Start the website, start Chrome, and navigate to https://localhost:5001/
home/modelbinding.

11. Click the Submit button and note the value for ID property is set from the
query string parameter and the value for the color property is set from the
form parameter, as shown in the following screenshot:

12. Stop the website.
13. Modify the action for the form to pass the value 2 as a route parameter, as

shown highlighted in the following markup:
<form method="POST" action="/home/modelbinding/2?id=3">

14. Start the website, start Chrome, and navigate to
https://localhost:5001/home/modelbinding

15. Click the Submit button and note the value for ID property is set from the
route parameter and the value for the color property is set from the form
parameter.

16. Stop the website.
17. Modify the action for the form to pass the value 1 as a form parameter, as

shown highlighted in the following markup:
<form method="POST" action="/home/modelbinding/2?id=3">
 <input name="id" value="1" />

18. Start the website, start Chrome, and navigate to
https://localhost:5001/home/modelbinding

19. Click the Submit button and note the value for ID and color properties are
both set from the form parameters.

https://localhost:5001/home/modelbinding
https://localhost:5001/home/modelbinding.
https://localhost:5001/home/modelbinding.
https://localhost:5001/home/modelbinding
https://localhost:5001/home/modelbinding
https://localhost:5001/home/modelbinding
https://localhost:5001/home/modelbinding

Building Websites Using the Model-View-Controller Pattern | 16

[539]

If you have multiple parameters with the same name, then form parameters
have the highest priority and query string parameters have the lowest priority.

Validating the model
The process of model binding can cause errors, for example, data type conversions,
or validation errors if the model has been decorated with validation rules.
What data has been bound and any binding or validation errors is stored in
ControllerBase.ModelState.

Let's explore that we can do with model state by applying some validation rules to
the bound model and then showing invalid data messages in the view.

1. In the Models folder, open Thing.cs.
2. Import the System.ComponentModel.DataAnnotations namespace.
3. Decorate the ID property with a validation attribute to limit the range of

allowed numbers to 1 to 10, and one to ensure that the visitor supplies a
color, as shown in the following highlighted code:
public class Thing
{
 [Range(1, 10)]
 public int? ID { get; set; }

 [Required]
 public string Color { get; set; }
}

4. In the Models folder, add a new file named
HomeModelBindingViewModel.cs.

5. Modify its contents to define a class with two properties for the bound model
and for any errors, as shown in the following code:
using System.Collections.Generic;

namespace NorthwindMvc.Models
{
 public class HomeModelBindingViewModel
 {
 public Thing Thing { get; set; }

More Information: For advanced scenarios, you can
create your own model binders by implementing the
IModelBinder interface: https://docs.microsoft.com/
en-us/aspnet/core/mvc/advanced/custom-model-
binding?view=aspnetcore-3.0

https://docs.microsoft.com/en-us/aspnet/core/mvc/advanced/custom-model-binding?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/advanced/custom-model-binding?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/advanced/custom-model-binding?view=aspnetcore-3.0

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[540]

 public bool HasErrors { get; set; }

 public IEnumerable<string>
 ValidationErrors { get; set; }
 }
}

6. In the Controllers folder, open HomeController.cs.
7. In the second ModelBinding method, comment out the previous statement

that passed the thing to the view, and instead add statements to create
an instance of the view model, validate the model and store an array of
error messages, and then pass the view model to the view, as shown in the
following code:
public IActionResult ModelBinding(Thing thing)
{
 // return View(thing);

 var model = new ModelBindingViewModel
 {
 Thing = thing,
 HasErrors = !ModelState.IsValid,
 ValidationErrors = ModelState.Values
 .SelectMany(state => state.Errors)
 .Select(error => error.ErrorMessage)
 };

 return View(model);
}

8. In Views\Home, open ModelBinding.cshtml.
9. Modify the model type declaration to use the view model class, add a <div>

to show any model validation errors, and change the output of the thing's
properties because the view model has changed, as shown highlighted in the
following markup:
@model NorthwindMvc.Models.HomeModelBindingViewModel
@{
 ViewData["Title"] = "Model Binding Demo";
}
<h1>@ViewData["Title"]</h1>
<div>
 Enter values for your thing in the following form:
</div>
<form method="POST" action="/home/modelbindingdemo/2?id=3">
 <input name="id" value="1" />
 <input name="color" value="Red" />
 <input type="submit" />
</form>
@if (Model != null)

Building Websites Using the Model-View-Controller Pattern | 16

[541]

{
<h2>Submitted Thing</h2>
<hr />
<div>
 <dl class="dl-horizontal">
 <dt>Model.Thing.ID</dt>
 <dd>@Model.Thing.ID</dd>
 <dt>Model.Thing.Color</dt>
 <dd>@Model.Thing.Color</dd>
 </dl>
</div>
@if (Model.HasErrors)
{
 <div>
 @foreach(string errorMessage in Model.ValidationErrors)
 {
 <div class="alert alert-danger" role="alert">
 @errorMessage</div>
 }
 </div>
}
}

10. Start the website, start Chrome, and navigate to:
https://localhost:5001/home/modelbinding

11. Click the Submit button and note that 1 and Red are valid values.
12. Enter an ID of 99, clear the color text box, click the Submit button, and note

the error messages, as shown in the following screenshot:

13. Close the browser and stop the website.

https://localhost:5001/home/modelbinding
https://localhost:5001/home/modelbinding
https://localhost:5001/home/modelbinding
https://localhost:5001/home/modelbinding

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[542]

Understanding view helper methods
While creating a view for ASP.NET Core MVC, you can use the Html object and its
methods to generate markup.

Some useful methods include the following:

• ActionLink: Use this to generate an anchor <a> element that contains a URL
path to the specified controller and action.

• AntiForgeryToken: Use this inside a <form> to insert a <hidden> element
containing an anti-forgery token that will be validated when the form
is submitted.

• Display and DisplayFor: Use this to generate HTML markup for the
expression relative to the current model using a display template. There
are built-in display templates for .NET types and custom templates can be
created in the DisplayTemplates folder. The folder name is case-sensitive on
case-sensitive file systems.

• DisplayForModel: Use this to generate HTML markup for an entire model
instead of a single expression.

• Editor and EditorFor: Use this to generate HTML markup for the
expression relative to the current model using an editor template. There
are built-in editor templates for .NET types that use <label> and <input>
elements, and custom templates can be created in the EditorTemplates
folder. The folder name is case-sensitive on case-sensitive file systems.

• EditorForModel: Use this to generate HTML markup for an entire model
instead of a single expression.

• Encode: Use this to safely encode an object or string into HTML. For example,
the string value "<script>" would be encoded as "<script>". This
is not normally necessary since the Razor @ symbol encodes string values
by default.

• Raw: Use this to render a string value without encoding as HTML.
• PartialAsync and RenderPartialAsync: Use these to generate HTML

markup for a partial view. You can optionally pass a model and view data.

More Information: You can read more about model
validation at the following link: https://docs.
microsoft.com/en-us/aspnet/core/mvc/models/
validation?view=aspnetcore-3.0

https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation?view=aspnetcore-3.0

Building Websites Using the Model-View-Controller Pattern | 16

[543]

Querying a database and using display
templates
Let's create a new action method that can have a query string parameter passed to it
and use that to query the Northwind database.

1. In the HomeController class, import the Microsoft.EntityFrameworkCore
namespace. We need this to add the Include extension method so that
we can include related entities, as you learned in Chapter 11, Working with
Databases Using Entity Framework Core.

2. Add a new action method, as shown in the following code:
public IActionResult ProductsThatCostMoreThan(
 decimal? price)
{
 if (!price.HasValue)
 {
 return NotFound("You must pass a product price in the query
string, for example, /Home/ProductsThatCostMoreThan?price=50");
 }

 IEnumerable<Product> model = db.Products
 .Include(p => p.Category)
 .Include(p => p.Supplier)
 .AsEnumerable() // switch to client-side
 .Where(p => p.UnitPrice > price);

 if (model.Count() == 0)
 {
 return NotFound(
 $"No products cost more than {price:C}.");
 }
 ViewData["MaxPrice"] = price.Value.ToString("C");

 return View(model); // pass model to view
}

3. Inside the Views/Home folder, add a new file named
ProductsThatCostMoreThan.cshtml.

More Information: You can read more about the HtmlHelper
class at the following link: https://docs.microsoft.
com/en-us/dotnet/api/microsoft.aspnetcore.mvc.
viewfeatures.htmlhelper?view=aspnetcore-3.0

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.htmlhelper?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.htmlhelper?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewfeatures.htmlhelper?view=aspnetcore-3.0

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[544]

4. Modify the contents, as shown in the following code:
@model IEnumerable<Packt.Shared.Product>
@{
 ViewData["Title"] =
 "Products That Cost More Than " + ViewData["MaxPrice"];
}
<h2>Products That Cost More Than @ViewData["MaxPrice"]</h2>
<table class="table">
 <tr>
 <th>Category Name</th>
 <th>Supplier's Company Name</th>
 <th>Product Name</th>
 <th>Unit Price</th>
 <th>Units In Stock</th>
 </tr>
 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Category.CategoryName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Supplier.CompanyName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ProductName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.UnitPrice)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.UnitsInStock)
 </td>
 </tr>
 }
</table>

5. In the Views/Home folder, open Index.cshtml.
6. Add the following form element below the visitor count and above the

Products heading and its listing of products. This will provide a form for
the user to enter a price. The user can then click on a Submit button to call
the action method that shows only products that cost more than the entered
price:
<form asp-action="ProductsThatCostMoreThan" method="get">
 <input name="price"
 placeholder="Enter a product price" />
 <input type="submit" />
</form>

Building Websites Using the Model-View-Controller Pattern | 16

[545]

7. Start the website, use Chrome to navigate to the website, and on the home
page, enter a price in the form, for example, 50, and then click on Submit.
You will see a table of the products that cost more than the price that you
entered, as shown in the following screenshot:

8. Close the browser and stop the website.

Improving scalability using asynchronous
tasks
When building a desktop or mobile app, multiple tasks (and their underlying
threads) can be used to improve responsiveness, because while one thread is busy
with the task, another can handle interactions with the user.

Tasks and their threads can be useful on the server side too, especially with websites
that work with files, or request data from a store or a web service that could take a
while to respond. But they are detrimental to complex calculations that are CPU-
bound so leave these to be processed synchronously as normal.

When an HTTP request arrives at the web server a thread from its pool is allocated
to handle the request. But if that thread must wait for a resource, then it is blocked
from handling any more incoming requests. If a website receives more simultaneous
requests than it has threads in its pool, then some of those requests will respond with
a server timeout error 503 Service Unavailable.

The threads that are locked are not doing useful work. They could handle one of
those other requests but only if we implement asynchronous code in our websites.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[546]

Whenever a thread is waiting for a resource it needs, it can return to the thread pool
and handle a different incoming request, improving the scalability of the website,
that is, increasing the number of simultaneous requests it can handle.

Why not just have a larger thread pool? In modern operating systems, every thread
pool thread has a 1 MB stack. An asynchronous method uses a smaller amount
of memory. It also removes the need to create new threads in the pool, which
takes time. The rate at which new threads are added to the pool is typically one
every two seconds, which is a loooooong time compared to switching between
asynchronous threads.

Making controller action methods asynchronous
It is easy to make an existing action method asynchronous.

1. In the HomeController class, make sure that the System.Threading.Tasks
namespace has been imported.

2. Modify the Index action method to be asynchronous, to return a Task<T>,
and to await on the calls to asynchronous methods to get the categories and
products, as shown highlighted in the following code:
public async Task<IActionResult> Index()
{
 var model = new HomeIndexViewModel
 {
 VisitorCount = (new Random()).Next(1, 1001),
 Categories = await db.Categories.ToListAsync(),
 Products = await db.Products.ToListAsync()
 };

 return View(model); // pass model to view
}

3. Modify the ProductDetail action method in a similar way, as shown
highlighted in the following code:
public async Task<IActionResult> ProductDetail(int? id)
{
 if (!id.HasValue)
 {
 return NotFound("You must pass a product ID in the route, for
example, /Home/ProductDetail/21");
 }

 var model = await db.Products
 .SingleOrDefaultAsync(p => p.ProductID == id);

 if (model == null)
 {
 return NotFound($"Product with ID of {id} not found.");

Building Websites Using the Model-View-Controller Pattern | 16

[547]

 }

 return View(model); // pass model to view and then return result
}

4. Start the website, use Chrome to navigate to the website, and note that the
functionality of the website is the same, but trust that it will now scale better.

5. Close the browser and stop the website.

Using other project templates
When you install the.NET Core SDK, there are many project templates included.

1. In Terminal, enter the following command:
dotnet new --help

2. You will see a list of currently installed templates, as shown in the following
screenshot:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[548]

3. Note the web-related project templates including ones for creating SPAs
using React and Angular.

Installing additional template packs
Developers can install lots of additional template packs.

1. Start a browser and navigate to http://dotnetnew.azurewebsites.net/.
2. Enter vue in the text box, click the Search templates button, and note the list

of available templates for Vue.js including one published by Microsoft, as
shown in the following screenshot:

3. Click on ASP.NET Core with Vue.js, and note the instructions for installing
and using this template, as shown in the following screenshot:

http://dotnetnew.azurewebsites.net/
http://dotnetnew.azurewebsites.net/
http://dotnetnew.azurewebsites.net/
http://dotnetnew.azurewebsites.net/

Building Websites Using the Model-View-Controller Pattern | 16

[549]

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with deeper research.

Exercise 16.1 – Test your knowledge
Answer the following questions:

1. What do the files with the special names _ViewStart and _ViewImports do
when created in the Views folder?

2. That are the names of the three segments defined in the default ASP. NET
Core MVC route, what do they represent, and which are optional?

3. What does the default model binder do, and what data types can it handle?
4. In a shared layout file like _Layout.cshtml, how do you output the content

of the current view?
5. In a shared layout file like _Layout.cshtml, how do you output a section

that the current view can supply content for, and how does the view supply
the contents for that section?

6. When calling the View method inside a controller's action method, what
paths are searched for the view by convention?

7. How can you instruct the visitor's browser to cache the response for 24 hours?
8. Why might you enable Razor Pages even if you are not creating any yourself?
9. How does ASP.NET Core MVC identify classes that can act as

controllers?
10. In what ways does ASP.NET Core MVC make it easier to test a website?

Exercise 16.2 – Practice implementing MVC
by implementing a category detail page
The NorthwindMvc project has a home page that shows categories but when the
View button is clicked, the website returns a 404 Not Found error, for example,
for the following URL:

https://localhost:5001/category/1

More Information: You can see more templates at the following
link: https://github.com/dotnet/templating/wiki/
Available-templates-for-dotnet-new

https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://localhost:5001/category/1
https://localhost:5001/category/1
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[550]

Extend the NorthwindMvc project by adding the ability to show a detail page for
a category.

Exercise 16.3 – Practice improving scalability
by understanding and implementing async
action methods
A few years ago, Stephen Cleary wrote an excellent article for MSDN Magazine
explaining the benefits to scalability of implementing async action methods for
ASP.NET. The same principles apply to ASP.NET Core, but even more so,
because unlike old ASP.NET as described in the article, ASP.NET Core
supports asynchronous filters and other components.

Read the article at the following link and change the application that you created
in this chapter to use async action methods in the controller: https://msdn.
microsoft.com/en-us/magazine/dn802603.aspx

Exercise 16.4 – Explore topics
Use the following links to read more details about this chapter's topics:

• Overview of ASP.NET Core MVC: https://docs.microsoft.com/en-us/
aspnet/core/mvc/overview?view=aspnetcore-3.0

• Tutorial: Get started with EF Core in an ASP.NET MVC web app:
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/
intro?view=aspnetcore-3.0

• Handle requests with controllers in ASP.NET Core MVC: https://
docs.microsoft.com/en-us/aspnet/core/mvc/controllers/
actions?view=aspnetcore-3.0

• Model Binding in ASP.NET Core: https://docs.microsoft.com/en-us/
aspnet/core/mvc/models/model-binding?view=aspnetcore-3.0

• Views in ASP.NET Core MVC: https://docs.microsoft.com/en-us/
aspnet/core/mvc/views/overview?view=aspnetcore-3.0

https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://msdn.microsoft.com/en-us/magazine/dn802603.aspx
https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/intro?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/intro?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/actions?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/actions?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/actions?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/actions?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/actions?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/actions?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/overview?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/overview?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/overview?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/overview?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/overview?view=aspnetcore-3.0

Building Websites Using the Model-View-Controller Pattern | 16

[551]

Summary
In this chapter, you learned how to build large, complex websites in a way that is
easy to unit test and manage with teams of programmers using ASP.NET Core.
You learned about startup configuration, authentication, routes, models, views, and
controllers in ASP.NET Core MVC.

In the next chapter, you will learn how to build websites using a cross-platform
Content Management System (CMS). This allows developers to put responsibility
of the content where it belongs: into the hands of users.

[553]

Chapter 17
Building Websites Using a

Content Management System
This chapter is about building websites using a modern cross-platform Content
Management System (CMS).

There are many choices of CMS for most web development platforms. For cross-
platform C# and .NET web developers, the best for learning the important principles
is currently Piranha CMS. It was the first CMS to support .NET Core, with Piranha
CMS 4.0 released on 1st December 2017.

This chapter will cover the following topics:

• Understanding the benefits of a CMS
• Understanding Piranha CMS
• Defining components, content types, and templates
• Testing the CMS website

Understanding the benefits of a CMS
In previous chapters, you learned how to create static HTML web pages and
configure ASP.NET Core to serve them when requested by a visitor's browser.

You also learned how ASP.NET Core Razor Pages can add C# code that executes on
the server side to generate HTML dynamically, including from information loaded
live from a database. Additionally, you learned how ASP.NET Core MVC provides
separation of technical concerns to make building more complex websites more
manageable.

On its own, ASP.NET Core does not solve the problem of managing content. In
those previous websites, the person creating and managing the content would have
to have programming and HTML editing skills, or the ability to edit the data in the
Northwind database, to change what visitors see on the website.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[554]

This is where a CMS becomes useful. A CMS separates the content (data values)
from templates (layout, format, and style). Most CMSs generate web responses like
HTML for humans viewing the website with a browser.

Some CMSs generate open data formats like JSON and XML to be processed by
a web service or rendered in a browser using client-side technologies like Angular,
React, or Vue. This is often called a headless CMS.

Developers define the structure of data stored in the CMS using content type classes
for different purposes, like a product page, with content templates that render the
content data into HTML, JSON, or other formats.

Non-technical content owners can log into the CMS and use a simple user interface
to create, edit, delete, and publish content that will fit the structure defined by the
content type classes, without needing the involvement of developers or tools like
Visual Studio Code.

Understanding basic CMS features
Any decent basic CMS will include the following core features:

• A user interface that allows non-technical content owners to log in and
manage their content.

• A content delivery system that converts the content from simple data into
one or more formats, like HTML and JSON.

Understanding enterprise CMS features
Any decent commercial enterprise-level CMS would add the following additional
features:

• Search Engine Optimized (SEO) URLs, page titles and related metadata,
sitemaps, and so on.

• Authentication and authorization including management of users, groups,
and their access rights to content.

• Media asset management of images, videos, documents, and other files.
• Sharing and reuse of pieces of content, often named blocks.
• Forms designer for gathering input from visitors.
• Marketing tools like tracking visitor behavior and A/B testing of content.
• Personalization of content based on rules like geographic location or machine

learning processing of tracked visitor behavior.

Building Websites Using a Content Management System | 17

[555]

• Saved drafts of content that are hidden from website visitors until they are
published.

• Retaining multiple versions of content and enabling the re-publishing of old
versions.

• Translation of content into multiple human languages, like English and
German.

Understanding CMS platforms
CMSs exist for most development platforms and languages, as shown in the
following table:

Development platform Content Management Systems
PHP WordPress, Drupal, Joomla!, Magento
Python django CMS
Java Adobe Experience Manager, Hippo CMS
.NET Framework Episerver CMS, Sitecore, Umbraco, Kentico CMS
.NET Core Piranha CMS, Orchard Core CMS

Understanding Piranha CMS
Piranha CMS is a good choice for learning how to develop for a CMS because it is
open source, simple, and flexible.

As described by its lead developer and creator, Håkan Edling, "Piranha CMS is a
lightweight, unobtrusive and cross-platform CMS library for .NET Standard 2.0. It
can be used to add CMS functionality to an already existing application, build new
website from scratch, or even be used as a backend for a mobile application."

Piranha CMS has three design principles:

• An open and extendible platform.
• Easy and intuitive for the content administrators.
• Fast, efficient, and fun for the developers.

More Information: At the time of writing this fourth edition,
the latest released version of Orchard Core CMS was 1.0.0-
beta3, so I decided to use Piranha CMS for this edition since
it has supported .NET Core since its version 4.0 and it is now
up to version 7.0. You can read about Orchard Core CMS at the
following link: https://orchardcore.readthedocs.io/en/
dev/

https://orchardcore.readthedocs.io/en/dev/
https://orchardcore.readthedocs.io/en/dev/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[556]

Instead of adding more and more complex functions for commercial enterprise
customers, Piranha CMS focuses on providing a platform for small to medium sized
websites that need non-technical users to edit content on their current websites.

Piranha is not WordPress, meaning it will never have thousands of predefined
themes and plugins to install. In the words of Piranha themselves, "The heart and
soul of Piranha is about structuring content and editing it in the most intuitive way
possible - the rest we leave up to you."

Piranha CMS is built using some open source libraries, including the following:

• Font Awesome, the web's most popular icon set and toolkit: https://
fontawesome.com

• AutoMapper, a convention-based object-object mapper: http://
automapper.org

• Markdig, a fast, powerful, CommonMark compliant, extensible Markdown
processor for .NET: https://github.com/lunet-io/markdig

• Newtonsoft Json.NET, a popular high-performance JSON framework for
.NET: https://www.newtonsoft.com/json

Piranha CMS is released under the MIT license, meaning that it permits reuse within
proprietary software provided all copies of the licensed software include a copy of
the MIT License terms and the copyright notice.

Creating and exploring a Piranha CMS
website
Piranha CMS has three project templates: Empty, Web, and Blog. Web and Blog
include models, controllers and views for a blog archive, basic pages and blog posts.
Web also has a start page type to use as a landing page. Blog has a more advanced
blog archive with paging, category, and tag filtering to use as its default page.

We will need to install these templates before we can create a Piranha CMS website
project.

You will use the piranha.blog project template to create a Piranha CMS website
with an SQLite database for storing content including blog posts and user names and
passwords for authentication.

More Information: You can read the official documentation for
Piranha CMS at the following link: http://piranhacms.org/

https://fontawesome.com
https://fontawesome.com
http://automapper.org
http://automapper.org
https://github.com/lunet-io/markdig
https://www.newtonsoft.com/json
https://www.newtonsoft.com/json
http://piranhacms.org/

Building Websites Using a Content Management System | 17

[557]

1. In the folder named PracticalApps, create a folder named NorthwindCms.
2. In Visual Studio Code, open the PracticalApps workspace.
3. Add the NorthwindCms folder to the workspace.
4. Navigate to Terminal | New Terminal and select NorthwindCms.
5. In Terminal, install Piranha project templates, as shown in the following

command:
dotnet new -i Piranha.Templates

6. In Terminal, enter a command to list the Piranha CMS templates, as shown
in the following command:
dotnet new "piranha cms" --list

7. Note the templates, as shown in the following output:
Templates Short Name Language

ASP.NET Core Empty with Piranha CMS piranha.empty [C#]

ASP.NET Core Blog with Piranha CMS piranha.blog [C#]

ASP.NET Core Web with Piranha CMS piranha.web [C#]

ASP.NET Core Blog with Piranha CMS piranha.blog.razor [C#]

8. In Terminal, enter commands to create a Piranha CMS website with extra
blog archive support, as shown in the following command:
dotnet new piranha.blog

9. In EXPLORER, open the NorthwindCms.csproj file, and note that at the
time of writing, Piranha CMS is version 7.0 and that it targets ASP.NET Core
2.2, as shown in the following markup:
<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.2</TargetFramework>
 <AspNetCoreHostingModel>InProcess</AspNetCoreHostingModel>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.App" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="2.2.4" />
 <PackageReference Include="Piranha" Version="7.0.2" />

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[558]

 <PackageReference Include="Piranha.AspNetCore"
 Version="7.0.0" />
 <PackageReference
 Include="Piranha.AspNetCore.Identity.SQLite"
 Version="7.0.0" />
 <PackageReference Include="Piranha.AttributeBuilder"
 Version="7.0.0" />
 <PackageReference
 Include="Piranha.Data.EF" Version="7.0.1" />
 <PackageReference Include="Piranha.ImageSharp"
 Version="7.0.0-rc1" />
 <PackageReference Include="Piranha.Local.FileStorage"
 Version="7.0.0" />
 <PackageReference
 Include="Piranha.Manager" Version="7.0.4" />
 </ItemGroup>
</Project>

I expect Piranha CMS and its project templates to be updated to support
.NET Core 3.0 a few months after its release, so by the time you read this
book the version numbers in your .csproj file are likely to be higher.

10. In Terminal, build and start the website, as shown in the following
command:
dotnet run

11. Start Chrome and navigate to the following URL: https://
localhost:5001/.

12. Note the default home page for a Piranha CMS website, as shown in the
following screenshot:

https://localhost:5001/
http://

Building Websites Using a Content Management System | 17

[559]

13. At the bottom of the page, click Seed some data to create some sample
content, and note the following, as shown in the following screenshot:

 ° The default page for the website is a blog archive that shows the
latest posts.

 ° At the top are links to Blog, About Me, and developer-oriented social
media sites: Twitter, GitHub, and LinkedIn.

 ° Each blog post has an image, title and publish date, summary text
with button to Read more, and can be categorized and hash tagged.

Editing site and page content
Let's log in as if we are the content owner for the website and manage some of the
content.

1. In your browsers address box, enter the following URL: https://
localhost:5001/manager.

https://localhost:5001/manager

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[560]

2. Enter a username of admin and a password of password, as shown in the
following screenshot:

3. In the manager, note the two existing pages named Blog (that is an example
of the Blog archive type) and About Me (that is an example of the Standard
page type), and then click Default Site, as shown in the following screenshot:

4. In the Edit site dialog box, on the Settings tab, change the Title to Northwind
CMS and Description to Providing fresh tasty food to restaurants
for three generations, as shown in the following screenshot:

Building Websites Using a Content Management System | 17

[561]

5. In the Edit site dialog box, on the Information tab, change the Site Title
to Northwind CMS and Tag Line to Providing fresh tasty food to
restaurants for three generations. Note that the content owner could
also replace the site logo with an alternative image file, and then click Save.

6. If you are not already in the CONTENT : PAGES section, then in the menu
navigation bar on the left, click Pages, and then click About Me to edit
that page.

7. Change the page title to About Us, and note that beneath it the content
owner can add any number of blocks to the page, as shown in the following
screenshot, including:

 ° Horizontal dividers between each block with a circular button to
insert a new block.

 ° When a block has the focus it has buttons to collapse, expand, and
delete the block, and a menu of additional actions.

 ° A block with one column of rich text, images, and links, easily styled
with a toolbar.

 ° A block with plain text styled for a quote.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[562]

 ° A block with two columns of rich text, with an extra button to swap
the order of the columns.

8. At the top of CONTENT : PAGES / EDIT, click the gear icon to show the
Settings dialog box, where the content owner can set the navigation title,
meta keywords, meta description, and the slug used in the URL path, as
shown in the following screenshot:

9. Change Navigation title to About Us.
10. Change Meta keywords to beverages, condiments, meat, seafood.

Building Websites Using a Content Management System | 17

[563]

11. Change Meta description to Providing fresh tasty food to
restaurants for three generations.

12. Change Slug to about-us. Slug is another name for a segment in a URL path,
like the name of a controller or action in MVC.

13. Close the dialog box.
14. At the top of CONTENT : PAGES / EDIT, click Save, and note that the

changes have been saved as a draft, as shown in the following screenshot:

15. Click the Publish button to make those changes visible to website visitors.

Creating a new top-level page
Let's create a new page with some blocks for its content.

1. In the menu navigation bar on the left, click Pages, click the + Add button,
and then click Standard page.

2. In the Your page title box, enter Contact Us.
3. Click the circular + button and choose Columns, as shown in the following

screenshot:

4. At the top of the COLUMNS block, click the + button, click Text, and then
enter a fake postal address, like 123 Main Street, New York City, United States.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[564]

5. At the top of the COLUMNS block, click the + button, click Text, and then
enter a fake email address and phone number, like admin@northwind.com
and (123) 555-1234, as shown in the following screenshot:

6. At the top of CONTENT : PAGES / EDIT, click Publish.
If you just click the Save button, then the new page is saved to the CMS database, but
it will not yet be visible to website visitors.

Creating a new child page
To create new pages in Piranha CMS you must consider the page hierarchy.

To create the Contact Us page, we clicked the + Add page button at the top of the
Pages list. But to insert a new page within the existing structure, you must click
either the down or right arrow icons.

• Down arrow: Creates a new page after the current page, that is, at the same
level.

• Right arrow: Creates a new page under the current page, that is, a child page.

If you ever create a page in the wrong place, it is easy to drag and drop it into the
correct position within the page tree structure. A lot of content owners would
probably prefer this technique, that is, always create new pages at the bottom of the
list and then drag and drop them to the desired position within the page tree.

mailto:admin@northwind.com

Building Websites Using a Content Management System | 17

[565]

Let's try creating a new child page for the About Us page.

1. In the menu navigation bar on the left, click Pages; in the About Us row, click
the right arrow icon, and then click Standard page.

2. Enter Our Location for the page title and then click Publish.
3. In the menu navigation bar on the left, click Pages, and note the Our

Location page is a child of About Us, as shown in the following screenshot:

4. Click the Our Location page to edit it.
5. Click the gear button to open the Settings dialog box, and note the Slug

has been set automatically based on where the page was initially created, as
shown in the following screenshot:

The slug for a page will not automatically change if the page is later dragged and
dropped to a different position within the page tree hierarchy. You would have to
change the slug manually.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[566]

Reviewing the blog archive
1. In the menu navigation bar on the left, click Pages, click Blog, and note the

blog archive type of page has a table of blog post items, each row with the
item's title, published date, item type (in this case the one item is a Blog
post), category (in this case, Piranha CMS), and the ability to delete items, as
shown in the following screenshot:

2. Click the + Add button and then click Blog post.
3. Enter a post title like Northwind has some cool new fish to sell you!,

enter Fish for the category, add some tags like seafood and cool, and then
add at least one block like a quote saying "This fish is the tastiest
ever!", as shown in the following screenshot:

Building Websites Using a Content Management System | 17

[567]

4. Click Publish.
5. Click the arrow to the right of the Save button and then click Preview.
6. In the Live Preview browser tab, click MOBILE to see how the blog post will

look on mobile devices, as shown in the following screenshot:

7. Close the Live Preview browser tab.

Exploring authentication and authorization
Let's see what system settings are available to protect content.

1. In the menu navigation bar on the left, click Users, and note the admin user
is a member of the SysAdmin role, as shown in the following screenshot:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[568]

2. In the menu navigation bar on the left, click Roles, click the SysAdmin role,
and note that you can assign dozens of permissions to a role, as shown in the
following screenshot:

3. In the menu navigation bar on the left, click Roles, then then click the + Add
button.

4. In the GENERAL section, enter the name Editors.
5. In the CORE PERMISSIONS section, select both permissions.

Building Websites Using a Content Management System | 17

[569]

6. In the MANAGER PERMISSIONS section, select the following permissions,
as shown in the following screenshot:

 ° Media: Add Media, Add Media Folders, Edit Media, List Media.
 ° Pages: Add Pages, Edit Pages, List Pages, Pages - Save.
 ° Posts: Add Posts, Edit Posts, List Posts, Save Posts.

7. Click Save.
8. In the menu navigation bar on the left, click Users, then then click the + Add

button.
9. Enter a name of Eve, an email address of eve@northwind.com, assign her to

the Editors role, set her password to Pa$$w0rd, as shown in the following
screenshot:

mailto:eve@northwind.com
mailto:eve@northwind.com

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[570]

10. Click Save.

Exploring configuration
Let's see how you can control the URL paths, the number of versions of each page
and post that are retained in the CMS database, and caching to improve scalability
and performance.

1. In the menu navigation bar on the left, click Config, and note that by default,
five blogs are shown in each archive page, ten revisions are retained for
pages and posts, and if the content owner creates a hierarchical tree of pages
then the URL path will use hierarchical slugs, as shown in the following
example URL path:
/about-us/news-and-events/northwind-wins-award

2. Change the cache time from 0 to 30 minutes for pages and posts, as shown in
the following screenshot:

Good Practice: You should carefully consider what permissions
different roles will need. The SysAdmin role should have all
permissions. If you were to create an Editor role then it might be
allowed to add, delete, edit and save pages, posts, and media, but
perhaps only a Publisher role would be allowed to publish content
because only they should control when to allow website visitors to
see the content.

Building Websites Using a Content Management System | 17

[571]

3. Change the cache expiration for pages and posts back to 0.
4. Click Save.

Testing the new content
Let's see if the Contact Us and Our Location pages are published and therefore
visible to website visitors.

1. In the menu navigation bar on the left, click Logout.
2. Navigate to the website at https://localhost:5001/ and note that the

Contact Us page and the blog post are now shown to visitors, as shown in
the following screenshot:

3. Only top-level pages are shown in the navigation menu, so click About Us to
navigate to that page and then in the browser's address bar, append the rest
of the slug and press Enter, as shown in the following URL:
https://localhost:5001/about-us/our-location

Good Practice: While developing, switch off page caching by
setting the minutes to 0 because it is likely to cause you confusion
when you make a change to your code, but it is not reflected in the
website! After you deploy to production, then log in and set these
values to sensible values depending on how frequently content
owners update pages and how quickly they expect a website visitor
to then see those changes. Caching is a balance.

https://localhost:5001/
https://localhost:5001/
https://localhost:5001/about-us/our-location
https://localhost:5001/about-us/our-location

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[572]

In a real website, you would want to provide navigation to child pages using
something like a Bootstrap navbar with dropdown menus.

4. Close the browser.
5. Stop the website running by pressing Ctrl + C in Terminal.

Understanding routing
Piranha CMS uses the normal ASP.NET Core routing system underneath.

In the current website we have four pages that are the responses to HTTP requests
for relative paths, also known as slugs, as shown in the following list:

• Blog: / or /blog
• About Us: /about-us
• Our Location: /about-us/our-location
• Contact Us: /contact-us

When a request arrives for a slug, Piranha CMS looks in the content database for a
matching content item. When found, it looks up the type of content, so for /about-
us it would then know that it is a Standard page.

The Standard page and Archive page do not need custom routes defined in order to
work because the following routes are configured by default:

• /page for all page types except archive pages.
• /archive for archive pages.
• /post for post items in an archive.

So, incoming HTTP request URLs are translated into a route that can be processed by
ASP.NET Core in the normal way. For example, the following request:

https://localhost:5001/about-us

Is translated by Piranha CMS into:

https://localhost:5001/page?id=154b519d-b5ed-4f75-8aa4-
d092559363b0

More Information: You can read about Bootstrap's navbar at
the following link: https://getbootstrap.com/docs/4.0/
components/navbar/

https://getbootstrap.com/docs/4.0/components/navbar/
https://getbootstrap.com/docs/4.0/components/navbar/
https://getbootstrap.com/docs/4.0/components/navbar/
https://getbootstrap.com/docs/4.0/components/navbar/

Building Websites Using a Content Management System | 17

[573]

This is processed by a normal ASP.NET Core MVC controller. The page id is a GUID
that can be used to look up the page content data in the Piranha CMS database. Let's
see how.

1. In the Controllers folder, open CmsController.cs.
2. Note that CmsController derives from Microsoft's Controller class.
3. Scroll down to find the Page action method, and note that it uses Microsoft's

[Route] attribute to indicate that this action method responds to HTTP
requests for the relative URL path, /page, and will extract the Guid using
Microsoft's model binder and use it to look up the page's model from the
database using Piranha's API, as shown in the following code:
/// <summary>
/// Gets the page with the given id.
/// </summary>
/// <param name="id">The unique page id</param>
/// <param name="draft">If a draft is requested</param>
[Route("page")]
public async Task<IActionResult> Page(
 Guid id, bool draft = false)
{
 var model = await _loader.GetPage<StandardPage>(
 id, HttpContext.User, draft);

 return View(model);
}

Note that this controller also has similar action methods with custom simplified
routes for archive pages and posts.

So that a request is not processed repeatedly by Piranha, a query string parameter,
piranha_handled=true, is added to the rewritten URL.

As well as the built-in custom routes, you can define additional ones. For example,
if you are building an e-commerce website, then you might want special routes for
product catalogs and categories:

• Product catalog: /catalog
• Product category: /catalog/beverages

More Information: You can read about advanced routing for
Piranha CMS at the following link: http://piranhacms.org/
docs/architecture/routing/advanced-routing.

http://piranhacms.org/docs/architecture/routing/advanced-routing
http://piranhacms.org/docs/architecture/routing/advanced-routing

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[574]

Understanding media
Media files can be uploaded through the manager user interface or programmatically
using an API provided by Piranha CMS with streams and byte arrays.

To make it more likely that uploaded media is compatible with common devices,
Piranha CMS limits the types of media that can be uploaded to the following file
types by default:

• .jpg, .jpeg, and .png images
• .mp4 videos
• .pdf documents

If you need to upload other types of file, like GIF images, then you can register
additional media file types in the Startup class.

1. Open the Startup.cs file.
2. In the Configure method, after Piranha is initialized, register the GIF file

extension as a recognized file type, as shown highlighted in the following
code:
// Initialize Piranha
App.Init(api);

// register GIFs as a media type
App.MediaTypes.Images.Add(".gif", "image/gif");

Understanding the application service
ApplicationService simplifies programmatic access to common objects for the
current request. It is usually injected into all Razor files using _ViewImports.cshtml
with the name WebApp, as shown in the following code:

@inject Piranha.AspNetCore.Services.IApplicationService WebApp

More Information: You can read more about programmatically
uploading media using the Piranha CMS APIs at the following
link: http://piranhacms.org/docs/basics/media-files

http://piranhacms.org/docs/basics/media-files
http://piranhacms.org/docs/basics/media-files

Building Websites Using a Content Management System | 17

[575]

Common uses of the application service are shown in the following table:

Code Description
@WebApp.PageId Guid of the requested page.
@WebApp.Url Browser requested original URL before it was

rewritten by the middleware.
@WebApp.Api Access to the complete Piranha API.
@WebApp.Media.ResizeImage(

ImageField image,

int width, int? height = null)

Resizes the given ImageField to the
specified dimensions and returns the
generated URL path to the resized file.
ImageField is a Piranha type that can
reference an uploaded image.

Understanding content types
Piranha allows a developer to define three categories of content type as shown in the
following list:

• Sites: For properties shared across all other content. If you don't need to
share properties, then you don't need a site content type. Even if you do need
one, each site usually only needs one site content type. The class must be
decorated with [SiteType].

• Pages: For informational pages like About Us and landing pages like a home
or category page that can have other pages as their children. Pages form
a hierarchical tree that provides the URL path structure of the site, like /
about-us/locations and /about-us/job-vacancies. Each site usually
has multiple page content types, like Standard page, Archive page, Category
page, and Product page. The class must be decorated with [PageType].

• Posts: for "pages" that do not have children and can only be listed in archive
pages. Posts can be filtered and grouped by date, category, and tags. The
special archive page type provides the user interaction with the posts.
Each site usually has only one or two post content types, like NewsPost or
EventPost. The class must be decorated with [PostType].

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[576]

Understanding component types
Registered content types are given built-in support for creating, editing, and deleting
in the Piranha manager. The structure of a content type is provided by dividing it
into three categories of component type, as shown in the following list:

• Fields: The smallest component of content. They can be as simple as a
number, date, or string value. Fields are like properties in a C# class. The
property must be decorated with [Field].

• Regions: Small pieces of content that appear in a fixed location on the page
or post rendered to the visitor under the control of the developer. Regions are
composed of one or more fields, or a sortable collection of fields.
Regions are like titled complex properties in a C# class. The property must be
decorated with [Region].

• Blocks: Small pieces of content that can be added, reordered, and deleted.
Blocks provide complete flexibility to the content editor. By default, all pages
and posts can contain any number of blocks, although this can be disabled
for a specific page or post content type with the [PageType] attribute that
sets UseBlocks to false. Standard block types include multi-column rich
text, quote, and image. Developers can define custom block types with a
custom editing experience in the Piranha manager.

Understanding standard fields
Standard fields each have a built-in editing experience and include the following:

• CheckBoxField, DateField, NumberField, StringField, TextField:
Simple field values.

• PageField and PostField: Reference a page or post using its GUID.
• DocumentField, ImageField, VideoField, MediaField: Reference a

document, image, video, or any media file using its Guid. By default,
DocumentField can be .pdf, ImageField can be .jpg, .jpeg, or .png,
VideoField can be .mp4, and MediaField can be any file type.

• HtmlField, MarkdownField: Formatted text values with a customizable
TinyMCE editor with a toolbar and a Markdown editor.

Building Websites Using a Content Management System | 17

[577]

Reviewing some content types
Let's review some of the content types defined by the Piranha Blog project template.

1. Open Models/BlogSite.cs and note that a site content class must inherit
from SiteContent<T>, where T is the derived class, and be decorated with
the [SiteType] attribute. It has a single Information property decorated
to register the property as a [Region] so that it can be easily edited in the
Piranha manager, as shown in the following code:
using Piranha.AttributeBuilder;
using Piranha.Extend.Fields;
using Piranha.Models;

namespace NorthwindCms.Models
{
 [SiteType(Title = "Default site")]
 public class BlogSite : SiteContent<BlogSite>
 {
 [Region]
 public Regions.SiteInfo Information { get; set; }
 }
}

2. Click in SiteInfo, press F12, and note this region has three properties to
share the title, tagline, and logo across the whole website, as shown in the
following code:
using Piranha.AttributeBuilder;
using Piranha.Extend.Fields;
using Piranha.Models;

namespace NorthwindCms.Models.Regions
{
 public class SiteInfo
 {
 [Field(Title = "Site Title",
 Options = FieldOption.HalfWidth)]
 public StringField SiteTitle { get; set; }

 [Field(Options = FieldOption.HalfWidth)]
 public StringField Tagline { get; set; }

 [Field(Title = "Site Logo")]
 public ImageField SiteLogo { get; set; }
 }
}

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[578]

3. Open Models/StandardPage.cs, and note that a page type must inherit
from Page<T>, where T is the derived class, and be decorated with the
[PageType] attribute, as shown in the following code:
using Piranha.AttributeBuilder; // [PageType]
using Piranha.Extend.Fields;
using Piranha.Models; // Page<T>

namespace NorthwindCms.Models
{
 [PageType(Title = "Standard page")]
 public class StandardPage : Page<StandardPage>
 {
 }
}

4. Open Views/Cms/Page.cshtml, and note this view is strongly typed to be
passed an instance of the StandardPage class as its Model property, stores
the Title in the ViewBag so it can be rendered into a shared layout, and
renders the Title and Blocks in Bootstrap-styled <div> elements, as shown
in the following code:
@model NorthwindCms.Models.StandardPage
@{
 ViewBag.Title = Model.Title;
}

<div class="container">
 <div class="row justify-content-center">
 <div class="col-sm-10">
 <h1>@Model.Title</h1>
 </div>
 </div>
 @Html.DisplayFor(m => m.Blocks)
</div>

Blogs on a website require a page type and a post type. The page type acts
as a container for listing, filtering, and grouping the blog posts.

5. Open Models/BlogArchive.cs and note that a page type for interacting
with posts is a page type but it must inherit from ArchivePage<T>, where
T is the derived class, and be decorated with the [PageType] attribute, and
usually will not need to have a section that the content owner can add blocks
to, as shown in the following code:
using Piranha.AttributeBuilder;
using Piranha.Models;

namespace NorthwindCms.Models
{

Building Websites Using a Content Management System | 17

[579]

 [PageType(Title = "Blog archive", UseBlocks = false)]
 public class BlogArchive : ArchivePage<BlogArchive>
 {
 }
}

6. Open Models/BlogPost.cs and note that a post type must inherit from
Post<T>, where T is the derived class, and be decorated with the [PostType]
attribute, and that this post has a single property registered as a region, as
shown in the following code:
using Piranha.AttributeBuilder;
using Piranha.Extend.Fields;
using Piranha.Models;

namespace NorthwindCms.Models
{
 [PostType(Title = "Blog post")]
 public class BlogPost : Post<BlogPost>
 {
 [Region]
 public Regions.Heading Heading { get; set; }
 }
}

7. Open Views/Cms/Archive.cshtml. Note that it has more than one hundred
lines of markup to output lists of posts sorted and filtered by various year,
month, category, and tag, and includes page navigation at the bottom.

8. Note the foreach statement to output each post in the archive, wrapped in
an <article> element, as shown in the following markup:
@foreach (var post in Model.Archive.Posts)
{
 <article>
 <header>

9. Open Views/Cms/Post.cshtml and note that Api is injected to enable easy
access to shared features and properties across the website (or you could
use WebApp.Api to access the same object), and the Resize method of
ImageField is used to efficiently resize the primary image in the Heading of
each post, as shown in the following markup:
@model NorthwindCms.Models.BlogPost
@inject Piranha.IApi Api
@{
 ViewBag.Title = Model.Title;
}

<div class="container">
 <article>

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[580]

 <header>
 @if (Model.Heading.PrimaryImage.HasValue)
 {
 <div class="row justify-content-center">
 <div class="col-sm">
 <img src="@Url.Content(Model.Heading
 .PrimaryImage.Resize(Api, 930, 360))">
 </div>
 </div>
 }
 <div class="row justify-content-center">
 <div class="col-sm-10">
 <h1>@Model.Title</h1>
 <p class="post-meta">
 In

 @Model.Category.Title
 ◆
 Tags
 @foreach (var tag in Model.Tags)
 {

 #@tag.Title
 }
 ◆
 Published
 @Model.Published.Value.ToString("yyyy-MM-dd")
 </p>
 </div>
 </div>
 </header>
 @Html.DisplayFor(m => m.Blocks)
 </article>
</div>

Each post belongs to a single category and can have multiple tags.

Understanding standard blocks
Standard blocks include the following:

• Columns: Has an Items property with one or more items that are Block
instances.

• Image: Has a Body property that is an ImageField with a view that outputs
it as the src for an element.

• Quote: Has a Body property that is a TextField with a view that outputs it
wrapped in a <blockquote> element.

• Text: Has a Body property that is a TextField.

Building Websites Using a Content Management System | 17

[581]

Reviewing component types and standard
blocks
Let's review some of the component types defined by the project template.

1. Open Models/Regions/Heading.cs and note that a region component type
is a C# class that must contain one or more properties that use special Field
types and the properties must be decorated with the [Field] attribute, and
this region has a two properties for storing a reference to an image and a rich
text property, as shown in the following code:
using Piranha.AttributeBuilder;
using Piranha.Extend.Fields;

namespace NorthwindCms.Models.Regions
{
 public class Heading
 {
 [Field(Title = "Primary image")]
 public ImageField PrimaryImage { get; set; }

 [Field]
 public HtmlField Ingress { get; set; }
 }
}

2. In the Regions folder, add a new temporary class without a namespace
named ExploreBlocks.cs, and enter statements to define five properties,
one for each block type, as shown in the following code:
using Piranha.Extend.Blocks;

class ExploreBlocks
{
 HtmlBlock a;
 ColumnBlock b;
 ImageBlock c;
 QuoteBlock d;
 TextBlock e;
}

3. Click inside each block type, press F12, review its definition, and note that to
define a block the class must inherit from Block and be decorated with the
[BlockType] attribute. For example, the HtmlBlock class, as shown in the
following code:
#region Assembly Piranha, Version=7.0.2.0, Culture=neutral,
PublicKeyToken=null
// Piranha.dll

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[582]

#endregion

using Piranha.Extend.Fields;

namespace Piranha.Extend.Blocks
{
 [BlockType(Name = "Content", Category = "Content",
 Icon = "fas fa-paragraph", Component = "html-block")]
 public class HtmlBlock : Block
 {
 public HtmlBlock();

 public HtmlField Body { get; set; }

 public override string GetTitle();
 }
}

4. Open Views/Cms/DisplayTemplates/ColumnBlock.cshtml and note
that it renders collection of block items inside <div> elements styled with
Bootstrap, as shown in the following markup:
@model Piranha.Extend.Blocks.ColumnBlock

<div class="row">
 @for (var n = 0; n < Model.Items.Count; n++)
 {
 <div class="col-md">
 @Html.DisplayFor(m => Model.Items[n],
 Model.Items[n].GetType().Name)
 </div>
 }
</div>

5. Review the models and views for the other four built-in block types.
6. Comment out the whole class or delete the file from your project. We only

created it to review how the built-in block types are implemented.

More Information: If you are not familiar with the Bootstrap
grid system then you can read about it at the following link:
https://getbootstrap.com/docs/4.1/layout/grid/

https://getbootstrap.com/docs/4.1/layout/grid/
https://getbootstrap.com/docs/4.1/layout/grid/

Building Websites Using a Content Management System | 17

[583]

Defining components, content types, and
templates
Now that you have seen the functionality of the content and component types
provided with the project template, we will review how they were defined in
more detail, and then we will define some custom page types to show a catalog of
Northwind products.

Reviewing the standard page type
We will review the simplest page type, used for standard pages like About Us.

1. In Visual Studio Code, expand Models, open StandardPage.cs, and note
that standard pages do not currently have any custom properties, as shown
in the following code:
using Piranha.AttributeBuilder;
using Piranha.Models;

namespace NorthwindCms.Models
{
 [PageType(Title = "Standard page")]
 public class StandardPage : Page<StandardPage>
 {
 }
}

2. Click in Page<StandardPage> and press F12 to view the source.
3. Click in GenericPage<T> and press F12 to view the source.
4. Click in PageBase<T> and press F12 to view the source.
5. Review the PageBase class, as shown in the following code, and note that

every page has the following properties:
 ° SiteId and ParentId that are Guid values.
 ° ContentType that is a string.
 ° Blocks that is a list of Block instances.

#region Assembly Piranha, Version=7.0.2.0, Culture=neutral,
PublicKeyToken=null
// Piranha.dll
#endregion

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[584]

using Piranha.Extend;

namespace Piranha.Models
{
 public abstract class PageBase :
 RoutedContent, IBlockModel, IMeta
 {
 protected PageBase();

 public Guid SiteId { get; set; }
 [StringLength(256)]
 public string ContentType { get; set; }
 public Guid? ParentId { get; set; }
 public int SortOrder { get; set; }
 [StringLength(128)]
 public string NavigationTitle { get; set; }
 public bool IsHidden { get; set; }
 [StringLength(256)]
 public string RedirectUrl { get; set; }
 public RedirectType { get; set; }
 public Guid? OriginalPageId { get; set; }
 public IList<Block> Blocks { get; set; }
 }
}

6. Click in RoutedContent, press F12 to view the source, and note that this is
the class that defines properties like Slug for the segment name used in URL
paths, and metadata like description and keywords for better SEO.

7. Click in Content and press F12 to view the source, as shown in the following
code, and note that all content has:

 ° Id as a Guid
 ° TypeId as a string
 ° Title as a string
 ° DateTime values for when it was created and last modified

using System;
using System.ComponentModel.DataAnnotations;

namespace Piranha.Models
{
 public abstract class Content
 {
 protected Content();

 public Guid Id { get; set; }
 [StringLength(64)]
 public string TypeId { get; set; }
 [StringLength(128)]

Building Websites Using a Content Management System | 17

[585]

 public string Title { get; set; }
 public DateTime Created { get; set; }
 public DateTime LastModified { get; set; }
 }
}

Reviewing the blog archive page type
We will review the blog archive page type, used to list, sort, and filter blog items.

1. Open BlogArchive.cs and note that blog archive pages do not currently
have any custom properties and that they do not enable blocks, as shown in
the following code:
using Piranha.AttributeBuilder;
using Piranha.Models;

namespace NorthwindCms.Models
{
 [PageType(Title = "Blog archive", UseBlocks = false)]
 public class BlogArchive : ArchivePage<BlogArchive>
 {
 }
}

2. Click ArchivePage<BlogArchive>, press F12, and note that
ArchivePage<T> inherits from ArchivePage<T, DynamicPost>.

3. Click ArchivePage<T, DynamicPost >, press F12, and note that it has an
Archive property that is a PostArchive<TPost>.

4. Click PostArchive<TPost>, press F12, and note the Posts property and
the filtering and grouping properties by Year, Month, Category, and Tag, as
shown in the following code:
using System.Collections.Generic;

namespace Piranha.Models
{
 public class PostArchive<T> where T : PostBase
 {
 public PostArchive();

 public int? Year { get; set; }
 public int? Month { get; set; }
 public int CurrentPage { get; set; }
 public int TotalPages { get; set; }
 public int TotalPosts { get; set; }
 public Taxonomy Category { get; set; }
 public Taxonomy Tag { get; set; }

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[586]

 public IList<T> Posts { get; set; }
 }
}

Defining custom content and component
types
We will define custom pages and regions for storing categories and products
imported from the Northwind database. Since Piranha CMS is not yet compatible
with .NET Core 3.0, we cannot use the Entity Framework Core database context that
we used in previous chapters, although we can reuse the entity models because we
put them in a .NET Standard 2.0-compatible class library.

We will create an MVC controller that responds to an HTTP GET request for the
/import relative path by querying the Northwind database for categories and their
products. Then, using the Piranha CMS API to find a special page that represents the
root of the product catalog, and as children of that page, programmatically create
instances of a custom CategoryPage type with a custom region to store details like
the name, description, and image of each category, and a list of instances of a custom
region to store details of each product including name, price, and units in stock, as
shown in the following diagram:

Building Websites Using a Content Management System | 17

[587]

Creating custom regions
Let's start by creating custom regions for a category and product so that data can
be stored in the Piranha CMS database and edited by a content owner through the
manager user interface.

1. In the Models/Regions folder, add a new class named CategoryRegion.
cs, and add statements to define a region for storing information about a
category from the Northwind database using suitable field types, as shown
in the following code:
using Piranha.AttributeBuilder;
using Piranha.Extend.Fields;

namespace NorthwindCms.Models.Regions
{
 public class CategoryRegion
 {
 [Field(Title = "Category ID")]
 public NumberField CategoryID { get; set; }

 [Field(Title = "Category name")]
 public TextField CategoryName { get; set; }

 [Field]
 public HtmlField Description { get; set; }

 [Field(Title = "Category image")]
 public ImageField CategoryImage { get; set; }
 }
}

2. In the Models/Regions folder, add a new class named ProductRegion.
cs and add statements to define a region for storing information about a
product from the Northwind database using suitable field types, as shown in
the following code:
using Piranha.AttributeBuilder;
using Piranha.Extend.Fields;
using Piranha.Models;

namespace NorthwindCms.Models.Regions
{
 public class ProductRegion
 {
 [Field(Title = "Product ID")]
 public NumberField ProductID { get; set; }

 [Field(Title = "Product name")]

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[588]

 public TextField ProductName { get; set; }

 [Field(Title = "Unit price",
 Options = FieldOption.HalfWidth)]
 public StringField UnitPrice { get; set; }

 [Field(Title = "Units in stock",
 Options = FieldOption.HalfWidth)]
 public NumberField UnitsInStock { get; set; }
 }
}

Creating an entity data model
Now we need to reference the entity models in the .NET Standard 2.0 class
library and create a new Northwind database context in the current project that is
compatible with ASP.NET Core 2.2 used by Piranha CMS 7.0.

1. Open the NorthwindCms.csproj file and add a project reference to the
Northwind entity models class library that you created in Chapter 15, Building
Websites Using ASP.NET Core Razor Pages, as shown in the following markup:
<ItemGroup>
 <ProjectReference Include=
 "..\NorthwindEntitiesLib\NorthwindEntitiesLib.csproj" />
</ItemGroup>

2. In the Models folder, add a class named Northwind.cs, with statements as
shown in the following code:
using Microsoft.EntityFrameworkCore;

namespace Packt.Shared
{
 public class Northwind : DbContext
 {
 public DbSet<Category> Categories { get; set; }
 public DbSet<Product> Products { get; set; }

 public Northwind(DbContextOptions options)
 : base(options) { }

 protected override void OnModelCreating(
 ModelBuilder modelBuilder)
 {
 base.OnModelCreating(modelBuilder);

 modelBuilder.Entity<Category>()
 .Property(c => c.CategoryName)
 .IsRequired()

Building Websites Using a Content Management System | 17

[589]

 .HasMaxLength(15);

 // define a one-to-many relationship
 modelBuilder.Entity<Category>()
 .HasMany(c => c.Products)
 .WithOne(p => p.Category);

 modelBuilder.Entity<Product>()
 .Property(c => c.ProductName)
 .IsRequired()
 .HasMaxLength(40);

 modelBuilder.Entity<Product>()
 .HasOne(p => p.Category)
 .WithMany(c => c.Products);
 }
 }
}

Creating custom page types
Now we need to define custom page types for the catalog and a product category.

1. In the Models folder, add a class named CatalogPage.cs that does not
allow blocks, has no content regions because it will be populated from the
Northwind database, and has a custom route path /catalog, as shown in the
following code:
using Piranha.AttributeBuilder;
using Piranha.Extend.Fields;
using Piranha.Models;
using NorthwindCms.Models.Regions;
using System.Collections.Generic;

namespace NorthwindCms.Models
{
 [PageType(Title = "Catalog page", UseBlocks = false)]
 [PageTypeRoute(Title = "Default", Route = "/catalog")]
 public class CatalogPage : Page<CatalogPage>
 {
 }
}

2. In the Models folder, add a class named CategoryPage.cs that does not
allow blocks, has a custom route path /catalog-category, and has a
property to store details of the category using a region and a property to
store a list of products using a region, as shown in the following code:
using Piranha.AttributeBuilder;
using Piranha.Extend.Fields;

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[590]

using Piranha.Models;
using NorthwindCms.Models.Regions;
using System.Collections.Generic;

namespace NorthwindCms.Models
{
 [PageType(Title = "Category Page", UseBlocks = false)]
 [PageTypeRoute(Title = "Default", Route = "/catalog-category")]
 public class CategoryPage : Page<CategoryPage>
 {
 [Region(Title = "Category detail")]
 [RegionDescription("The details for this category.")]
 public CategoryRegion CategoryDetail { get; set; }

 [Region(Title = "Category products")]
 [RegionDescription("The products for this category.")]
 public IList<ProductRegion> Products { get; set; }
 = new List<ProductRegion>();
 }
}

Creating custom view models
Next, we need to define some types for populating the catalog page because it will
use the page hierarchy structure to determine product categories to show in the
catalog page.

1. In the Models folder, add a class named CategoryItem.cs that has
properties to store a summary of a category including links to its image and
the full category page, as shown in the following code:
namespace NorthwindCms.Models
{
 public class CategoryItem
 {
 public string Title { get; set; }
 public string Description { get; set; }
 public string PageUrl { get; set; }
 public string ImageUrl { get; set; }
 }
}

2. In the Models folder, add a class named CatalogViewModel.cs that has
a property to reference the catalog page and a property to store a list of
category summary items, as shown in the following code:
using System.Collections.Generic;

namespace NorthwindCms.Models

Building Websites Using a Content Management System | 17

[591]

{
 public class CatalogViewModel
 {
 public CatalogPage { get; set; }

 public IEnumerable<CategoryItem> Categories { get; set; }
 }
}

Defining custom content templates for
content types
Now we must define the controllers and views to render the content types. We will
use the sitemap to fetch the children of the catalog page to find out which categories
should be shown in the catalog.

1. Open Controllers/CmsController.cs, import the System.Linq and
NorthwindCMS.Models namespaces, and add statements to define two new
action methods named Catalog and Category configured for the routes for
the catalog and each catalog category, as shown highlighted in the following
partial code:
using System;
using System.Threading;
using Microsoft.AspNetCore.Mvc;
using Piranha;
using System.Linq;
using NorthwindCms.Models;

namespace NorthwindCms.Controllers
{
 public class CmsController : Controller
 {
 ...

 [Route("catalog")]
 public async Task<IActionResult> Catalog(Guid id)
 {
 var catalog = await _api.Pages.
GetByIdAsync<CatalogPage>(id);

 var model = new CatalogViewModel
 {
 CatalogPage = catalog,
 Categories = (await_api.Sites.GetSitemapAsync())

 // get the catalog page

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[592]

 .Where(item => item.Id == catalog.Id)

 // get its children
 .SelectMany(item => item.Items)

 // for each child sitemap item, get the page
 // and return a simplified model for the view
 .Select(item =>
 {
 var page = _api.Pages.GetByIdAsync<CategoryPage>
 (item.Id).Result;

 var ci = new CategoryItem
 {
 Title = page.Title,
 Description = page.CategoryDetail.Description,
 PageUrl = page.Permalink,
 ImageUrl = page.CategoryDetail.CategoryImage
 .Resize(_api, 200)
 };

 return ci;
 })
 };

 return View(model);
 }

 [Route("catalog-category")]
 public async Task<IActionResult> Category(Guid id)
 {
 var model = await _api.Pages
 .GetByIdAsync<Models.CategoryPage>(id);

 return View(model);
 }
 }
}

We used catalog-category for the name of the route because there is
already a route named category that is used for grouping blog posts into
categories.

2. In Views/Cms, add a Razor file named Catalog.cshtml, as shown in the
following markup:
@using Piranha.Models
@using NorthwindCms.Models
@model CatalogViewModel
@{
 ViewBag.Title = Model.CatalogPage.Title;

Building Websites Using a Content Management System | 17

[593]

}
<div class="container">
 <div class="row justify-content-center">
 <div class="col-sm-10">
 <h1 class="display-3">@Model.CatalogPage.Title</h1>
 </div>
 </div>
 <div class="row">
 @foreach(CategoryItem c in Model.Categories)
 {
 <div class="col-sm-4">

 <div class="card border-dark"
 style="width: 18rem;">
 <img class="card-img-top" src="@c.ImageUrl"
 alt="Image of @c.Title"
 asp-append-version="true" />
 <div class="card-body">
 <h5 class="card-title text-info">@c.Title</h5>
 <p class="card-text text-info">
 @c.Description</p>
 </div>
 </div>

 </div>
 }
 </div>
</div>

3. In Views/Cms, add a Razor file named Category.cshtml, as shown in the
following markup:
@using NorthwindCms.Models.Regions
@model NorthwindCms.Models.CategoryPage
@{
 ViewBag.Title = Model.Title;
}
<div class="container">
 <div class="row justify-content-center">
 <div class="col-sm-10">
 <h1 class="display-4">
 @Model.CategoryDetail.CategoryName
 </h1>
 <p class="lead">@Model.CategoryDetail.Description</p>
 </div>
 </div>
 <div class="row">
 @if (Model.Products.Count == 0)
 {
 <div class="col-sm-10">
 There are no products in this category!
 </div>

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[594]

 }
 else
 {
 @foreach(ProductRegion p in Model.Products)
 {
 <div class="col-sm-4">
 <div class="card border-dark" style="width: 18rem;">
 <div class="card-header">
 In Stock: @p.UnitsInStock.Value
 </div>
 <div class="card-body">
 <h5 class="card-title text-info">
 <small class="text-muted">
 @p.ProductID.Value</small>
 @p.ProductName.Value
 </h5>
 <p class="card-text text-info">
 Price: @p.UnitPrice.Value
 </p>
 </div>
 </div>
 </div>
 }
 }
 </div>
</div>

Configuring start up and importing from a
database
Finally, we must configure the content types and Northwind database connection
string.

1. Open Startup.cs and import the System.IO namespace.
2. At the bottom of the ConfigureServices method, add a statement to

register the Northwind database context, as shown highlighted in the
following partial code:
public void ConfigureServices(IServiceCollection services)
{
 ...
 string databasePath = Path.Combine("..", "Northwind.db");

 services.AddDbContext<Packt.Shared.Northwind>(options =>
 options.UseSqlite($"Data Source={databasePath}"));
}

Building Websites Using a Content Management System | 17

[595]

3. In the Configure method, in the section commented with // Build
content types, add two calls to the AddType method to register the two
new page types and add a call to automatically redirect to HTTPS, as shown
highlighted in the following code:
public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, IApi api)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 // Initialize Piranha
 App.Init();

 // register GIFs as a media type
 App.MediaTypes.Images.Add(".gif", "image/gif");

 // Configure cache level
 App.CacheLevel = Piranha.Cache.CacheLevel.Basic;

 // Build content types
 var pageTypeBuilder = new Piranha.AttributeBuilder
 .PageTypeBuilder(api)
 .AddType(typeof(Models.BlogArchive))
 .AddType(typeof(Models.StandardPage))
 .AddType(typeof(Models.CatalogPage))
 .AddType(typeof(Models.CategoryPage));

 pageTypeBuilder.Build().DeleteOrphans();

 var postTypeBuilder = new Piranha.AttributeBuilder
 .PostTypeBuilder(api)
 .AddType(typeof(Models.BlogPost));

 postTypeBuilder.Build().DeleteOrphans();

 var siteTypeBuilder = new Piranha.AttributeBuilder
 .SiteTypeBuilder(api)
 .AddType(typeof(Models.BlogSite));

 siteTypeBuilder.Build().DeleteOrphans();

 // Register middleware
 app.UseStaticFiles();
 app.UseAuthentication();
 app.UsePiranha();

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[596]

 app.UsePiranhaManager();

 app.UseHttpsRedirection();

 app.UseMvc(routes =>
 {
 routes.MapRoute(name: "areaRoute",
 template: "{area:exists}/{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" });

 routes.MapRoute(
 name: "default",
 template: "{controller=home}/{action=index}/{id?}");
 });
}

4. In the Controllers folder, add a new class named ImportController.cs
to define a controller to import categories and products from Northwind into
instances of the new custom content types, as shown in the following code:

using Microsoft.AspNetCore.Mvc;
using Piranha;
using Piranha.Models;
using System;
using System.Linq;
using System.Threading.Tasks;
using Packt.Shared;
using NorthwindCms.Models;
using NorthwindCms.Models.Regions;
using Microsoft.EntityFrameworkCore; // Include() extension method

namespace NorthwindCms.Controllers
{
 public class ImportController : Controller
 {
 private readonly IApi api;

 private readonly Northwind db;

 public ImportController(
 IApi api, Northwind injectedContext)
 {
 this.api = api;
 db = injectedContext;
 }

 [Route("/import")]
 public async Task<IActionResult> Import()
 {
 var site = await api.Sites.GetDefaultAsync();
 var catalog = await api.Pages

Building Websites Using a Content Management System | 17

[597]

 .GetBySlugAsync<CatalogPage>("catalog");

 foreach (var category in
 db.Categories.Include(c => c.Products))
 {
 // if the category page already exists,
 // then skip to the next iteration of the loop
 CategoryPage =
 await api.Pages.GetBySlugAsync<CategoryPage>(
 $"catalog/{category.CategoryName.ToLower()}");

 if (categoryPage == null)
 {
 categoryPage = CategoryPage.Create(api);

 categoryPage.Id = Guid.NewGuid();
 categoryPage.SiteId = site.Id;
 categoryPage.ParentId = catalog.Id;

 categoryPage.CategoryDetail.CategoryID =
 category.CategoryID;
 categoryPage.CategoryDetail.CategoryName =
 category.CategoryName;
 categoryPage.CategoryDetail.Description =
 category.Description;

 // find image with correct filename for category id
 var image = (await api.Media.GetAllAsync())
 .First(media => media.Type == MediaType.Image
 && media.Filename ==
 $"category{category.CategoryID}.jpeg");

 categoryPage.CategoryDetail.CategoryImage = image;
 }

 if (categoryPage.Products.Count == 0)
 {
 // convert the products for this category into
 // a list of instances of ProductRegion
 categoryPage.Products = category.Products
 .Select(p => new ProductRegion
 {
 ProductID = p.ProductID,
 ProductName = p.ProductName,
 UnitPrice = p.UnitPrice.HasValue
 ? p.UnitPrice.Value.ToString("c") : "n/a",
 UnitsInStock = p.UnitsInStock ?? 0
 }).ToList();
 }

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[598]

 categoryPage.Title = category.CategoryName;

 categoryPage.MetaDescription =
 category.Description;

 categoryPage.NavigationTitle =
 category.CategoryName;

 categoryPage.Published = DateTime.Now;

 await api.Pages.SaveAsync(categoryPage);
 }

 return Redirect("~/");
 }
 }
}

Testing the Northwind CMS website
We are now ready to run the website.

Uploading images and creating the catalog
root
First, we will upload some images to use for the eight categories of products and
then we will create a catalog page to act as a root in the page hierarchy that we will
later import content from the Northwind database into.

1. In Terminal, enter the command dotnet run to build and start the website.
2. Start Chrome, navigate to https://localhost:5001/manager/, and log in

as admin with password.
3. In the menu navigation bar on the left, click Media, and import the eight

category images, as shown in the following screenshot:

More Information: You can download images from the GitHub
repository for this book at the following link: https://github.
com/markjprice/cs8dotnetcore3/tree/master/Assets

https://localhost:5001/manager/
https://localhost:5001/manager/
https://github.com/markjprice/cs7dotnetcore2/tree/master/Assets
https://github.com/markjprice/cs7dotnetcore2/tree/master/Assets
https://github.com/markjprice/cs7dotnetcore2/tree/master/Assets
https://github.com/markjprice/cs8dotnetcore3/tree/master/Assets
https://github.com/markjprice/cs7dotnetcore2/tree/master/Assets
https://github.com/markjprice/cs7dotnetcore2/tree/master/Assets
https://github.com/markjprice/cs7dotnetcore2/tree/master/Assets
https://github.com/markjprice/cs7dotnetcore2/tree/master/Assets
https://github.com/markjprice/cs7dotnetcore2/tree/master/Assets
https://github.com/markjprice/cs8dotnetcore3/tree/master/Assets
https://github.com/markjprice/cs8dotnetcore3/tree/master/Assets

Building Websites Using a Content Management System | 17

[599]

4. In the menu navigation bar on the left, click Pages, add a new Catalog page,
set its title to Catalog, and then click Publish.

Importing category and product content
In the CONTENT : PAGES section, a content owner could manually add a new
Category page under the Catalog, but we will use the import controller to create all
the categories and products automatically.

1. In the Chrome address box, change the URL to https://localhost:5001/,
press Enter, click Catalog, and note the new page is currently empty.

2. In the Chrome address box, change the URL to https://localhost:5001/
import/, press Enter, and note that after importing the Northwind categories
and products you are redirected to the home page.

https://localhost:5001/
https://localhost:5001/
https://localhost:5001/
https://localhost:5001/import/
https://localhost:5001/import/
https://localhost:5001/import/
https://localhost:5001/import/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[600]

3. Click Catalog, and note the categories have been successfully imported, as
shown in the following screenshot:

4. Click Meat/Poultry. Note that the URL is https://localhost:5001/
catalog/meat/poultry and that it has some products, as shown in the
following screenshot:

https://localhost:5001/catalog/meat/poultry
https://localhost:5001/catalog/meat/poultry

Building Websites Using a Content Management System | 17

[601]

Managing catalog content
Now that we have imported the catalog content, a content owner can use the
Piranha manager interface to make changes instead of editing the original data in the
Northwind database.

1. In the Chrome address box, change the URL to https://localhost:5001/
manager/ and, if necessary, log in as admin with password.

2. In CONTENT : PAGES, under the Catalog page, click the Meat/Poultry
page, as shown in the following screenshot:

https://localhost:5001/manager/
https://localhost:5001/manager/
https://localhost:5001/manager/
https://localhost:5001/manager/
https://localhost:5001/manager/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[602]

3. In Meat/Poultry, note the category details including a link to the uploaded
image media, and then click Category products, as shown in the following
screenshot:

4. In the Meat/Poultry Category products, note that although there are six rows
representing the six products, the rows do not show the product details.

5. Click the three dots icons in any row to expand or collapse that row, and note
the admin could edit the data, or click the delete icon to completely remove
that product, as shown in the following screenshot:

More Information: You can write manager extensions to
improve the view of a product in a row, but at the time of
writing there is no documentation at the following link: http://
piranhacms.org/docs/manager-extensions

http://piranhacms.org/docs/manager-extensions
http://piranhacms.org/docs/manager-extensions
http://piranhacms.org/docs/manager-extensions
http://piranhacms.org/docs/manager-extensions

Building Websites Using a Content Management System | 17

[603]

6. Close the browser.

Reviewing how Piranha stores content
Let's see how content is stored in the Piranha CMS database.

1. Start SQLiteStudio.
2. Navigate to Database | Add a database or press Cmd + O.
3. Click the yellow folder to browse for existing database file on the local

computer.
4. Navigate to the Code/PracticalApps/NorthwindCms folder, select piranha.

blog.db, and click Open.
5. In the Database dialog box, click OK.
6. Double-click the piranha.blog database to connect to it.
7. Expand Tables, right-click the Piranha_Pages table, and select Edit the

table.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[604]

8. Click the Data tab and note the column values stored for each page,
including LastModified, MetaDescription, NavigationTitle, and
PageTypeId, as shown in the following screenshot:

9. Right-click the Piranha_PageFields table and select Edit the table.
10. Click the Data tab, and note the column values stored for each page

including CLRType, FieldId, RegionId, and Value, as shown in the
following screenshot:

Building Websites Using a Content Management System | 17

[605]

11. Right-click the piranha.blog database and select Disconnect from the
database.

12. Close SQLiteStudio.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with deeper research.

Exercise 17.1 – Test your knowledge
Answer the following questions:

1. What are some of the benefits of using a Content Management System to
build a website compared to using ASP.NET Core alone?

2. What is the special relative URL path to access the Piranha CMS management
user interface and what is the username and password configured by default?

3. What is a slug?
4. What is the difference between saving content and publishing content?
5. What are the three Piranha CMS content types and what are they used for?
6. What are the three Piranha CMS component types and what are they used

for?
7. List three properties that a Page type inherits from its base classes and

explain what they are used for.
8. How do you define a custom region for a content type?
9. How do you define routes for Piranha CMS?
10. How do you retrieve a page from the Piranha CMS database?

Exercise 17.2 – Practice defining a block type
for rendering YouTube videos
Read the following support article and then define a block type with properties to
control options like auto play with a display template that uses the correct HTML
markup:

https://support.google.com/youtube/answer/171780

https://support.google.com/youtube/answer/171780
https://support.google.com/youtube/answer/171780

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[606]

You should also refer to the official documentation for defining custom blocks. Note
that for Piranha CMS 7.0 and later, to define a manager view to enable block editing,
you must use Vue.js.

http://piranhacms.org/docs/extensions/custom-blocks

Exercise 17.3 – Explore topics
Use the following links to read more details about this chapter's topics:

• Piranha CMS: http://piranhacms.org/
• Piranha CMS repository: https://github.com/PiranhaCMS/piranha.

core

• Piranha questions on Stack Overflow: https://stackoverflow.com/
questions/tagged/piranha-cms

Summary
In this chapter, you learned how a web content management system can enable
developers to rapidly build websites that non-technical users can use to create and
manage their own content. As an example, you learned about a simple open source
.NET Core-based CMS named Piranha, you reviewed some content types provided
by its blog project template, and you defined custom regions and page types for
working with content imported from the Northwind sample database.

In the next chapter, you will learn how to build and consume web services.

http://piranhacms.org/docs/extensions/custom-blocks
http://piranhacms.org/docs/extensions/custom-blocks
http://piranhacms.org/
https://github.com/PiranhaCMS/piranha.core
https://github.com/PiranhaCMS/piranha.core
https://stackoverflow.com/questions/tagged/piranha-cms
https://stackoverflow.com/questions/tagged/piranha-cms
https://stackoverflow.com/questions/tagged/piranha-cms
https://stackoverflow.com/questions/tagged/piranha-cms
https://stackoverflow.com/questions/tagged/piranha-cms

[607]

Chapter 18
Building and Consuming

Web Services
This chapter is about learning how to build web services using ASP.NET Core Web
API, and then consuming web services using HTTP clients that could be any other
type of .NET app, including a website, a Windows desktop app, or a mobile app.

This chapter assumes knowledge and skills that you learned in Chapter 11, Working
with Databases Using Entity Framework Core and Chapter 16, Building Websites Using
the Model-View-Controller Pattern.

In this chapter, we will cover the following topics:

• Building web services using ASP.NET Core Web API
• Documenting and testing web services
• Consuming services using HTTP clients
• Implementing advanced features
• Understanding other communication technologies

Building web services using ASP.NET
Core Web API
Before we build a modern web service, we need to cover some background to set the
context for this chapter.

Understanding web service acronyms
Although HTTP was originally designed to request and respond with HTML and
other resources for humans to look at, it is also good for building services.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[608]

Roy Fielding stated in his doctoral dissertation, describing the Representational
State Transfer (REST) architectural style, that the HTTP standard would be great for
building services because it defines the following:

• URIs to uniquely identify resources, like
https://localhost:5001/api/products/23.

• Methods to perform common tasks on those resources, like GET, POST, PUT,
and DELETE.

• The ability to negotiate the media type of content exchanged in requests and
responses, such as XML and JSON. Content negotiation happens when the
client specifies a request header like Accept: application/xml,*/*;q=0.8.
The default response format used by ASP.NET Core Web API
is JSON, which means one of the response headers would be
Content-Type: application/json; charset=utf-8.

Web services are services that use the HTTP communication standard, so they are
sometimes called HTTP or RESTful services. HTTP or RESTful services are what this
chapter is about.

Web services can also mean Simple Object Access Protocol (SOAP) services that
implement some of the WS-* standards. Microsoft .NET Framework 3.0 and later
includes a technology named Windows Communication Foundation (WCF),
which makes it easy for developers to create services including SOAP services that
implement WS-* standards, but Microsoft decided it is legacy and has not ported
it to modern .NET platforms.

Creating an ASP.NET Core Web API project
We will build a web service that provides a way to work with data in the Northwind
database using ASP.NET Core so that the data can be used by any client application
on any platform that can make HTTP requests and receive HTTP responses:

1. In the folder named PracticalApps, create a folder named
NorthwindService.

More Information: You can read more about media types at the
following link: https://en.wikipedia.org/wiki/Media_
type

More Information: You can read more about WS-* standards at
the following link: https://en.wikipedia.org/wiki/List_
of_web_service_specifications

https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications

Building and Consuming Web Services | 18

[609]

2. In Visual Studio Code, open the PracticalApps workspace and add the
NorthwindService folder.

3. Navigate to Terminal | New Terminal and select NorthwindService.
4. In Terminal, use the webapi template to create a new ASP.NET Core Web

API project, as shown in the following command:
dotnet new webapi

5. In the Controllers folder, open WeatherForecastController.cs, as
shown in the following code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;

namespace NorthwindService.Controllers
{
 [ApiController]
 [Route("[controller]")]
 public class WeatherForecastController : ControllerBase
 {
 private static readonly string[] Summaries = new[]
 {
 "Freezing", "Bracing", "Chilly", "Cool", "Mild",
 "Warm", "Balmy", "Hot", "Sweltering", "Scorching"
 };

 private readonly ILogger<WeatherForecastController> _logger;

 public WeatherForecastController(
 ILogger<WeatherForecastController> logger)
 {
 _logger = logger;
 }

 [HttpGet]
 public IEnumerable<WeatherForecast> Get()
 {
 var rng = new Random();
 return Enumerable.Range(1, 5).Select(
 index => new WeatherForecast
 {
 Date = DateTime.Now.AddDays(index),
 TemperatureC = rng.Next(-20, 55),
 Summary = Summaries[rng.Next(Summaries.Length)]
 })
 .ToArray();
 }
 }
}

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[610]

While reviewing the preceding code, note the following:

 ° The Controller class inherits from ControllerBase. This is simpler
than the Controller class used in MVC because it does not have
methods like View to generate HTML responses using a Razor file.

 ° The [Route] attribute registers the weatherforecast relative
URL for clients to use to make HTTP requests that will be handled
by this controller. For example, an HTTP request for https://
localhost:5001/weatherforecast/ would be handled by this
controller. Some developers like to prefix the controller name with
api/ which is a convention to differentiate between MVC and Web
API in mixed projects. If you use [controller] as shown, it uses
the characters before Controller in the class name, in this case
WeatherForecast, or you can simply enter a different name without
the brackets, for example [Route("api/forecast")].

 ° The [ApiController] attribute was introduced with ASP.NET
Core 2.1 and it enables REST-specific behavior for controllers, like
automatic HTTP 400 responses for invalid models, as you will see
later in this chapter.

 ° The [HttpGet] attribute registers the Get method in the Controller
class to respond to HTTP GET requests, and its implementation uses
a Random object to return an array of WeatherForecast values with
random temperatures and summaries like Bracing or Balmy for the
next five days of weather.

6. Add a second Get method to have an integer parameter named days, cut and
paste the original Get method implementation code statements into the new
Get method and modify it to create an IEnumerable of int values up to the
number of days requested, and modify the original Get method to call the
new Get method and pass the value 5, as shown in the following code:
// GET /weatherforecast
[HttpGet]
public IEnumerable<WeatherForecast> Get()
{
 return Get(5);
}

// GET /weatherforecast/7

https://localhost:5001/weatherforecast/
https://localhost:5001/weatherforecast/

Building and Consuming Web Services | 18

[611]

[HttpGet("{days:int}")]
public IEnumerable<WeatherForecast> Get(int days)
{
 var rng = new Random();
 return Enumerable.Range(1, days)
 .Select(index => new WeatherForecast
 {
 Date = DateTime.Now.AddDays(index),
 TemperatureC = rng.Next(-20, 55),
 Summary = Summaries[rng.Next(Summaries.Length)]
 })
 .ToArray();
}

Note the format pattern that constrains the days parameter to int values in the
[HttpGet] attribute.

Reviewing the web service's functionality
Now, we will test the web service's functionality:

1. In Terminal, start the website by entering dotnet run.
2. Start Chrome, navigate to https:/localhost:5001/, and note you will get a

404 status code response because we have not enabled static files and there is
not an index.html, nor is there an MVC controller with a route configured,
either. Remember that this project is not designed for a human to view and
interact with.

3. In Chrome, show the Developer tools, navigate to https:/
localhost:5001/weatherforecast, and note the Web API service should
return a JSON document with five random weather forecast objects in an
array, as shown in the following screenshot:

More Information: You can read more about route constraints
at the following link: https://docs.microsoft.com/en-us/
aspnet/core/fundamentals/routing?view=aspnetcore-
3.0#route-constraint-reference

https:/localhost:5001/
https:/localhost:5001/weatherforecast
https:/localhost:5001/weatherforecast
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-3.0#route-constraint-reference
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-3.0#route-constraint-reference
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-3.0#route-constraint-reference

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[612]

4. Close Developer Tools.
5. Navigate to https:/localhost:5001/weatherforecast/14, and note the

response when requesting a two-week weather forecast, as shown in the
following screenshot:

6. Close Chrome.
7. In Terminal, press Ctrl + C to stop the console application and shut down the

Kestrel web server that is hosting your ASP.NET Core Web API service.

https:/localhost:5001/weatherforecast/14

Building and Consuming Web Services | 18

[613]

Creating a web service for the Northwind
database
Unlike MVC controllers, Web API controllers do not call Razor views to return
HTML responses for humans to see in browsers. Instead, they use content
negotiation with the client application that made the HTTP request to return data
in formats such as XML, JSON, or X-WWW-FORM-URLENCODED in their HTTP
response.

The client application must then deserialize the data from the negotiated format. The
most commonly used format for modern web services is JavaScript Object Notation
(JSON) because it is compact and works natively with JavaScript in a browser when
building Single Page Applications (SPA) with client-side technologies like Angular,
React, and Vue.

We will reference the Entity Framework Core entity data model for the Northwind
database that you created in Chapter 15, Building Websites Using ASP.NET Core Razor
Pages:

1. In the NorthwindService project, open NorthwindService.csproj.
2. Add a project reference to NorthwindContextLib, as shown in the following

markup:
<ItemGroup>
 <ProjectReference Include=
 "..\NorthwindContextLib\NorthwindContextLib.csproj" />
</ItemGroup>

3. In Terminal, enter the following command and ensure that the project
builds:
dotnet build

4. Open Startup.cs and modify it to import the System.IO,
Microsoft.EntityFrameworkCore, and Packt.Shared namespaces, and
statically import the System.Console class.

5. Add statements to the ConfigureServices method, before the call to
AddControllers, to configure the Northwind data context, as shown
in the following code:
string databasePath = Path.Combine("..", "Northwind.db");

services.AddDbContext<Northwind>(options =>
 options.UseSqlite($"Data Source={databasePath}"));

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[614]

6. Add statements to write the names and supported media types of the default
output formatters to the console, and then add XML serializer formatters
and set the compatibility to ASP.NET Core 3.0 after the method call to add
controller support, as shown in the following code:
services.AddControllers(options =>
 {
 WriteLine("Default output formatters:");
 foreach(IOutputFormatter formatter in options.
OutputFormatters)
 {
 var mediaFormatter = formatter as OutputFormatter;

 if (mediaFormatter == null)
 {
 WriteLine($" {formatter.GetType().Name}");
 }
 else // OutputFormatter class has SupportedMediaTypes
 {
 WriteLine(" {0}, Media types: {1}",
 arg0: mediaFormatter.GetType().Name,
 arg1: string.Join(", ",
 mediaFormatter.SupportedMediaTypes));
 }
 }
 })
 .AddXmlDataContractSerializerFormatters()
 .AddXmlSerializerFormatters()
 .SetCompatibilityVersion(CompatibilityVersion.Version_3_0);

7. Start the web service and note that there are four default output formatters,
including ones that convert null values into 204 No Content and ones to
support responses that are plain text and JSON, as shown in the following
output:
Default output formatters:

 HttpNoContentOutputFormatter

 StringOutputFormatter, Media types: text/plain

 StreamOutputFormatter

 SystemTextJsonOutputFormatter, Media types: application/json,
text/json, application/*+json

8. Stop the web service.

More Information: You can read more about the benefits of
setting version compatibility at the following link: https://
docs.microsoft.com/en-us/aspnet/core/mvc/
compatibility-version?view=aspnetcore-3.0

https://docs.microsoft.com/en-us/aspnet/core/mvc/compatibility-version?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/compatibility-version?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/compatibility-version?view=aspnetcore-3.0

Building and Consuming Web Services | 18

[615]

Creating data repositories for entities
Defining and implementing a data repository to provide CRUD operations is good
practice. The CRUD acronym includes the following operations:

• C for Create
• R for Retrieve (or Read)
• U for Update
• D for Delete

We will create a data repository for the Customers table in Northwind. There are
only 91 customers in this table, so we will store a copy of the whole table in memory
to improve scalability and performance when reading customer records. In a real
web service, you should use a distributed cache like Redis, an open source data
structure store, that can be used as a high-performance, high-availability database,
cache, or message broker.

We will follow modern good practice and make the repository API asynchronous. It
will be instantiated by a Controller class using constructor parameter injection, so a
new instance is created to handle every HTTP request:

1. In the NorthwindService project, create a Repositories folder.
2. Add two class files to the Repositories folder named

ICustomerRepository.cs and CustomerRepository.cs.
3. The ICustomerRepository interface will define five methods, as shown in

the following code:
using Packt.Shared;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace NorthwindService.Repositories
{
 public interface ICustomerRepository
 {
 Task<Customer> CreateAsync(Customer c);
 Task<IEnumerable<Customer>> RetrieveAllAsync();
 Task<Customer> RetrieveAsync(string id);
 Task<Customer> UpdateAsync(string id, Customer c);
 Task<bool?> DeleteAsync(string id);

More Information: You can read more about Redis at the
following link: https://redis.io

https://redis.io
https://redis.io

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[616]

 }
}

4. The CustomerRepository class will implement the five methods, as shown
in the following code:
using Microsoft.EntityFrameworkCore.ChangeTracking;
using Packt.Shared;
using System.Collections.Generic;
using System.Collections.Concurrent;
using System.Linq;
using System.Threading.Tasks;

namespace NorthwindService.Repositories
{
 public class CustomerRepository : ICustomerRepository
 {
 // use a static thread-safe dictionary field to cache the
customers
 private static ConcurrentDictionary
 <string, Customer> customersCache;

 // use an instance data context field because it should not be
 // cached due to their internal caching
 private Northwind db;

 public CustomerRepository(Northwind db)
 {
 this.db = db;

 // pre-load customers from database as a normal
 // Dictionary with CustomerID as the key,
 // then convert to a thread-safe ConcurrentDictionary
 if (customersCache == null)
 {
 customersCache = new ConcurrentDictionary
 <string, Customer>(
 db.Customers.ToDictionary(c => c.CustomerID));
 }
 }

 public async Task<Customer> CreateAsync(Customer c)
 {
 // normalize CustomerID into uppercase
 c.CustomerID = c.CustomerID.ToUpper();

 // add to database using EF Core
 EntityEntry<Customer> added = await db.Customers.
AddAsync(c);
 int affected = await db.SaveChangesAsync();

Building and Consuming Web Services | 18

[617]

 if (affected == 1)
 {
 // if the customer is new, add it to cache, else
 // call UpdateCache method
 return customersCache.AddOrUpdate(c.CustomerID, c,
UpdateCache);
 }
 else
 {
 return null;
 }
 }

 public Task<IEnumerable<Customer>> RetrieveAllAsync()
 {
 // for performance, get from cache
 return Task.Run<IEnumerable<Customer>>(
 () => customersCache.Values);
 }

 public Task<Customer> RetrieveAsync(string id)
 {
 return Task.Run(() =>
 {
 // for performance, get from cache
 id = id.ToUpper();
 Customer c;
 customersCache.TryGetValue(id, out c);
 return c;
 });
 }

 private Customer UpdateCache(string id, Customer c)
 {
 Customer old;
 if (customersCache.TryGetValue(id, out old))
 {
 if (customersCache.TryUpdate(id, c, old))
 {
 return c;
 }
 }
 return null;
 }

 public async Task<Customer> UpdateAsync(string id, Customer c)
 {
 // normalize customer ID
 id = id.ToUpper();
 c.CustomerID = c.CustomerID.ToUpper();

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[618]

 // update in database
 db.Customers.Update(c);
 int affected = await db.SaveChangesAsync();

 if (affected == 1)
 {
 // update in cache
 return UpdateCache(id, c);
 }
 return null;
 }

 public async Task<bool?> DeleteAsync(string id)
 {
 id = id.ToUpper();

 // remove from database
 Customer c = db.Customers.Find(id);
 db.Customers.Remove(c);
 int affected = await db.SaveChangesAsync();

 if (affected == 1)
 {
 // remove from cache
 return customersCache.TryRemove(id, out c);
 }
 else
 {
 return null;
 }
 }
 }
}

Implementing a Web API controller
There are some useful attributes and methods for implementing a controller that
returns data instead of HTML.

With MVC controllers, a route like /home/index/ tells us the Controller class name
and the action method name, for example, the HomeController class and the Index
action method.

With Web API controllers, a route like /weatherforecast/ only tells uses the
Controller class name, for example, WeatherForecastController. To determine
the action method name to execute, we must map HTTP methods like GET and POST
to methods in the Controller class.

Building and Consuming Web Services | 18

[619]

You should decorate Controller methods with the following attributes to indicate
the HTTP method to respond to:

• [HttpGet], [HttpHead]: These action methods respond to HTTP GET or
HEAD requests to retrieve a resource and return either the resource and its
response headers or just the headers.

• [HttpPost]: This action method responds to HTTP POST requests to create a
new resource.

• [HttpPut], [HttpPatch]: These action methods respond to HTTP PUT
or PATCH requests to update an existing resource either by replacing it or
updating some of its properties.

• [HttpDelete]: This action method responds to HTTP DELETE requests to
remove a resource.

• [HttpOptions]: This action method responds to HTTP OPTIONS requests.

An action method can return .NET types like a single string value, complex objects
defined by a class or struct, or collections of complex objects, and ASP.NET Core
Web API will automatically serialize them into the requested data format set in the
HTTP request Accept header, for example, JSON, if a suitable serializer has been
registered.

For more control over the response, there are helper methods that return an
ActionResult wrapper around the .NET type.

Declare the action method's return type to be IActionResult if it could return
different return types based on inputs or other variables. Declare the action method's
return type to be ActionResult<T> if it will only return a single type but with
different status codes.

More Information: You can read more about the HTTP
OPTIONS method and other HTTP methods at the following link:
https://developer.mozilla.org/en-US/docs/Web/HTTP/
Methods/OPTIONS

Good Practice: Decorate action methods with the
[ProducesResponseType] attribute to indicate all the known
types and HTTP status codes that the client should expect in
a response. This information can then be publicly exposed to
document how a client should interact with your web service. Think
of it as part of your formal documentation. Later in this chapter you
will learn how you can install a code analyzer to give you warnings
when you do not decorate your action methods like this.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/OPTIONS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/OPTIONS

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[620]

For example, an action method that gets a product based on an id parameter would
be decorated with three attributes; one to indicate that it responds to GET requests
and has an id parameter, and two to indicate what happens when it succeeds and
when the client has supplied an invalid product ID, as shown in the following code:

[HttpGet("{id}")]
[ProducesResponseType(200, Type = typeof(Product))]
[ProducesResponseType(404)]
public IActionResult Get(string id)

The ControllerBase class has methods to make it easy to return different responses:

• Ok: Return an HTTP 200 status code with a resource converted to the client's
preferred format like JSON or XML. Commonly used in response to an HTTP
GET request.

• CreatedAtRoute: Return an HTTP 201 status code with the path to the new
resource. Commonly used in response to a POST request to create a resource
that can be performed quickly.

• Accepted: Return an HTTP 202 status code to indicate the request is being
processed but has not completed. Commonly used in response to a request
that triggers a background process that takes a long time to complete.

• NoContentResult: Return an HTTP 204 status code. Commonly used in
response to a PUT request to update an existing resource and the response
does not need to contain the updated resource.

• BadRequest: Return an HTTP 400 status code with optional message string.
• NotFound: Return an HTTP 404 status code with an automatically populated

ProblemDetails body (requires a compatibility version of 2.2 or later).

Configuring the customers repository and
Web API controller
Now you will configure the repository so that it can be called from within a Web API
controller.

You will register a scoped dependency service implementation for the repository
when the web service starts up and then use constructor parameter injection to get it
in a new Web API controller for working with customers.

More Information: You can read more about dependency
injection at the following link: https://docs.microsoft.
com/en-us/aspnet/core/fundamentals/dependency-
injection?view=aspnetcore-3.0

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-3.0

Building and Consuming Web Services | 18

[621]

To show an example of differentiating between MVC and Web API controllers using
routes, we will use the common /api URL prefix convention for the customers
controller:

1. Open Startup.cs and import the NorthwindService.Repositories
namespace.

2. Add the following statement to the bottom of the ConfigureServices
method, which will register the CustomerRepository for use at runtime, as
shown in the following code:
services.AddScoped<ICustomerRepository, CustomerRepository>();

3. In the Controllers folder, add a new class named
CustomersController.cs.

4. In the CustomersController class, add statements to define a Web API
Controller class to work with customers, as shown in the following code:

using Microsoft.AspNetCore.Mvc;
using Packt.Shared;
using NorthwindService.Repositories;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace NorthwindService.Controllers
{
 // base address: api/customers
 [Route("api/[controller]")]
 [ApiController]
 public class CustomersController : ControllerBase
 {
 private ICustomerRepository repo;

 // constructor injects repository registered in Startup
 public CustomersController(ICustomerRepository repo)
 {
 this.repo = repo;
 }

 // GET: api/customers
 // GET: api/customers/?country=[country]
 // this will always return a list of customers even if its
empty
 [HttpGet]
 [ProducesResponseType(200,
 Type = typeof(IEnumerable<Customer>))]
 public async Task<IEnumerable<Customer>> GetCustomers(
 string country)

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[622]

 {
 if (string.IsNullOrWhiteSpace(country))
 {
 return await repo.RetrieveAllAsync();
 }
 else
 {
 return (await repo.RetrieveAllAsync())
 .Where(customer => customer.Country == country);
 }
 }

 // GET: api/customers/[id]
 [HttpGet("{id}", Name = nameof(GetCustomer))] // named route
 [ProducesResponseType(200, Type = typeof(Customer))]
 [ProducesResponseType(404)]
 public async Task<IActionResult> GetCustomer(string id)
 {
 Customer c = await repo.RetrieveAsync(id);
 if (c == null)
 {
 return NotFound(); // 404 Resource not found
 }
 return Ok(c); // 200 OK with customer in body
 }

 // POST: api/customers
 // BODY: Customer (JSON, XML)
 [HttpPost]
 [ProducesResponseType(201, Type = typeof(Customer))]
 [ProducesResponseType(400)]
 public async Task<IActionResult> Create([FromBody] Customer c)
 {
 if (c == null)
 {
 return BadRequest(); // 400 Bad request
 }

 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState); // 400 Bad request
 }

 Customer added = await repo.CreateAsync(c);

 return CreatedAtRoute(// 201 Created
 routeName: nameof(GetCustomer),
 routeValues: new { id = added.CustomerID.ToLower() },
 value: added);
 }

Building and Consuming Web Services | 18

[623]

 // PUT: api/customers/[id]
 // BODY: Customer (JSON, XML)
 [HttpPut("{id}")]
 [ProducesResponseType(204)]
 [ProducesResponseType(400)]
 [ProducesResponseType(404)]
 public async Task<IActionResult> Update(
 string id, [FromBody] Customer c)
 {
 id = id.ToUpper();
 c.CustomerID = c.CustomerID.ToUpper();

 if (c == null || c.CustomerID != id)
 {
 return BadRequest(); // 400 Bad request
 }

 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState); // 400 Bad request
 }

 var existing = await repo.RetrieveAsync(id);

 if (existing == null)
 {
 return NotFound(); // 404 Resource not found
 }

 await repo.UpdateAsync(id, c);

 return new NoContentResult(); // 204 No content
 }

 // DELETE: api/customers/[id]
 [HttpDelete("{id}")]
 [ProducesResponseType(204)]
 [ProducesResponseType(400)]
 [ProducesResponseType(404)]
 public async Task<IActionResult> Delete(string id)
 {
 var existing = await repo.RetrieveAsync(id);
 if (existing == null)
 {
 return NotFound(); // 404 Resource not found
 }

 bool? deleted = await repo.DeleteAsync(id);

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[624]

 if (deleted.HasValue && deleted.Value) // short circuit AND
 {
 return new NoContentResult(); // 204 No content
 }
 else
 {
 return BadRequest(// 400 Bad request
 $"Customer {id} was found but failed to delete.");
 }
 }
 }
}

While reviewing the Controller class, note the following:

• The Controller class registers a route that starts with api/ and includes the
name of the controller, that is, api/customers.

• The constructor uses dependency injection to get the registered repository for
working with customers.

• There are five methods to perform CRUD operations on customers—two GET
methods (all customers or one customer), POST (create), PUT (update), and
DELETE.

• GetCustomers can have a string parameter passed with a country name.
If it is missing, all customers are returned. If it is present, it is used to filter
customers by country.

• GetCustomer has a route explicitly named GetCustomer so that it can be
used to generate a URL after inserting a new customer.

• Create decorates the customer parameter with [FromBody] to tell the model
binder to populate it with values from the body of the HTTP POST request.

• Create returns a response that uses the GetCustomer route so that the client
knows how to get the newly created resource in the future. We are matching
up to methods to create and then get a customer.

• Create and Update both check the model state of the customer passed in the
body of the HTTP request and return a 400 Bad Request containing details
of the model validation errors if it is not valid.

When an HTTP request is received by the service, then it will create an instance of
the Controller class, call the appropriate action method, return the response in
the format preferred by the client, and release the resources used by the controller,
including the repository and its data context.

Building and Consuming Web Services | 18

[625]

Specifying problem details
A feature added in ASP.NET Core 2.1 and later is an implementation of a web
standard for specifying problem details.

In controllers attributed with [ApiController] in a project with ASP.NET Core 2.2
or later compatibility enabled, action methods that return IActionResult that return
a client status code, that is, 4xx, will automatically include a serialized instance of the
ProblemDetails class in the response body.

If you want to take control, then you can create a ProblemDetails instance yourself
and include additional information.

Let's simulate a bad request that needs custom data returned to the client:

1. At the top of the CustomersController class, import the
Microsoft.AspNetCore.Http namespace.

2. At the top of the Delete method, add statements to check if the id matches
the string value "bad", and if so, then return a custom problem details
object, as shown in the following example code:
if (id == "bad")
{
 var problemDetails = new ProblemDetails
 {
 Status = StatusCodes.Status400BadRequest,
 Type = "https://localhost:5001/customers/failed-to-delete",
 Title = $"Customer ID {id} found but failed to delete.",
 Detail = "More details like Company Name, Country and so on.",
 Instance = HttpContext.Request.Path
 };
 return BadRequest(problemDetails); // 400 Bad request
}

More Information: You can read more about the proposed
standard for Problem Details for HTTP APIs at the following
link: https://tools.ietf.org/html/rfc7807

More Information: You can read more about implementing
problem details at the following link: https://docs.
microsoft.com/en-us/dotnet/api/microsoft.
aspnetcore.mvc.problemdetails

https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.problemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.problemdetails
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.problemdetails

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[626]

Documenting and testing web services
You can easily test a web service by making HTTP GET requests, using a browser. To
test other HTTP methods, we need a more advanced tool.

Testing GET requests using a browser
You will use Chrome to test the three implementations of a GET request: for all
customers, for customers in a specified country, and for a single customer using their
unique customer ID:

1. In Terminal, start the NorthwindService Web API web service by entering
the following command: dotnet run

2. In Chrome, navigate to https://localhost:5001/api/customers and
note the JSON document returned, containing all the 91 customers in the
Northwind database, as shown in the following screenshot:

3. Navigate to https://localhost:5001/api/customers/?country=Germany
and note the JSON document returned, containing only the customers in
Germany, as shown in the following screenshot:

https://localhost:5001/api/customers
https://localhost:5001/api/customers
https://localhost:5001/api/customers
https://localhost:5001/api/customers/?country=Germany
https://localhost:5001/api/customers/?country=Germany
https://localhost:5001/api/customers/?country=Germany
https://localhost:5001/api/customers/?country=Germany

Building and Consuming Web Services | 18

[627]

If you get an empty array returned, then make sure you have entered the
country name using the correct casing because the database query is case-
sensitive.

4. Navigate to https://localhost:5001/api/customers/alfki and note
the JSON document returned containing only the customer named Alfreds
Futterkiste, as shown in the following screenshot:

We do not need to worry about casing for the customer id value because inside the
Controller class we normalized the string value to uppercase in code.

But how can we test the other HTTP methods such as POST, PUT, and DELETE? And
how can we document our web service so it's easy for anyone to understand how to
interact with it?

To solve the first problem, we can install a Visual Studio Code extension named
REST Client. To solve the second, we can enable Swagger, the world's most popular
technology for documenting and testing HTTP APIs. But first let's see what is
possible with the Visual Studio Code extension.

Testing HTTP requests with REST Client
extension
REST Client allows you to send an HTTP request and view the response in Visual
Studio Code directly:

1. If you have not already installed REST Client by Huachao Mao
(humao.rest-client), then install it now.

2. In Visual Studio Code, open the NorthwindService project.

More Information: You can read more about how you can use
REST Client at the following link: https://github.com/
Huachao/vscode-restclient/blob/master/README.md

https://localhost:5001/api/customers/alfki
https://localhost:5001/api/customers/alfki
https://localhost:5001/api/customers/alfki
https://github.com/Huachao/vscode-restclient/blob/master/README.md
https://github.com/Huachao/vscode-restclient/blob/master/README.md

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[628]

3. If the web service is not already running, then start it by entering the
following command in Terminal: dotnet run.

4. In the NorthwindService folder, create a RestClientTests folder.
5. In the RestClientTests folder, create a file named get-customers.http,

and modify its contents to contain an HTTP GET request to retrieve all
customers, as shown in the following code:
GET https://localhost:5001/api/customers/ HTTP/1.1

6. Navigate to View | Command Palette, enter rest client, select the
command Rest Client: Send Request, and press Enter, as shown in the
following screenshot:

7. Note the Response is shown in a new tabbed window pane vertically and
that you can rearrange the open tabs to a horizontal layout by dragging and
dropping the tab.

8. Enter more HTTP GET requests, each separated by three hash symbols, to
test getting customers in various countries and getting a single customer
using their ID, as shown in the following code:
###
GET https://localhost:5001/api/customers/?country=Germany HTTP/1.1
###
GET https://localhost:5001/api/customers/?country=USA HTTP/1.1
Accept: application/xml
###
GET https://localhost:5001/api/customers/ALFKI HTTP/1.1

9. Click inside each statement and press Ctrl or Cmd + Alt + R or click the
Send Request link above each request to send it, as shown in the following
screenshot:

Building and Consuming Web Services | 18

[629]

10. Create a file named create-customer.http and modify its contents to
define a POST request to create a new customer, as shown in the following
code:
POST https://localhost:5001/api/customers/ HTTP/1.1
Content-Type: application/json
Content-Length: 287

{
 "customerID": "ABCXY",
 "companyName": "ABC Corp",
 "contactName": "John Smith",
 "contactTitle": "Sir",
 "address": "Main Street",
 "city": "New York",
 "region": "NY",
 "postalCode": "90210",
 "country": "USA",
 "phone": "(123) 555-1234",
 "fax": null,
 "orders": null
}

Note that REST Client will provide IntelliSense while you type common
HTTP requests.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[630]

Due to different line endings in different operating systems, the value for the
Content-Length header will be different on Windows and macOS or Linux.
If the value is wrong, then the request will fail.

11. To discover the correct content length, select the body of the request and then
look in the status bar for the number of characters, as shown in the following
screenshot:

12. Send the request and note the response is 201 Created and includes the newly
created customer in the response body, as shown in the following screenshot:

Building and Consuming Web Services | 18

[631]

I will leave as an optional challenge to the reader the task of creating REST Client
files to test updating a customer (using PUT) and deleting a customer (using DELETE).

Now that we've seen a quick and easy way to test our service, which also happens
to be a great way to learn HTTP, what about external developers? We want it to be as
easy as possible for them to learn and then call our service. For that purpose, we will
use Swagger.

Enabling Swagger
The most important part of Swagger is the OpenAPI Specification, which defines
a REST-style contract for your API, detailing all of its resources and operations
in a human-and machine-readable format for easy development, discovery, and
integration.

For us, another useful feature is Swagger UI, because it automatically generates
documentation for your API with built-in visual testing capabilities.

Let's enable Swagger for our web service using the Swashbuckle package:

1. Open NorthwindService.csproj and add a package reference for
Swashbuckle.AspNetCore, which at the time of writing was still a release
candidate but will likely be fully released as 5.0.0 soon after publishing, as
shown highlighted in the following markup:
<ItemGroup>
 <ProjectReference Include=
 "..\NorthwindContextLib\NorthwindContextLib.csproj" />
 <PackageReference Include="Swashbuckle.AspNetCore"
 Version="5.0.0-rc3" />
</ItemGroup>

2. In Terminal, restore packages and compile your project, as shown in the
following command:
dotnet build

More Information: Learn more details about HTTP POST
requests at the following link: https://developer.mozilla.
org/en-US/docs/Web/HTTP/Methods/POST

More Information: You can read more about Swagger at the
following link: https://swagger.io

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://swagger.io/
https://swagger.io/
https://swagger.io/
https://swagger.io/
https://swagger.io

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[632]

3. Open Startup.cs and import Swashbuckle's Swagger and SwaggerUI
namespaces and Microsoft's OpenAPI models namespace, as shown in
the following code:
using Swashbuckle.AspNetCore.Swagger;
using Swashbuckle.AspNetCore.SwaggerUI;
using Microsoft.OpenApi.Models;

4. In the ConfigureServices method, add a statement to add Swagger support
including documentation for the Northwind service, indicating that this is
the first version of your service, as shown in the following code:
// Register the Swagger generator and define a Swagger document
// for Northwind service
services.AddSwaggerGen(options =>
{
 options.SwaggerDoc(name: "v1", info: new OpenApiInfo
 { Title = "Northwind Service API", Version = "v1" });
});

5. In the Configure method, add statements to use Swagger and Swagger UI,
define an endpoint for the OpenAPI specification JSON document, and list
the HTTP methods supported by our web service, as shown in the following
code:
app.UseSwagger();

app.UseSwaggerUI(options =>
{
 options.SwaggerEndpoint("/swagger/v1/swagger.json",
 "Northwind Service API Version 1");

 options.SupportedSubmitMethods(new[] {
 SubmitMethod.Get, SubmitMethod.Post,
 SubmitMethod.Put, SubmitMethod.Delete });
});

Testing requests with Swagger UI
You are now ready to test an HTTP request using Swagger:

More Information: You can read about how Swagger can
support multiple versions of an API at the following link:
https://stackoverflow.com/questions/30789045/
leverage-multipleapiversions-in-swagger-with-
attribute-versioning/30789944

https://stackoverflow.com/questions/30789045/leverage-multipleapiversions-in-swagger-with-attribute-versioning/30789944
https://stackoverflow.com/questions/30789045/leverage-multipleapiversions-in-swagger-with-attribute-versioning/30789944
https://stackoverflow.com/questions/30789045/leverage-multipleapiversions-in-swagger-with-attribute-versioning/30789944

Building and Consuming Web Services | 18

[633]

1. Start the NorthwindService ASP.NET Web API service.
2. In Chrome, navigate to https://localhost:5001/swagger/ and note that

both the Customers and WeatherForecast Web API controllers have been
discovered and documented, as well as Schemas used by the API.

3. Click GET /api/Customers/{id} to expand that endpoint and note the
required parameter for the id of a customer, as shown in the following
screenshot:

4. Click Try it out, enter an ID of ALFKI, and then click the wide blue Execute
button, as shown in the following screenshot:

5. Scroll down and note the Request URL, Server response with Code, and
Details including Response body and Response headers, as shown in the
following screenshot:

https://localhost:5001/swagger/
https://localhost:5001/swagger/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[634]

6. Scroll back up to the top of the page, click POST /api/Customers to expand
that section and then click Try it out.

7. Click inside the Edit Value box, and modify the JSON to define a new
customer, as shown in the following JSON:
{

 "customerID": "SUPER",

 "companyName": "Super Company",

 "contactName": "Rasmus Ibensen",

 "contactTitle": "Sales Leader",

 "address": "Rotterslef 23",

 "city": "Billund",

 "region": null,

 "postalCode": "4371",

 "country": "Denmark",

 "phone": "31 21 43 21",

 "fax": "31 21 43 22",

 "orders": null

}

8. Click Execute, and note the Request URL, Server response with Code, and
Details including Response body and Response headers, as shown in the
following screenshot:

Building and Consuming Web Services | 18

[635]

A response code of 201 means the customer was successfully created.

9. Scroll back up to the top of the page, click GET /api/Customers, click Try it
out, enter Denmark for the country parameter, and click Execute, to confirm
that the new customer was added to the database, as shown in the following
screenshot:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[636]

10. Click DELETE /api/Customers/{id}, click Try it out, enter super for the id,
click Execute, and note that the server response Code is 204, indicating that it
was successfully deleted, as shown in the following screenshot:

11. Click Execute again, and note that the server response Code is 404, indicating
that the customer does not exist anymore, and the response body contains
a problem details JSON document, as shown in the following screenshot:

12. Enter bad, click Execute again, and note that the server response Code is 400,
indicating that the customer did exist but failed to delete (in this case, because
the web service is simulating this error), and the response body contains a
custom problem details JSON document, as shown in the following screenshot:

Building and Consuming Web Services | 18

[637]

13. Use the GET methods to confirm that the new customer has been deleted from
the database (there were originally only two customers in Denmark).
I will leave testing updates to an existing customer by using PUT to the
reader.

14. Close Chrome.
15. In Terminal, press Ctrl + C to stop the console application and shut down the

Kestrel web server that is hosting your service.

You are now ready to build applications that consume your web service.

Consuming services using HTTP clients
Now that we have built and tested our Northwind service, we will learn how to call
it from any .NET Core app using the HttpClient class and its new factory.

Understanding HttpClient
The easiest way to consume a web service is to use the HttpClient class. However,
many people use it wrongly because it implements IDisposable and Microsoft's
own documentation shows poor usage of it.

Usually when a type implements IDisposable you should create it inside a using
statement to ensure that it is disposed as soon as possible. HttpClient is different
because it is shared, reentrant, and partially thread safe.

The problem has to do with how the underlying network sockets have to be
managed. The bottom line is that you should use a single instance of it for each
HTTP endpoint that you consume during the life of your application.

This will allow each HttpClient instance to have defaults set that are appropriate
for the endpoint it works with, while managing the underlying network sockets
efficiently.

More Information: It is the BaseAddress and
DefaultRequestHeaders properties that you should treat
with caution with multiple threads. You can read more details
and recommendations at the following link: https://medium.
com/@nuno.caneco/c-httpclient-should-not-be-
disposed-or-should-it-45d2a8f568bc

https://medium.com/@nuno.caneco/c-httpclient-should-not-be-disposed-or-should-it-45d2a8f568bc
https://medium.com/@nuno.caneco/c-httpclient-should-not-be-disposed-or-should-it-45d2a8f568bc

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[638]

Configuring HTTP clients using
HttpClientFactory
Microsoft is aware of the issue, and in .NET Core 2.1 they introduced
HttpClientFactory to encourage best practice; that is the technique we will use.

In the following example, we will use the Northwind MVC website as a client
to the Northwind Web API service. Since both need to be hosted in a web server
simultaneously, we first need to configure them to use different port numbers, as
shown in the following list:

• Northwind Web API service will continue to listen on port 5001 using
HTTPS.

• Northwind MVC will listen on ports 5000 using HTTP and 5002 using
HTTPS.

Let's configure those ports.

1. In NorthwindMvc, open Program.cs, and in the CreateHostBuilder
method, add an extension method call to UseUrls to specify port number
5000 for HTTP and port number 5002 for HTTPS, as shown highlighted in
the following code:
public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 webBuilder.UseUrls(
 "http://localhost:5000",
 "https://localhost:5002"
);
 });

More Information: You're using HttpClient wrong and it
is destabilizing your software: https://aspnetmonsters.
com/2016/08/2016-08-27-httpclientwrong/

More Information: You can read more about how to initiate
HTTP requests at the following link: https://docs.
microsoft.com/en-us/aspnet/core/fundamentals/http-
requests

https://aspnetmonsters.com/2016/08/2016-08-27-httpclientwrong/
https://aspnetmonsters.com/2016/08/2016-08-27-httpclientwrong/
https://aspnetmonsters.com/2016/08/2016-08-27-httpclientwrong/
https://aspnetmonsters.com/2016/08/2016-08-27-httpclientwrong/
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/http-requests
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/http-requests
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/http-requests
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/http-requests
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/http-requests

Building and Consuming Web Services | 18

[639]

2. Open Startup.cs and import the System.Net.Http.Headers namespace.
3. In the ConfigureServices method, add a statement to enable

HttpClientFactory with a named client to make calls to the Northwind
Web API service using HTTPS on port 5001 and request JSON as the default
response format, as shown in the following code:
services.AddHttpClient(name: "NorthwindService",
 configureClient: options =>
 {
 options.BaseAddress = new Uri("https://localhost:5001/");

 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 "application/json", 1.0));
 });

4. Open Controllers/HomeController.cs and import the System.Net.Http
and Newtonsoft.Json namespaces.

5. Declare a field to store the HTTP client factory, as shown in the following
code:
private readonly IHttpClientFactory clientFactory;

6. Set the field in the constructor, as shown in the following code:
public HomeController(
 ILogger<HomeController> logger,
 Northwind injectedContext,
 IHttpClientFactory httpClientFactory)
{
 _logger = logger;
 db = injectedContext;
 clientFactory = httpClientFactory;
}

7. Create a new action method for calling the Northwind service, fetching all
customers, and passing them to a view, as shown in the following code:
public async Task<IActionResult> Customers(string country)
{
 string uri;

 if (string.IsNullOrEmpty(country))
 {
 ViewData["Title"] = "All Customers Worldwide";
 uri = "api/customers/";
 }
 else
 {
 ViewData["Title"] = $"Customers in {country}";

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[640]

 uri = $"api/customers/?country={country}";
 }

 var client = clientFactory.CreateClient(
 name: "NorthwindService");

 var request = new HttpRequestMessage(
 method: HttpMethod.Get, requestUri: uri);

 HttpResponseMessage response = await client.SendAsync(request);

 string jsonString = await response.Content.ReadAsStringAsync();

 IEnumerable<Customer> model = JsonConvert
 .DeserializeObject<IEnumerable<Customer>>(jsonString);

 return View(model);
}

8. In the Views/Home folder, create a Razor file named Customers.cshtml.
9. Modify the Razor file to render the customers, as shown in the following

markup:
@model IEnumerable<Packt.Shared.Customer>
<h2>@ViewData["Title"]</h2>
<table class="table">
 <tr>
 <th>Company Name</th>
 <th>Contact Name</th>
 <th>Address</th>
 <th>Phone</th>
 </tr>
 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.CompanyName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ContactName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Address)
 @Html.DisplayFor(modelItem => item.City)
 @Html.DisplayFor(modelItem => item.Region)
 @Html.DisplayFor(modelItem => item.Country)
 @Html.DisplayFor(modelItem => item.PostalCode)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Phone)

Building and Consuming Web Services | 18

[641]

 </td>
 </tr>
 }
</table>

10. Open Views/Home/Index.cshtml and add a form to allow visitors to enter a
country and see the customers, as shown in the following markup:
<form asp-action="Customers" method="get">
 <input name="country" placeholder="Enter a country" />
 <input type="submit" />
</form>

Enabling Cross-Origin Resource Sharing
It would be useful to explicitly specify the port number for the NorthwindService
so that it does not conflict with the defaults of 5000 for HTTP and 5002 for HTTPS
used by websites like NorthwindMvc, and to enable Cross-Origin Resource Sharing
(CORS).

1. In NorthwindService, open Program.cs, and in the CreateHostBuilder
method, add an extension method call to UseUrls and to specify port
number 5001 for HTTPS, as shown highlighted in the following code:
public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 webBuilder.UseUrls("https://localhost:5001");
 });

2. Open Startup.cs, and add a statement to the top of the ConfigureServices
method, to add support for CORS, as shown highlighted in the following code:
public void ConfigureServices(IServiceCollection services)
{
 services.AddCors();

More Information: Default browser same-origin policy prevents
code downloaded from one origin from accessing resources
downloaded from a different origin to improve security. CORS
can be enabled to allow requests from specified domains. Learn
more about CORS and ASP.NET Core at the following link:

https://docs.microsoft.com/en-us/aspnet/core/
security/cors

https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[642]

3. Add a statement to the Configure method, before calling UseEndpoints,
to use CORS and allow HTTP GET, POST, PUT, and DELETE requests
from any website like Northwind MVC that has an origin of https://
localhost:5002, as shown in the following code:
// after UseRouting and before UseEndpoints
app.UseCors(configurePolicy: options =>
 {
 options.WithMethods("GET", "POST", "PUT", "DELETE");

 options.WithOrigins(
 "https://localhost:5002" // for MVC client
);
 });

4. Navigate to Terminal | New Terminal and select NorthwindService.
5. In Terminal, start the NorthwindService project by entering the command:

dotnet run.
6. Navigate to Terminal | New Terminal and select NorthwindMvc.
7. In Terminal, start the NorthwindMvc project by entering the command:

dotnet run.
8. Start Chrome, navigate to http://localhost:5000/, and note that it

redirects to HTTPS on port 5002 and shows the home page of the Northwind
MVC website.

9. In the customer form, enter a country like Germany, UK, or USA, click
Submit, and note the list of customers, as shown in the following screenshot:

https://localhost:5002
https://localhost:5002
http://localhost:5000/
http://localhost:5000/

Building and Consuming Web Services | 18

[643]

10. Click back in your browser, clear the country text box, click Submit, and note
the worldwide list of customers.

Implementing advanced features
Since the third edition of this book, published in late 2017, Microsoft has added lots
of great features to ASP.NET for building web services.

Implementing Health Check API
There are many paid services that perform site availability tests that are basic pings,
some with more advanced analysis of the HTTP response.

ASP.NET Core 2.2 and later makes it easy to implement more detailed website health
checks. For example, your website might be live, but is it ready? Can it retrieve data
from its database?

1. Open NorthwindService.csproj.
2. Add a project reference to enable Entity Framework Core database health

checks, as shown in the following markup:
<PackageReference Include="Microsoft.Extensions.Diagnostics.
HealthChecks.EntityFrameworkCore" Version="3.0.0" />

3. In Terminal, restore packages and compile the website project, as shown in
the following command:
dotnet build

4. Open Startup.cs.
5. In the ConfigureServices method, add a statement to add health checks,

including to the Northwind database context, as shown in the following
code:
services.AddHealthChecks()
 .AddDbContextCheck<Northwind>();

By default, the database context check calls EF Core's CanConnectAsync
method. You can customize what operation is run using the
AddDbContextCheck method.

6. In the Configure method, add a statement to use basic health checks, as
shown in the following code:
app.UseHealthChecks(path: "/howdoyoufeel");

https://localhost:5001/howdoyoufeel
https://localhost:5001/howdoyoufeel

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[644]

7. Start the web service, and navigate to https://localhost:5001/
howdoyoufeel

8. Note the website responds with plain text: Healthy

Implementing Open API analyzers and
conventions
In this chapter, you learned how to enable Swagger to document a web service by
manually decorating a Controller class with attributes.

In ASP.NET Core 2.2 or later, there are API analyzers that reflect over Controller
classes that have been annotated with the [ApiController] attribute to document it
automatically. The analyzer assumes some API conventions.

To use it, your project must reference the NuGet package, as shown in the following
markup:

<PackageReference Include="Microsoft.AspNetCore.Mvc.Api.Analyzers"
 Version="3.0.0" PrivateAssets="All" />

After installing, controllers that have not been properly decorated should have
warnings (green squiggles) and warnings when you compile the source code using
the dotnet build command. Automatic code fixes can then add the appropriate
[Produces] and [ProducesResponseType] attributes, although this only currently
works in Visual Studio 2019. In Visual Studio Code you will see warnings about
where the analyzer thinks you should add attributes, but you must add them
yourself.

More Information: You can extend the health check response as
much as you want. Read more at the following link: https://
blogs.msdn.microsoft.com/webdev/2018/08/22/asp-
net-core-2-2-0-preview1-healthcheck/

More Information: At the time of writing, the package above
was version 3.0.0-preview3-19153-02, but after publishing
it should be a full version 3.0.0 release. You can check the latest
version to use at the following link: https://www.nuget.org/
packages/Microsoft.AspNetCore.Mvc.Api.Analyzers/

https://localhost:5001/howdoyoufeel
https://localhost:5001/howdoyoufeel
https://blogs.msdn.microsoft.com/webdev/2018/08/22/asp-net-core-2-2-0-preview1-healthcheck/
https://blogs.msdn.microsoft.com/webdev/2018/08/22/asp-net-core-2-2-0-preview1-healthcheck/
https://blogs.msdn.microsoft.com/webdev/2018/08/22/asp-net-core-2-2-0-preview1-healthcheck/
https://blogs.msdn.microsoft.com/webdev/2018/08/22/asp-net-core-2-2-0-preview1-healthcheck/
https://blogs.msdn.microsoft.com/webdev/2018/08/22/asp-net-core-2-2-0-preview1-healthcheck/
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Api.Analyzers/
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Api.Analyzers/
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Api.Analyzers/
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Api.Analyzers/

Building and Consuming Web Services | 18

[645]

Understanding endpoint routing
In earlier versions of ASP.NET Core, the routing system and the extendable
middleware system did not always work easily together, for example, if you wanted
to implement a policy like CORS in both middleware and MVC, so Microsoft has
invested in improving routing with a new system named Endpoint Routing.

Endpoint routing is designed to enable better interoperability between frameworks
that need routing, like Razor Pages, MVC, or Web API, and middleware that need
to understand how routing affects them, like localization, authorization, CORS, and
so on.

It gets its name because it represents the route table as a compiled tree of
endpoints that can be walked efficiently by the routing system. One of the biggest
improvements is to performance of routing and action method selection.

It is on by default with ASP.NET Core 2.2 or later if compatibility is set to 2.2 or
later. Traditional routes registered using the MapRoute method or with attributes
are mapped to the new system.

The new routing system includes a link generation service registered as a
dependency service that does not need an HttpContext.

Configuring endpoint routing
Endpoint routing requires a pair of calls to app.UseRouting() and
app.UseEndpoints().

• app.UseRouting() marks the pipeline position where a routing decision is
made.

• app.UseEndpoints() marks the pipeline position where the selected
endpoint is executed.

Good Practice: Microsoft recommends every ASP.NET Core project
migrates to Endpoint Routing if possible.

More Information: You can read more about the design
decisions around endpoint routing at the following link:
https://devblogs.microsoft.com/aspnet/asp-net-
core-2-2-0-preview1-endpoint-routing/

https://devblogs.microsoft.com/aspnet/asp-net-core-2-2-0-preview1-endpoint-routing/
https://devblogs.microsoft.com/aspnet/asp-net-core-2-2-0-preview1-endpoint-routing/
https://devblogs.microsoft.com/aspnet/asp-net-core-2-2-0-preview1-endpoint-routing/
https://devblogs.microsoft.com/aspnet/asp-net-core-2-2-0-preview1-endpoint-routing/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[646]

Middleware like localization that run in between these can see the selected endpoint
and can switch to a different endpoint if necessary.

Endpoint routing uses the same route template syntax that has been used in
ASP.NET MVC since 2010 and the [Route] attribute introduced with ASP.NET
MVC 5 in 2013. Migration often only requires changes to Startup configuration.

MVC controllers, Razor Pages, and frameworks like SignalR used to be enabled by a
call to UseMvc() or similar methods but they are now added inside UseEndpoints()
because they are all integrated into the same routing system along with middleware.

Let's define some middleware that can output information about endpoints:

1. Open NorthwindService.csproj.
2. Open Startup.cs and import namespaces for working with endpoint

routing, as shown in the following code:
using Microsoft.AspNetCore.Http; // GetEndpoint() extension method
using Microsoft.AspNetCore.Routing; // RouteEndpoint

3. In the ConfigureServices method, add a statement before UseEndpoints to
define a lambda statement to output information about the selected endpoint
during every request, as shown in the following code:
app.Use(next => (context) =>
 {
 var endpoint = context.GetEndpoint();

 if (endpoint != null)
 {
 WriteLine("*** Name: {0}; Route: {1}; Metadata: {2}",
 arg0: endpoint.DisplayName,
 arg1: (endpoint as RouteEndpoint)?.RoutePattern,
 arg2: string.Join(", ", endpoint.Metadata));
 }

 // pass context to next middleware in pipeline
 return next(context);
 });

While reviewing the preceding code, note the following:

 ° The Use method requires an instance of RequestDelegate or
a lambda statement equivalent.

 ° RequestDelegate has a single HttpContext parameter that wraps
all information about the current HTTP request (and its matching
response).

Building and Consuming Web Services | 18

[647]

 ° Importing the Microsoft.AspNetCore.Http namespace adds the
GetEndpoint extension method to the HttpContext instance.

4. Start the web service.
5. In Chrome, navigate to https://localhost:5001/weatherforecast.
6. In Terminal, note the result, as shown in the following output:

 Request starting HTTP/1.1 GET https://localhost:5001/
weatherforecast

*** Name: NorthwindService.Controllers.WeatherForecastController.
Get (NorthwindService); Route: Microsoft.AspNetCore.Routing.
Patterns.RoutePattern; Metadata: Microsoft.AspNetCore.
Mvc.ApiControllerAttribute, Microsoft.AspNetCore.Mvc.
ControllerAttribute, Microsoft.AspNetCore.Mvc.RouteAttribute,
Microsoft.AspNetCore.Mvc.HttpGetAttribute, Microsoft.AspNetCore.
Routing.HttpMethodMetadata, Microsoft.AspNetCore.Mvc.Controllers.
ControllerActionDescriptor, Microsoft.AspNetCore.Routing.
RouteNameMetadata, Microsoft.AspNetCore.Mvc.ModelBinding.
UnsupportedContentTypeFilter, Microsoft.AspNetCore.Mvc.
Infrastructure.ClientErrorResultFilterFactory, Microsoft.
AspNetCore.Mvc.Infrastructure.ModelStateInvalidFilterFactory,
Microsoft.AspNetCore.Mvc.ApiControllerAttribute, Microsoft.
AspNetCore.Mvc.ActionConstraints.HttpMethodActionConstraint

7. Close Chrome and stop the web service.

Endpoint routing replaces the IRouter-based routing used in ASP.NET Core 2.1 and
earlier.

More Information: You can read more about endpoint
routing at the following link: https://docs.
microsoft.com/en-us/aspnet/core/fundamentals/
routing?view=aspnetcore-3.0

More Information: If you need to work with
ASP.NET Core 2.1 or earlier, then you can read about
the old routing system at the following link: https://docs.
microsoft.com/en-us/aspnet/core/fundamentals/
routing?view=aspnetcore-2.1

https://localhost:5001/weatherforecast
https://localhost:5001/weatherforecast
https://localhost:5001/weatherforecast
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-2.1

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[648]

Understanding other communication
technologies
ASP.NET Core Web API is not the only Microsoft technology for implementing
services or communicating between components of a distributed application.
Although we will not cover these technologies in detail, you should be aware of
what they can do and when they should be used.

Understanding Windows Communication
Foundation (WCF)
In 2006, Microsoft released .NET Framework 3.0 with some major frameworks,
one of which was Windows Communication Foundation (WCF). It abstracted the
business logic implementation of a service from the technology used to communicate
with it. It heavily used XML configuration to declaratively define endpoints
including their address, binding, and contract (known as the ABCs of endpoints).
Once you have understood how to do this, it is a powerful yet flexible technology.

Microsoft has decided not to officially port WCF to .NET Core, but there is a
community-owned OSS project named Core WCF managed by the .NET Foundation.
If you need to migrate an existing service from .NET Framework to .NET Core, or
build a client to a WCF service, then you could use Core WCF. Be aware that it can
never be a full port since parts of WCF are Windows-specific.

Technologies like WCF allow for the building of distributed applications. A client
application can make remote procedure calls (RPC) to a server application. Instead
of using a port of WCF to do this, we could use an alternative RPC technology.

Understanding gRPC
gRPC is a modern open source high-performance RPC framework that can run in
any environment.

Like WCF, gRPC uses a contract-first API development that supports language-
agnostic implementations. You write the contracts using .proto files with their
own language syntax and tools to convert them into various languages like C#.
It minimizes network usage by using Protobuf binary serialization.

More Information: You can read more and download the Core
WCF repository from the following link: https://github.
com/CoreWCF/CoreWCF

https://github.com/CoreWCF/CoreWCF
https://github.com/CoreWCF/CoreWCF
https://grpc.io
https://github.com/CoreWCF/CoreWCF
https://github.com/CoreWCF/CoreWCF

Building and Consuming Web Services | 18

[649]

Microsoft officially supports gRPC with ASP.NET Core.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with deeper research.

Exercise 18.1 – Test your knowledge
Answer the following questions:

1. Which base class should you inherit from to create a controller class for an
ASP.NET Core Web API service?

2. If you decorate your Controller class with the [ApiController] attribute
to get default behavior like automatic 400 responses for invalid models, what
else must you do?

3. What must you do to specify which controller action method will be executed
in response to an HTTP request?

4. What must you do to specify what responses should be expected when
calling an action method?

5. List three methods that can be called to return responses with different status
codes.

6. List four ways that you can test a web service.
7. Why should you not wrap you use of HttpClient in a using statement

to dispose of it when you are finished even though it implements the
IDisposable interface, and what should you use instead?

8. What does the acronym CORS stand for and why is it important to enable
it in a web service?

More Information: You can read about gRPC at the following
link: https://grpc.io

More Information: You can learn how to use gRPC
with ASP.NET Core at the following link: https://
docs.microsoft.com/en-us/aspnet/core/grpc/
aspnetcore?view=aspnetcore-3.0&tabs=visual-studio-
code

https://docs.microsoft.com/en-us/aspnet/core/grpc/aspnetcore?view=aspnetcore-3.0&tabs=visual-studio-code
https://docs.microsoft.com/en-us/aspnet/core/grpc/aspnetcore?view=aspnetcore-3.0&tabs=visual-studio-code
https://grpc.io
https://docs.microsoft.com/en-us/aspnet/core/grpc/aspnetcore?view=aspnetcore-3.0&tabs=visual-studio-code
https://docs.microsoft.com/en-us/aspnet/core/grpc/aspnetcore?view=aspnetcore-3.0&tabs=visual-studio-code
https://docs.microsoft.com/en-us/aspnet/core/grpc/aspnetcore?view=aspnetcore-3.0&tabs=visual-studio-code
https://docs.microsoft.com/en-us/aspnet/core/grpc/aspnetcore?view=aspnetcore-3.0&tabs=visual-studio-code

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[650]

9. How can you enable clients to detect if your web service is healthy with ASP.
NET Core 2.2 and later?

10. What benefits does endpoint routing provide?

Exercise 18.2 – Practice creating and deleting
customers with HttpClient
Extend the NorthwindMvc website project to have pages where a visitor can fill in a
form to create a new customer, or search for a customer and then delete them. The
MVC controller should make calls to the Northwind service to create and delete
customers.

Exercise 18.3 – Explore topics
Use the following links to read more about this chapter's topics:

• Create web APIs with ASP.NET Core: https://docs.microsoft.com/en-
us/aspnet/core/web-api/?view=aspnetcore-3.0

• Swagger Tools: https://swagger.io/tools/
• Swashbuckle for ASP.NET Core: https://github.com/domaindrivendev/

Swashbuckle.AspNetCore

• Health checks in ASP.NET Core: https://docs.microsoft.com/en-us/
aspnet/core/host-and-deploy/health-checks?view=aspnetcore-3.0

• Use HttpClientFactory to implement resilient HTTP requests: https://
docs.microsoft.com/en-us/dotnet/architecture/microservices/
implement-resilient-applications/use-httpclientfactory-to-
implement-resilient-http-requests

Summary
In this chapter, you learned how to build an ASP.NET Core Web API service that can
be called by any app on any platform that can make an HTTP request and process an
HTTP response. You also learned how to test and document web service APIs with
Swagger, as well as how to consume services efficiently.

In the next chapter, you will learn how to add intelligence to any type of application
using machine learning.

https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-3.0
https://swagger.io/tools/
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests

[651]

Chapter 19
Building Intelligent Apps
Using Machine Learning

This chapter is about embedding intelligence into your apps using machine learning
algorithms. Microsoft has created a cross-platform machine learning library named
ML.NET designed specifically for C# and .NET developers.

This chapter will cover the following topics:

• Understanding machine learning
• Understanding ML.NET
• Making product recommendations

Understanding machine learning
Marketing folk love to use terms like artificial intelligence or data science in
their promotional materials. Machine learning is a subset of data science. It is one
practical way to add intelligence to software.

This book cannot teach machine learning in one chapter. If you need to understand
how machine learning algorithms work internally then you would need to
understand data science topics including calculus, statistics, probability theory, and
linear algebra. Then you would need to learn about machine learning in depth.

More Information: You can learn the science behind one of the
most popular and successful data science techniques by enrolling
in Harvard University's free Data Science: Machine Learning
8-week course at the following link: https://www.edx.org/
course/data-science-machine-learning-2

https://www.edx.org/course/data-science-machine-learning-2
https://www.edx.org/course/data-science-machine-learning-2

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[652]

My goal with this chapter is to give you the minimum conceptual understanding
needed to implement a valuable and practical application of machine learning:
making product recommendations in an e-commerce website to increase the value
of each order. By seeing all the tasks required, you can then decide for yourself if the
effort required to properly learn it all is worth it for you, or if you'd rather put your
efforts in to other topics like building websites or mobile apps.

Understanding the machine learning life cycle
The machine learning lifecycle has four steps:

• Problem analysis: What is the problem you are trying to solve?
• Data gathering and processing: The raw data needed to solve the problem

often needs transforming into formats suitable for a machine learning
algorithm to process.

• Modeling is divided into three sub-steps:
 ° Identifying features: Features are the values that influence

predictions, for example, the distance traveled and time of day that
influence the cost of a taxi journey.

 ° Training the model: Select and apply algorithms and set
hyperparameters to generate one or more models. Hyperparameters
are set before the learning process begins in contrast to other
parameters derived during training.

 ° Evaluating the model: Choose which model best solves the original
problem. Evaluating models is a manual task that can take months.

• Deploying the model: Embed the model in an app where it is used to make
predictions on real data inputs.

But even then, your work is not done! After deploying the model, you should
regularly reassess the model to maintain its efficiency. Over time the predictions it
makes could drift and become poorer because data can change over time.

More Information: To learn about machine learning in depth,
read Python Machine Learning by Sebastian Raschka and Vahid
Mirjalili: https://www.packtpub.com/big-data-and-
business-intelligence/python-machine-learning-
second-edition.

https://www.packtpub.com/big-data-and-business-intelligence/python-machine-learning-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-machine-learning-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/python-machine-learning-second-edition

Building Intelligent Apps Using Machine Learning | 19

[653]

You should not assume a static relationship between inputs and outputs, especially
when predicting human behavior, since fashions change. Just because superhero
movies are popular in 2019 does not mean they will be popular in 2020. This problem
is named concept drift or model decay. If you suspect this problem then you should
retrain the model, or even switch to a better algorithm or hyperparameter values.

Deciding which algorithm to use and the values for its hyperparameters is tricky
because the combination of potential algorithms and hyperparameter values is
infinite. This is why machine learning and its wider data science field is a full-time
specialized career.

Understanding datasets for training and
testing
You must not use your entire dataset to train your model. You need to split your
dataset into a training dataset and a testing dataset. The training dataset is used to
train the model, unsurprisingly. Then, the testing dataset is used to evaluate that the
model makes good enough predictions before it is deployed. If you were to use the
whole dataset for training, then you would have no data left over to test your model.

The splitting between training and testing can be random for some scenarios, but be
careful! You must consider if the dataset could have regular variations. For example,
taxi usage varies based on time of day, and even varies based on season and city.
For example, New York City will typically be busy for taxis all year, at all hours, but
Munich might get extra busy for taxis during Oktoberfest.

When your dataset is affected by seasonality and other factors, you must split the
dataset strategically. You also need to ensure that the model is not overfitted with
the training data. Let's talk about an example of overfitting.

When I was studying Computer Science at the University of Bristol between
1990 and 1993, we were told a story during our Neural Networks class (possibly
apocryphal, but it illustrates an important point). The British Army employed data
scientists to build a machine learning model to detect Russian tanks camouflaged
in the woods of Eastern Europe. The model was fed with thousands of images, yet
when it came time to show off its abilities in the real world it failed dismally.

More Information: You can read more about roles like the
types of data scientist who are involved with machine learning
at the following link: https://www.datasciencecentral.
com/profiles/blogs/difference-between-machine-
learning-data-science-ai-deep-learning

https://www.datasciencecentral.com/profiles/blogs/difference-between-machine-learning-data-science-ai-deep-learning
https://www.datasciencecentral.com/profiles/blogs/difference-between-machine-learning-data-science-ai-deep-learning
https://www.datasciencecentral.com/profiles/blogs/difference-between-machine-learning-data-science-ai-deep-learning

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[654]

During the project autopsy, the scientists realized that all the images they used to
train the model were from Spring when the foliage was lively shades of green, but
the live test happened in Autumn when the foliage was reds, yellows, and browns.

The model was overfitted to the Spring foliage. If the model was more generalized,
then it might have performed better in other seasons. Underfitting is the opposite;
it describes a model that is too generalized and doesn't provide satisfactory outputs
when applied to specific contexts.

Understanding machine learning tasks
There are many tasks or scenarios that machine learning can help developers with:

• Binary classification is classifying the items in an input dataset between two
groups, predicting which group each item belongs to. For example, deciding
if an Amazon book review is positive or negative, also known as sentiment
analysis. Other examples include spam email message and credit card
purchase fraud detection.

• Multi-class classification is classifying instances into one of three or more
classes, predicting which group each one belongs to. For example, deciding
if a news article should be categorized as celebrity gossip, sports, politics, or
science and technology. Binary and multi-class are examples of supervised
classification because the labels must be predefined.

• Clustering is for grouping input data items so that items in the same
cluster are more similar to each other than to those in other clusters. It is
not the same as classification because it does not give each cluster a label
and therefore the labels do not have to be predefined as with classification.
Clustering is therefore an example of unsupervised classification. After
clustering a group can be processed to spot patterns and then assign a label.

• Ranking is for ordering input data items based on properties like star
reviews, context, likes, and so on.

• Recommendations are for suggesting other items like products or content
that a user might like based on their past behavior compared to other users.

More Information: You can read more about overfitting and
underfitting and how to compensate for it at the following
link: https://elitedatascience.com/overfitting-in-
machine-learning

https://elitedatascience.com/overfitting-in-machine-learning
https://elitedatascience.com/overfitting-in-machine-learning
https://elitedatascience.com/overfitting-in-machine-learning

Building Intelligent Apps Using Machine Learning | 19

[655]

• Regression is for predicting a numeric value from input data. It can be used
for forecasting and suggesting how much a product should sell for or how
much it will cost to get a taxi from Heathrow airport to a central London
hotel, or how many bikes will be needed in a particular area of Amsterdam
for a bike sharing scheme.

• Anomaly detection is for identifying "black swans" or unusual data that
could indicate a problem that needs to be fixed, in fields like medical,
financial, and mechanical maintenance.

• Deep Learning is for handling large and complex binary input data instead
of input data in a more structured format, for example, computer vision
tasks like detecting objects and classifying images, or audio tasks like speech
recognition and natural language processing (NLP).

Understanding Microsoft Azure Machine
Learning
The rest of this chapter will cover using an open source .NET package to implement
machine learning, but before we dive into that, let's take a quick diversion to
understand an important alternative.

Implementing machine learning well requires people with strong skills in
mathematics or related areas. Data scientists are in high demand and the difficulty
and cost of hiring them prevents some organizations from adopting machine
learning in their own apps. An organization might have access to warehouses of data
accumulated over many years, but they struggle to use machine learning to improve
the decisions they make.

Microsoft Azure Machine Learning overcomes these obstacles by providing pre-
built machine learning models for common tasks like face recognition and language
processing. This enables organizations without their own data scientists to get some
benefit from their data. As an organization hires their own data scientists, or their
developers gain data science skills, they can then develop their own models to work
within Azure ML.

But as organizations become more sophisticated and recognize the value of owning
their machine learning models and being able to run them anywhere, more and more
will need a platform that their existing developers can get started on that has as
shallow a learning curve as possible.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[656]

Understanding ML.NET
ML.NET is Microsoft's open source and cross-platform machine learning framework
for .NET.

C# developers can use their existing skills and familiarity with .NET Standard APIs
to integrate custom machine learning inside their apps without knowing details
about how to build and maintain machine learning models.

Today, ML.NET contains machine learning libraries created by Microsoft Research
and used by Microsoft products like PowerPoint for intelligently recommending
style templates based on the content of a presentation. Soon, ML.NET will
also support other popular libraries like Accord.NET, CNTK, Light GBM, and
TensorFlow, but we will not cover those in this book.

Understanding Infer.NET
Infer.NET was created by Microsoft Research in Cambridge in 2004. It was made
available to academics in 2008. Since then, hundreds of academic papers have been
written about Infer.NET.

Developers can incorporate domain knowledge into a model to create custom
algorithms instead of mapping your problem to existing algorithms as you would do
with ML.NET.

Infer.NET is used by Microsoft for products including Microsoft Azure, Xbox, and
Bing search and translator.

More Information: You can read the official announcement
for ML.NET at the following link: https://blogs.msdn.
microsoft.com/dotnet/2018/05/07/introducing-ml-
net-cross-platform-proven-and-open-source-machine-
learning-framework/

More Information: The Accord.NET Framework is a .NET
machine learning framework combined with audio and image
processing libraries completely written in C#. You can read more
at the following link: http://accord-framework.net

More Information: You can read more about Microsoft Infer.
NET at the following link: https://www.microsoft.com/en-
us/research/blog/the-microsoft-infer-net-machine-
learning-framework-goes-open-source/

https://blogs.msdn.microsoft.com/dotnet/2018/05/07/introducing-ml-net-cross-platform-proven-and-open-source-machine-learning-framework/
https://blogs.msdn.microsoft.com/dotnet/2018/05/07/introducing-ml-net-cross-platform-proven-and-open-source-machine-learning-framework/
https://blogs.msdn.microsoft.com/dotnet/2018/05/07/introducing-ml-net-cross-platform-proven-and-open-source-machine-learning-framework/
http://accord-framework.net
http://accord-framework.net
http://accord-framework.net
https://www.microsoft.com/en-us/research/blog/the-microsoft-infer-net-machine-learning-framework-goes-open-source/
https://www.microsoft.com/en-us/research/blog/the-microsoft-infer-net-machine-learning-framework-goes-open-source/
https://www.microsoft.com/en-us/research/blog/the-microsoft-infer-net-machine-learning-framework-goes-open-source/
https://www.microsoft.com/en-us/research/blog/the-microsoft-infer-net-machine-learning-framework-goes-open-source/

Building Intelligent Apps Using Machine Learning | 19

[657]

Infer.NET can be used for classification, recommendations, and clustering.

We will not be looking at Infer.NET in this book.

Understanding ML.NET learning pipelines
A typical learning pipeline comprises six steps:

• Data loading – ML.NET supports loading data from the following formats:
text (CSV, TSV), Parquet, binary, IEnumerable<T>, and file sets.

• Transformations – ML.NET supports the following transformations: text
manipulation, schema (i.e. structure) modification, handling missing values,
categorical value encoding, normalization, and feature selection.

• Algorithms – ML.NET supports the following algorithms: linear, boosted
trees, k-means, Support Vector Machine (SVM), and averaged perceptron.

• Model training – Call the ML.NET Train method to create a
PredictionModel that you can use to make predictions.

• Model evaluation – ML.NET supports multiple evaluators to assess the
accuracy of your model against various metrics.

• Model deployment – ML.NET allows you to export your model as a binary
file for deployment with any type of .NET app.

Understanding model training concepts
The .NET type system was not designed for machine learning and data analysis, so it
needs some specialized types to make it better suited for these tasks.

More Information: You can read how to create a game match
up list app with Infer.NET and probabilistic programming at
the following link: https://docs.microsoft.com/en-us/
dotnet/machine-learning/how-to-guides/matchup-app-
infer-net.

More Information: The traditional "Hello World" app for
machine learning is one that can predict the type of iris flower
based on four features: petal length, petal width, sepal length,
and sepal width. You can follow a 10-minute tutorial for it at
the following link: https://dotnet.microsoft.com/learn/
machinelearning-ai/ml-dotnet-get-started-tutorial/
intro

https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/matchup-app-infer-net
https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/matchup-app-infer-net
https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/matchup-app-infer-net
https://dotnet.microsoft.com/learn/machinelearning-ai/ml-dotnet-get-started-tutorial/intro
https://dotnet.microsoft.com/learn/machinelearning-ai/ml-dotnet-get-started-tutorial/intro
https://dotnet.microsoft.com/learn/machinelearning-ai/ml-dotnet-get-started-tutorial/intro

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[658]

ML.NET uses the following .NET types when working with models:

• IDataView interface represents a dataset that is:
 ° immutable, meaning it cannot change,
 ° cursorable, meaning cursors can iterate over the data,
 ° lazily evaluated, meaning that work like transformations is only

done when a cursor iterates over the data,
 ° heterogenous, meaning data can have mixed types, and
 ° schematized, meaning it has a strongly defined structure.

• DataViewType: All IDataView column types derive from the abstract class
DataViewType. Vector types require dimensionality information to indicate
the length of the vector type.

• The ITransformer interface represents a component that accepts input data,
changes it in some way, and returns output data. For example, a tokenizer
transformer takes a text column containing phrases as input and outputs
a vector column with individual words extracted out of the phrases and
arranged vertically in a column. Most transformers work on one column at a
time. New transformers can be constructed by combining other transformers
in a chain.

• The IDataReader<T> interface represents a component to create data. It takes
an instance of T and returns data out of it.

• The IEstimator<T> interface represents an object that learns from data. The
result of the learning is a transformer. Estimators are eager, meaning every
call to their Fit method causes learning to occur, which can take a lot of time!

• The PredictionEngine<TSrc, TDst> class represents a function that can
be seen as a machine that applies a transformer to one row at prediction
time. If you have a lot of input data that you want to make predictions for,
you would create a data view, call Transform on the model to generate
prediction rows, and then use a cursor to read the results. In the real world,
a common scenario is to have one data row as input that you want to make a
prediction for, so to simplify the process you can use a prediction engine.

More Information: You can read more about the design of the
IDataView interface at the following link: https://github.
com/dotnet/machinelearning/blob/master/docs/code/
IDataViewDesignPrinciples.md

https://github.com/dotnet/machinelearning/blob/master/docs/code/IDataViewDesignPrinciples.md
https://github.com/dotnet/machinelearning/blob/master/docs/code/IDataViewDesignPrinciples.md

Building Intelligent Apps Using Machine Learning | 19

[659]

Understanding missing values and key types
The R language is popular for machine learning and it uses the special value NA to
indicate a missing value. ML.NET follows that convention.

Key types are used for data that is represented as number values within a cardinality
set, as shown in the following code:

[KeyType(10)]
public uint NumberInRange1To10 { get; set; }

The representational, also known as underlying, type must be one of the four .NET
unsigned integer types: byte, ushort, uint, and ulong. The value zero always
means NA, indicating its value is missing. The representational value one is always
the first valid value of the key type.

The count should be set to one more than the maximum value to account for
counting starting at 1, because 0 is reserved for missing values. For example,
the cardinality of the 0-9 range should be 10. Any values outside of the specified
cardinality will be mapped to the missing value representation: 0.

Understanding features and labels
The inputs of a machine learning model are called features. For example, if there was
a linear regression where one continuous quantity, like the price of a bottle of wine,
is proportional to another, like the rating given by vintners, then price is the only
feature.

The values used to train a machine learning model are called labels. In the wine
example, the rating values in the training dataset are the labels.

In some models, the label value is not important, since the existence of a row
represents a match. This is especially common in recommendations.

Making product recommendations
The practical application of machine learning we will implement is making product
recommendations on an ecommerce website with the goal being to increase the value
of a customer order.

The problem is how to decide what products to recommend to the visitor.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[660]

Problem analysis
On 2nd October 2006, Netflix started an open prize challenge for the best algorithm
for predicting customer ratings for films based only on previous ratings. The dataset
that Netflix provided had 17,000 movies, 500,000 users, and 100 million ratings. For
example, user 437822 gives movie 12934 a rating of 4 out of 5.

Singular Value Decomposition (SVD) is a decomposition method for reducing
a matrix to make later calculations simpler and Simon Funk shared with the
community how he and his team used it to get near the top of the rankings during
the competition.

Since Funk's initial work, similar approaches have been proposed for recommender
systems. Matrix factorization is a class of collaborative filtering algorithms used in
recommender systems that uses SVD.

We will use the One-Class Matrix Factorization algorithm because we only have
information on purchase order history. The products have not been given ratings or
other factors that could be used in other multi-class factorization approaches.

The score produced by matrix factorization tells us the likelihood of being a positive
case. The larger the score value, the higher the probability. The score is not a
probability so when making predictions we have to predict multiple product co-
purchase scores and sort with the highest score at the top.

Matrix factorization uses a supervised collaborative filtering approach, which assumes
that if Alice has the same opinion as Bob about a product, Alice is more likely to have
Bob's opinion on a different product than that of a random other person. Hence, they
are more likely to add that product Bob liked to their shopping cart.

More Information: You can read more about Simon Funk's use
of SVD at the following link: https://sifter.org/~simon/
journal/20061027.2.html

More Information: You can read more about the use of
matrix factorization in recommender systems at the following
link: https://en.wikipedia.org/wiki/Matrix_
factorization_(recommender_systems)

https://sifter.org/~simon/journal/20061027.2.html
https://sifter.org/~simon/journal/20061027.2.html
https://en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems)
https://en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems)

Building Intelligent Apps Using Machine Learning | 19

[661]

Data gathering and processing
The Northwind sample database has the following tables:

• Products has 77 rows, each with an integer product ID.
• Orders has 830 rows, each order having one or more related detail rows.
• Order Details has 2,155 rows, each with an integer product ID indicating the

product that was ordered.

We can use this data to create datasets for training and testing models that can then
make predictions of other products a customer might want to add to their cart based
on what they have already added to it.

For example, order 10248 was made by customer VINET for three products with IDs
of 11, 42, and 72, as shown in the following screenshot:

We will write a LINQ query to cross-join this data to generate a simple text file
with two columns showing products that are co-bought, as shown in the following
output:

ProductID CoboughtProductID

11 42

11 72

42 11

42 72

72 11

72 42

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[662]

Unfortunately, the Northwind database matches almost every product with every
other product. To produce more realistic datasets, we will filter by country. We will
generate one dataset for Germany, one for the UK, and one for the USA. The USA
dataset will be used for testing.

Creating the NorthwindML website project
We will build an ASP.NET Core MVC website that shows a list of all products,
grouped by category, and allows a visitor to add products to a shopping cart.
Their shopping cart will be stored in a temporary cookie as a dash-separated list of
product IDs.

1. In the folder named PracticalApps, create a folder named NorthwindML.
2. In Visual Studio Code, open the PracticalApps workspace and add the

NorthwindML folder to the workspace.
3. Navigate to Terminal | New Terminal and select NorthwindML.
4. In Terminal, enter the following command to create a new ASP.NET Core

MVC project, as shown in the following command:
dotnet new mvc

5. Open the NorthwindML.csproj project file, add references to the SQLite,
ML.NET, and ML.NET Recommender packages, and to the Northwind
context and entity class library projects that you created in Chapter 14,
Practical Applications of C# and .NET, as shown highlighted in the following
markup:
<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference
 Include="Microsoft.AspNetCore.Mvc.NewtonsoftJson"
 Version="3.0.0" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="3.0.0" />
 <PackageReference Include="Microsoft.ML" Version="1.3.1" />
 <PackageReference Include="Microsoft.ML.Recommender"
 Version="0.15.1" />

Building Intelligent Apps Using Machine Learning | 19

[663]

 </ItemGroup>

 <ItemGroup>
 <ProjectReference Include=
 "..\NorthwindContextLib\NorthwindContextLib.csproj" />
 <ProjectReference Include=
 "..\NorthwindEmployees\NorthwindEmployees.csproj" />
 </ItemGroup>

</Project>

6. In Terminal, restore packages and compile the project, as shown in the
following command:
dotnet build

7. Open the Startup.cs class file and import the Packt.Shared, System.IO,
and Microsoft.EntityFrameworkCore namespaces.

8. Add a statement to the ConfigureServices method to register the
Northwind data context, as shown in the following code:

string databasePath = Path.Combine("..", "Northwind.db");

services.AddDbContext<Northwind>(options =>
 options.UseSqlite($"Data Source={databasePath}"));

Creating the data and view models
The NorthwindML project will simulate an ecommerce website that allows visitors to
add products that they want to order to their shopping cart. We will start by defining
some models to represent this.

1. In the Models folder, create a class file named CartItem.cs, and add
statements to define a class with properties for the ID and name of a product,
as shown in the following code:
namespace NorthwindML.Models
{
 public class CartItem
 {
 public int ProductID { get; set; }

 public string ProductName { get; set; }
 }
}

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[664]

2. In the Models folder, create a class file named Cart.cs, and add statements
to define a class with properties for the items in a cart, as shown in the
following code:
using System.Collections.Generic;

namespace NorthwindML.Models
{
 public class Cart
 {
 public IEnumerable<CartItem> Items { get; set; }
 }
}

3. In the Models folder, create a class file named ProductCobought.cs, and add
statements to define a class with properties used to record when a product is
purchased with another product, and the cardinality (aka maximum possible
value) of the ProductID property, as shown in the following code:
using Microsoft.ML.Data;

namespace NorthwindML.Models
{
 public class ProductCobought
 {
 [KeyType(77)] // maximum possible value of a ProductID
 public uint ProductID { get; set; }

 [KeyType(77)]
 public uint CoboughtProductID { get; set; }
 }
}

4. In the Models folder, create a class file named Recommendation.cs that will
be used as the output of the machine learning algorithm, and add statements
to define a class with properties used to show a recommended product
ID with its score that will be used as the result of the machine learning
algorithm, as shown in the following code:
namespace NorthwindML.Models
{
 public class Recommendation
 {
 public uint CoboughtProductID { get; set; }

 public float Score { get; set; }
 }
}

Building Intelligent Apps Using Machine Learning | 19

[665]

5. In the Models folder, create a class file named EnrichedRecommendation.cs,
and add statements to inherit from the Recommendation class with an extra
property to show the product name for display, as shown in the following code:
namespace NorthwindML.Models
{
 public class EnrichedRecommendation : Recommendation
 {
 public string ProductName { get; set; }
 }
}

6. In Terminal, compile the project, as shown in the following command:
dotnet build

7. In the Models folder, create a class file named HomeCartViewModel.cs,
and add statements to define a class with properties to store the visitor's
shopping cart and a list of recommendations, as shown in the following code:
using System.Collections.Generic;

namespace NorthwindML.Models
{
 public class HomeCartViewModel
 {
 public Cart Cart { get; set; }

 public List<EnrichedRecommendation>
 Recommendations { get; set; }
 }
}

8. In the Models folder, create a class file named HomeIndexViewModel.cs,
and add statements to define a class with properties to show if the training
datasets have been created, as shown in the following code:

using System.Collections.Generic;
using Packt.Shared;

namespace NorthwindML.Models
{
 public class HomeIndexViewModel
 {
 public IEnumerable<Category> Categories { get; set; }
 public bool GermanyDatasetExists { get; set; }
 public bool UKDatasetExists { get; set; }
 public bool USADatasetExists { get; set; }
 public long Milliseconds { get; set; }
 }
}

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[666]

Implementing the controller
Now we can modify the existing home controller to perform the operations we need.

1. In the wwwroot folder, create a folder named Data.
2. In the Controllers folder, open HomeController.cs, and import some

namespaces, as shown in the following code:
using Packt.Shared;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Hosting;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.Data;
using Microsoft.ML.Trainers;

3. In the HomeController class, declare some fields for the filename and
countries that we will generate datasets for, as shown in the following code:
private readonly static string datasetName = "dataset.txt";

private readonly static string[] countries =
 new[] { "Germany", "UK", "USA" };

4. Declare some fields for the Northwind data context and web host
environment dependency services and set them in the constructor, as shown
in the following code:
// dependency services
private readonly ILogger<HomeController> _logger;
private readonly Northwind db;
private readonly IWebHostEnvironment webHostEnvironment;

public HomeController(ILogger<HomeController> logger,
 Northwind db,
 IWebHostEnvironment webHostEnvironment)
{
 _logger = logger;
 this.db = db;
 this.webHostEnvironment = webHostEnvironment;
}

5. Add a private method to return the path to a file stored in the Data folder
of the website, as shown in the following code:
private string GetDataPath(string file)
{
 return Path.Combine(webHostEnvironment.ContentRootPath,
 "wwwroot", "Data", file);
}

Building Intelligent Apps Using Machine Learning | 19

[667]

6. Add a private method to create an instance of the HomeIndexViewModel class
loaded with all the products from the Northwind database and indicating
if the datasets have been created, as shown in the following code:
private HomeIndexViewModel CreateHomeIndexViewModel()
{
 return new HomeIndexViewModel
 {
 Categories = db.Categories
 .Include(category => category.Products),

 GermanyDatasetExists = System.IO.File.Exists(
 GetDataPath("germany-dataset.txt")),

 UKDatasetExists = System.IO.File.Exists(
 GetDataPath("uk-dataset.txt")),

 USADatasetExists = System.IO.File.Exists(
 GetDataPath("usa-dataset.txt"))
 };
}

We had to prefix the File class with System.IO because the
ControllerBase class has a File method that would cause a naming
conflict.

7. In the Index action method, add statements to create its view model and pass
it to its Razor view, as shown highlighted in the following code:
public IActionResult Index()
{
 var model = CreateHomeIndexViewModel();
 return View(model);
}

8. Add an action method to generate the datasets for each country and then
return to the default Index view, as shown in the following code:
public IActionResult GenerateDatasets()
{
 foreach (string country in countries)
 {
 IEnumerable<Order> ordersInCountry = db.Orders
 // filter by country to create different datasets
 .Where(order => order.Customer.Country == country)
 .Include(order => order.OrderDetails)
 .AsEnumerable(); // switch to client-side

 IEnumerable<ProductCobought> coboughtProducts =
 ordersInCountry.SelectMany(order =>
 from lineItem1 in order.OrderDetails // cross-join

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[668]

 from lineItem2 in order.OrderDetails
 select new ProductCobought
 {
 ProductID = (uint)lineItem1.ProductID,
 CoboughtProductID = (uint)lineItem2.ProductID
 })

 // exclude matches between a product and itself
 .Where(p => p.ProductID != p.CoboughtProductID)

 // remove duplicates by grouping by both values
 .GroupBy(p => new { p.ProductID, p.CoboughtProductID })
 .Select(p => p.FirstOrDefault())

 // make it easier for humans to read results by sorting
 .OrderBy(p => p.ProductID)
 .ThenBy(p => p.CoboughtProductID);

 StreamWriter datasetFile = System.IO.File.CreateText(
 path: GetDataPath($"{country.ToLower()}-{datasetName}"));

 // tab-separated header
 datasetFile.WriteLine("ProductID\tCoboughtProductID");

 foreach (var item in coboughtProducts)
 {
 datasetFile.WriteLine("{0}\t{1}",
 item.ProductID, item.CoboughtProductID);
 }

 datasetFile.Close();
 }

 var model = CreateHomeIndexViewModel();
 return View("Index", model);
}

Training the recommendation models
In the dataset, we already provide a KeyType to set the maximum value for a
product ID and product IDs are already encoded as integers, which is what's needed
for the algorithm we will use, so to train the models all we need to do is call the
MatrixFactorizationTrainer with a few extra parameters.

1. In the HomeController.cs file, add an action method to train the models, as
shown in the following code:
public IActionResult TrainModels()
{

Building Intelligent Apps Using Machine Learning | 19

[669]

 var stopWatch = Stopwatch.StartNew();

 foreach (string country in countries)
 {
 var mlContext = new MLContext();

 IDataView dataView = mlContext.Data.LoadFromTextFile(
 path: GetDataPath($"{country}-{datasetName}"),
 columns: new[]
 {
 new TextLoader.Column(
 name: "Label",
 dataKind: DataKind.Double,
 index: 0),

 // The key count is the cardinality i.e. maximum
 // valid value. This column is used internally when
 // training the model. When results are shown, the
 // columns are mapped to instances of our model
 // which could have a different cardinality but
 // happen to have the same.
 new TextLoader.Column(
 name: nameof(ProductCobought.ProductID),
 dataKind: DataKind.UInt32,
 source: new [] { new TextLoader.Range(0) },
 keyCount: new KeyCount(77)),

 new TextLoader.Column(
 name: nameof(
 ProductCobought.CoboughtProductID),
 dataKind: DataKind.UInt32,
 source: new [] { new TextLoader.Range(1) },
 keyCount: new KeyCount(77))
 },
 hasHeader: true,
 separatorChar: '\t');

 var options = new MatrixFactorizationTrainer.Options
 {
 MatrixColumnIndexColumnName =
 nameof(ProductCobought.ProductID),
 MatrixRowIndexColumnName =
 nameof(ProductCobought.CoboughtProductID),
 LabelColumnName = "Label",
 LossFunction = MatrixFactorizationTrainer
 .LossFunctionType.SquareLossOneClass,
 Alpha = 0.01,
 Lambda = 0.025,

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[670]

 C = 0.00001
 };

 MatrixFactorizationTrainer mft =
 mlContext.Recommendation()
 .Trainers.MatrixFactorization(options);

 ITransformer trainedModel = mft.Fit(dataView);

 mlContext.Model.Save(trainedModel,
 inputSchema: dataView.Schema,
 filePath: GetDataPath($"{country}-model.zip"));
 }

 stopWatch.Stop();

 var model = CreateHomeIndexViewModel();
 model.Milliseconds = stopWatch.ElapsedMilliseconds;

 return View("Index", model);
}

Implementing a shopping cart with
recommendations
We will now build a shopping cart feature and allow visitors to add products to their
cart. In the cart, they will see recommendations of other products they can quickly
add to their cart.

This type of recommendation is known as co-purchase or "products frequently
bought together," which means it will recommend customers a set of products based
upon their and other customers' purchase histories.

In this example, we will always use the Germany model to make predictions. In a real
website, you might choose to select the model based on the current location of the
visitor so that they get recommendations similar to other visitors from their country.

1. In the HomeController.cs file, add an action method to add a product to the
shopping cart and then show the cart with the best three recommendations of
other products the visitor might like to add, as shown in the following code:
// GET /Home/Cart
// To show the cart and recommendations

// GET /Home/Cart/5
// To add a product to the cart

public IActionResult Cart(int? id)

Building Intelligent Apps Using Machine Learning | 19

[671]

{
 // the current cart is stored as a cookie
 string cartCookie = Request.Cookies["nw_cart"]
 ?? string.Empty;

 // if visitor clicked Add to Cart button
 if (id.HasValue)
 {
 if (string.IsNullOrWhiteSpace(cartCookie))
 {
 cartCookie = id.ToString();
 }
 else
 {
 string[] ids = cartCookie.Split('-');

 if (!ids.Contains(id.ToString()))
 {
 cartCookie = string.Join('-',
 cartCookie, id.ToString());
 }
 }

 Response.Cookies.Append("nw_cart", cartCookie);
 }

 var model = new HomeCartViewModel
 {
 Cart = new Cart
 {
 Items = Enumerable.Empty<CartItem>()
 },
 Recommendations = new List<EnrichedRecommendation>()
 };

 if (cartCookie.Length > 0)
 {
 model.Cart.Items = cartCookie.Split('-').Select(item =>
 new CartItem
 {
 ProductID = int.Parse(item),
 ProductName = db.Products.Find(
 int.Parse(item)).ProductName
 });
 }

 if (System.IO.File.Exists(
 GetDataPath("germany-model.zip")))
 {

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[672]

 var mlContext = new MLContext();

 ITransformer modelGermany;

 using (var stream = new FileStream(
 path: GetDataPath("germany-model.zip"),
 mode: FileMode.Open,
 access: FileAccess.Read,
 share: FileShare.Read))
 {
 modelGermany = mlContext.Model.Load(stream,
 out DataViewSchema schema);
 }

 var predictionEngine =
 mlContext.Model.CreatePredictionEngine
 <ProductCobought, Recommendation>(modelGermany);

 var products = db.Products.ToArray();

 foreach (var item in model.Cart.Items)
 {
 var topThree = products
 .Select(product =>
 predictionEngine.Predict(
 new ProductCobought
 {
 ProductID = (uint)item.ProductID,
 CoboughtProductID = (uint)product.ProductID
 })
) // returns IEnumerable<Recommendation>
 .OrderByDescending(x => x.Score)
 .Take(3)
 .ToArray();

 model.Recommendations.AddRange(topThree
 .Select(rec => new EnrichedRecommendation
 {
 CoboughtProductID = rec.CoboughtProductID,
 Score = rec.Score,
 ProductName = db.Products.Find(
 (int)rec.CoboughtProductID).ProductName
 }));
 }

 // show the best three product recommendations
 model.Recommendations = model.Recommendations
 .OrderByDescending(rec => rec.Score)
 .Take(3)
 .ToList();

Building Intelligent Apps Using Machine Learning | 19

[673]

 }

 return View(model);
}

2. In the Views folder, in its Home subfolder, open Index.cshtml, and modify it
to output its view model and include links to generate the datasets and train
the models, as shown in the following markup:
@using Packt.Shared
@model HomeIndexViewModel
@{
 ViewData["Title"] = "Products - Northwind ML";
}
<h1 class="display-3">@ViewData["Title"]</h1>
<p class="lead">
 <div>See product recommendations in your shopping cart.</div>

 First,
 <a asp-controller="Home"
 asp-action="GenerateDatasets">
 generate some datasets.
 Second,
 <a asp-controller="Home" asp-action="TrainModels">
 train the models.
 Third, add some products to your
 <a asp-controller="Home"
 asp-action="Cart">cart.

 <div>
 @if (Model.GermanyDatasetExists || Model.UKDatasetExists)
 {
 <text>Datasets for training:</text>
 }
 @if (Model.GermanyDatasetExists)
 {
 Germany
 }
 @if (Model.UKDatasetExists)
 {
 UK
 }
 @if (Model.USADatasetExists)
 {
 <text>Dataset for testing:</text>
 USA
 }
 </div>
 @if (Model.Milliseconds > 0)
 {

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[674]

 <div>
 It took @Model.Milliseconds milliseconds to train
 the models.
 </div>
}
</p>
<hr />
<h2>Products</h2>
@foreach (Category category in Model.Categories)
{
<h3>@category.CategoryName <small>@category.Description</small></
h3>
<table>
@foreach (Product product in category.Products)
{
 <tr>
 <td>
 <a asp-controller="Home" asp-action="Cart"
 asp-route-id="@product.ProductID"
 class="btn btn-primary">Add to Cart
 </td>
 <td>
 @product.ProductName
 </td>
 </tr>
}
</table>
}

3. In the Views folder, in its Home subfolder, create a new Razor file named
Cart.cshtml, and modify it to output its view model, as shown in the
following markup:

@model HomeCartViewModel
@{
 ViewData["Title"] = "Shopping Cart - Northwind ML";
}
<h1>@ViewData["Title"]</h1>
<table class="table table-bordered">
 <tr>
 <th>Product ID</th>
 <th>Product Name</th>
 </tr>
@foreach (CartItem item in Model.Cart.Items)
{
 <tr>
 <td>@item.ProductID</td>
 <td>@item.ProductName</td>
 </tr>
}

Building Intelligent Apps Using Machine Learning | 19

[675]

</table>
<h2>Customers who bought items in your cart also bought the
following products</h2>
@if (Model.Recommendations.Count() == 0)
{
 <div>No recommendations.</div>
}
else
{
<table class="table table-bordered">
 <tr>
 <th></th>
 <th>Co-bought Product</th>
 <th>Score</th>
 </tr>
@foreach (EnrichedRecommendation rec
 in Model.Recommendations)
{
 <tr>
 <td>
 <a asp-controller="Home" asp-action="Cart"
 asp-route-id="@rec.CoboughtProductID"
 class="btn btn-primary">Add to Cart
 </td>
 <td>
 @rec.ProductName
 </td>
 <td>
 @rec.Score
 </td>
 </tr>
}
</table>
}

Testing the product recommendations
website
Now we are ready to test the website product recommendations feature.

1. Start the website using the following command:
dotnet run

2. Start Chrome and navigate to https://localhost:5001/

https://localhost:5001/
https://localhost:5001/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[676]

3. On the home page, click generate some datasets, and note that links to the
three datasets are created, as shown in the following screenshot:

4. Click the UK dataset, and note that five products were co-bought with
Product ID 1: 5, 11, 23, 68, and 69, as shown in the following screenshot:

5. Navigate back in your browser.
6. Click train the models and note how long it took to train the models, as

shown in the following screenshot:

Building Intelligent Apps Using Machine Learning | 19

[677]

7. In Visual Studio Code, in the NorthwindML project, expand the wwwroot
folder, expand the Data folder, and note the models in the filesystem saved
as binary ZIP files.

8. In Chrome, on the Products - Northwind ML home page, scroll down the list
of products, click Add to Cart next to any product like Outback Lager, and
note the Shopping Cart page appears with the product as a cart item and
recommended products with scores, as shown in the following screenshot:

9. Navigate back in your browser, add another product to your cart like Ipoh
Coffee, and note the changes in the top three product recommendations due
to NuNuCa Nuß-Nougat-Creme being even more likely to be co-bought
than the previous top recommendation, Schoggi Schokolade, as shown in
the following screenshot:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[678]

10. Close the browser and stop the website.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with deeper research.

Exercise 19.1 – Test your knowledge
Answer the following questions:

1. What are the four main steps of the machine learning lifecycle?
2. What are the three sub-steps of the modeling step?
3. Why do models need to be retrained after deployment?
4. Why must you split your dataset into a training dataset and a testing dataset?
5. What are some of the differences between clustering and classification

machine learning tasks?
6. What class must you instantiate to perform any machine learning task?
7. What is the difference between a label and a feature?
8. What does IDataView represent?
9. What does the count parameter in the [KeyType(count: 10)] attribute

represent?
10. What does the score represent with matrix factorization?

Building Intelligent Apps Using Machine Learning | 19

[679]

Exercise 19.2 – Practice with samples
Microsoft has many sample projects for learning ML.NET, as shown in the following
list:

• Sentiment Analysis for User Reviews: https://github.com/dotnet/
machinelearning-samples/tree/master/samples/csharp/getting-
started/BinaryClassification_SentimentAnalysis

• Customer Segmentation - Clustering sample: https://github.com/
dotnet/machinelearning-samples/tree/master/samples/csharp/
getting-started/Clustering_CustomerSegmentation

• Spam Detection for Text Messages: https://github.com/dotnet/
machinelearning-samples/tree/master/samples/csharp/getting-
started/BinaryClassification_SpamDetection

• GitHub Issues Labeler: https://github.com/dotnet/machinelearning-
samples/tree/master/samples/csharp/end-to-end-apps/
MulticlassClassification-GitHubLabeler

• Movie Recommendation - Matrix Factorization problem sample: https://
github.com/dotnet/machinelearning-samples/tree/master/samples/
csharp/getting-started/MatrixFactorization_MovieRecommendation

• Taxi Fare Prediction: https://github.com/dotnet/machinelearning-
samples/tree/master/samples/csharp/getting-started/Regression_
TaxiFarePrediction

• Bike Sharing Demand - Regression problem sample: https://github.
com/dotnet/machinelearning-samples/tree/master/samples/csharp/
getting-started/Regression_BikeSharingDemand

• eShopDashboardML - Sales forecasting: https://github.com/dotnet/
machinelearning-samples/tree/master/samples/csharp/end-to-end-
apps/Regression-SalesForecast

Exercise 19.3 – Explore topics
Use the following links to read more details about this chapter's topics:

• What is ML.NET and how do I understand Machine Learning basics?
https://docs.microsoft.com/en-us/dotnet/machine-learning/how-
does-mldotnet-work

• Machine learning glossary of important terms: https://docs.microsoft.
com/en-us/dotnet/machine-learning/resources/glossary

• Channel 9 ML.NET videos: https://aka.ms/dotnet3-mlnet
• YouTube ML.NET videos: https://aka.ms/mlnetyoutube

https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/BinaryClassification_SentimentAnalysis
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/BinaryClassification_SentimentAnalysis
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/BinaryClassification_SentimentAnalysis
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Clustering_CustomerSegmentation
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Clustering_CustomerSegmentation
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Clustering_CustomerSegmentation
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/BinaryClassification_SpamDetection
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/BinaryClassification_SpamDetection
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/BinaryClassification_SpamDetection
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/MatrixFactorization_MovieRecommendation
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/MatrixFactorization_MovieRecommendation
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/MatrixFactorization_MovieRecommendation
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_TaxiFarePrediction
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_TaxiFarePrediction
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_TaxiFarePrediction
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_BikeSharingDemand
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_BikeSharingDemand
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_BikeSharingDemand
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_BikeSharingDemand
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/end-to-end-apps/Regression-SalesForecast
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/end-to-end-apps/Regression-SalesForecast
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/end-to-end-apps/Regression-SalesForecast
https://docs.microsoft.com/en-us/dotnet/machine-learning/what-is-mldotnet
https://docs.microsoft.com/en-us/dotnet/machine-learning/what-is-mldotnet
https://docs.microsoft.com/en-us/dotnet/machine-learning/how-does-mldotnet-work
https://docs.microsoft.com/en-us/dotnet/machine-learning/how-does-mldotnet-work
https://docs.microsoft.com/en-us/dotnet/machine-learning/resources/glossary
https://docs.microsoft.com/en-us/dotnet/machine-learning/resources/glossary
https://aka.ms/dotnet3-mlnet
https://aka.ms/mlnetyoutube
https://aka.ms/mlnetyoutube

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[680]

• Machine Learning Explainability vs Interpretability: Two concepts that
could help restore trust in AI: https://www.kdnuggets.com/2018/12/
machine-learning-explainability-interpretability-ai.html

• Machine learning tasks in ML.NET: https://docs.microsoft.com/en-
us/dotnet/machine-learning/resources/tasks

• Machine learning data transforms - ML.NET: https://docs.microsoft.
com/en-us/dotnet/machine-learning/resources/transforms

• ML.NET Samples: https://github.com/dotnet/machinelearning-
samples/blob/master/README.md

• Community Samples: https://github.com/dotnet/machinelearning-
samples/blob/master/docs/COMMUNITY-SAMPLES.md

• ML.NET API reference: https://docs.microsoft.com/en-gb/dotnet/
api/?view=ml-dotnet

• ML.NET: The Machine Learning Framework for .NET Developers:
https://msdn.microsoft.com/en-us/magazine/mt848634

• Building recommendation engine for .NET applications using Azure
Machine Learning: https://devblogs.microsoft.com/dotnet/dot-net-
recommendation-system-for-net-applications-using-azure-machine-
learning/

Summary
In this chapter, you were introduced to one practical example of how to add
intelligence to a website using ML.NET. The current solution would not scale well
since it currently loads the entire product list into memory. Building intelligence like
this into apps is more than a full-time profession. I hope that this chapter has either
sparked an interest in diving deeper into machine learning and data science or has
shown you enough that you can make an informed decision to pursue other areas of
C# and .NET development.

In the next chapter, you will learn how to build desktop apps for Windows using
Windows Presentation Foundation (WPF) and Universal Windows Platform
(UWP), and how to migrate Windows Forms apps to .NET Core 3.0.

https://www.kdnuggets.com/2018/12/machine-learning-explainability-interpretability-ai.html
https://www.kdnuggets.com/2018/12/machine-learning-explainability-interpretability-ai.html
https://docs.microsoft.com/en-us/dotnet/machine-learning/resources/tasks
https://docs.microsoft.com/en-us/dotnet/machine-learning/resources/tasks
https://docs.microsoft.com/en-us/dotnet/machine-learning/resources/transforms
https://docs.microsoft.com/en-us/dotnet/machine-learning/resources/transforms
https://github.com/dotnet/machinelearning-samples/blob/master/README.md
https://github.com/dotnet/machinelearning-samples/blob/master/README.md
https://github.com/dotnet/machinelearning-samples/blob/master/README.md
https://github.com/dotnet/machinelearning-samples/blob/master/docs/COMMUNITY-SAMPLES.md
https://github.com/dotnet/machinelearning-samples/blob/master/docs/COMMUNITY-SAMPLES.md
https://github.com/dotnet/machinelearning-samples/blob/master/docs/COMMUNITY-SAMPLES.md
https://docs.microsoft.com/en-gb/dotnet/api/?view=ml-dotnet
https://docs.microsoft.com/en-gb/dotnet/api/?view=ml-dotnet
https://docs.microsoft.com/en-gb/dotnet/api/?view=ml-dotnet
https://msdn.microsoft.com/en-us/magazine/mt848634
https://msdn.microsoft.com/en-us/magazine/mt848634
https://msdn.microsoft.com/en-us/magazine/mt848634
https://devblogs.microsoft.com/dotnet/dot-net-recommendation-system-for-net-applications-using-azure-machine-learning/
https://devblogs.microsoft.com/dotnet/dot-net-recommendation-system-for-net-applications-using-azure-machine-learning/

[681]

Chapter 20
Building Windows

Desktop Apps
This chapter is about building applications for Windows desktop using three
technologies: Windows Forms, Windows Presentation Foundation (WPF), and
Universal Windows Platform (UWP). Windows Forms and WPF support using
.NET Core 3.0 as their runtime, but current design-time support is limited so I only
recommend this if you have existing Windows Forms or WPF apps that must be
migrated to .NET Core 3.0. Personally, I would recommend leaving those apps on
.NET Framework at least until Visual Studio has much better design-time support
for these legacy app models.

Most of this chapter will cover UWP apps that use the modern Windows Runtime
and can execute apps built using a custom version of .NET Core 2.0 that compiles to
.NET Native. Although most of this chapter does not technically use .NET Core 3.0,
in November 2020 Microsoft will release .NET 5.0, which will be the single unified
platform for .NET used by all app models, including ASP.NET for web development,
Windows Forms, WPF, and UWP for Windows development, and for mobile apps.

You will see how eXtensible Application Markup Language (XAML) makes it easy
to define the user interface for a graphical app. You will explore some of the new
user interface features of Fluent Design, introduced in the Windows 10 Fall Creators
Update in October 2017.

In a single chapter, we will only be able to scratch the surface of what can be
achieved using .NET for the Windows desktop. However, I hope to excite you into
wanting to learn more about the new ability to migrate legacy Windows applications
to the modern .NET Core 3.0 platform, and the cool new UWP technology with its
Fluent Design, including template-able controls, data binding, and animation!

More Information: You can read more about your choices of
platform for building Windows desktop apps at the following
link: https://docs.microsoft.com/en-us/windows/apps/
desktop/choose-your-platform

https://docs.microsoft.com/en-us/windows/apps/desktop/choose-your-platform
https://docs.microsoft.com/en-us/windows/apps/desktop/choose-your-platform

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[682]

In this chapter, we will cover the following topics:

• Understanding legacy Windows application platforms
• Understanding the modern Windows platform
• Creating a modern Windows app
• Using resources and templates
• Using data binding

Understanding legacy Windows
application platforms
With the Microsoft Windows 1.0 release in 1985, the only way to create Windows
applications was to use the C language and call functions in three core DLLs named
kernel, user, and GDI. Once Windows became 32-bit with Windows 95, the DLLs
were suffixed with 32 and became known as the Win32 API.

In 1991, Microsoft introduced Visual Basic, which provided developers a visual,
drag and drop from a toolbox of controls way to build the user interface for
Windows applications. It was immensely popular, and the Visual Basic runtime
is still part of Windows 10 today.

In 2002, Microsoft introduced .NET Framework, which included Windows Forms
for building Windows applications. The code could be written in either Visual Basic
or C# languages. Windows Forms had a similar drag and drop visual designer,
although it generated C# or Visual Basic code to define the user interface, which
can be difficult for humans to understand and edit directly.

In 2006, Microsoft introduced .NET Framework 3.0, which included WPF for
building user interfaces using XAML, which is easy for developers to understand
and edit directly.

Some important points about this chapter

UWP apps are not cross-platform, but they are cross-device,
meaning they can run on desktop, laptop, tablet, and mixed
reality devices like the HP Windows Mixed Reality Headset.
Those devices must run a modern flavor of Windows. You will
need Windows 10 May 2019 Update and Visual Studio 2019
version 16.3 or later to use the latest features, like XAML Islands,
although older versions of Windows 10 like April 2018 Update
should work for creating the example app in this chapter.

Building Windows Desktop Apps | 20

[683]

Understanding .NET Core 3.0 support for
legacy Windows platforms
The on-disk size of the .NET Core 3.0 SDKs for Linux and macOS are 332 MB and 337
MB respectively. The on-disk size of the .NET Core 3.0 SDK for Windows is 441 MB.
This is because it includes the .NET Core Windows Desktop Runtime, which allows
the legacy Windows application platforms Windows Forms and WPF to be run on
.NET Core 3.0.

Installing Microsoft Visual Studio 2019 for
Windows
Since October 2014, Microsoft has made a professional-quality edition of Visual
Studio available to everyone for free. It is called Community Edition.

If you have not already installed it, let's do so now.

1. Download Microsoft Visual Studio 2019 version 16.3 or later for Windows from
the following link: https://visualstudio.microsoft.com/downloads/

2. Start the installer.
3. On the Workloads tab, select the following:

 ° .NET desktop development
 ° Universal Windows Platform development
 ° .NET Core cross-platform development

4. Click Install and wait for the installer to acquire the selected software and
install it.

5. When the installation is complete, click Launch.
6. The first time that you run Visual Studio, you will be prompted to sign in.

If you have a Microsoft account, you can use that account. If you don't, then
register for a new one at the following link: https://signup.live.com/

7. The first time that you run Visual Studio, you will be prompted to configure
your environment. For Development Settings, choose Visual C#. For the
color theme, I chose Blue, but you can choose whatever tickles your fancy.

https://visualstudio.microsoft.com/downloads/
https://signup.live.com/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[684]

Working with Windows Forms
We will start by using the dotnet command tool to create a new Windows
Forms app, then we will use Visual Studio to create a Windows Forms app for
.NET Framework to simulate a legacy application, and then we will migrate that
application to .NET Core 3.0.

Building a new Windows Forms application
In this task, you will see that it is not a good idea to build new Windows Forms
applications for .NET Core 3.0. As a general rule, only migrate existing Windows
Forms applications to .NET Core 3.0.

The following instructions start with creating some new folders to store a solution
file and a project. You can choose to use another tool to do this instead of the
command prompt, but you should at least create the new solution and Windows
Forms project by using the dotnet command-line tool in the correct folder.

1. From the Windows Start menu, open Command Prompt.
2. In Command Prompt, enter commands to perform the following tasks:

 ° Change to the PracticalApps folder.
 ° Create a folder named WindowsDesktopApps with a new solution file.
 ° Create a subfolder named BasicWinForms with a new Windows

Forms project.
cd C:\Code\PracticalApps\

mkdir WindowsDesktopApps

cd WindowsDesktopApps

dotnet new sln

mkdir BasicWinForms

cd BasicWinForms

dotnet new winforms

3. Start Visual Studio 2019 and click Open a project or solution.
4. Navigate to the C:\Code\PracticalApps\WindowsDesktopApps folder,

select the WindowsDesktopApps.sln solution file, and click Open.
5. Navigate to File | Add | Existing Project…, select the project named

BasicWinForms.csproj, and then click Open.
6. Navigate to Project | BasicWinForms Properties… or right-click the

project in Solution Explorer and choose Properties, and then note that the
Target framework is .NET Core 3.0 and the Output type is a Windows
Application., as shown in the following screenshot:

Building Windows Desktop Apps | 20

[685]

7. In Solution Explorer, double-click or right-click the Form1.cs and select
Open, and note that at the time of writing in September 2019, the Windows
Forms designer does not support .NET Core 3.0, as shown in the following
screenshot:

8. Navigate to Debug | Start Without Debugging or press Ctrl + F5, note the
resizable window with the title Form1, and then click the close button in its
top-right corner to exit the application.

More Information: You can track the progress of the Windows
Forms designer at the following link: https://github.
com/dotnet/winforms/blob/master/Documentation/
winforms-designer.md

https://github.com/dotnet/winforms/blob/master/Documentation/winforms-designer.md
https://github.com/dotnet/winforms/blob/master/Documentation/winforms-designer.md
https://github.com/dotnet/winforms/blob/master/Documentation/winforms-designer.md

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[686]

Reviewing a new Windows Forms application
Let's review the code in an empty Windows Forms application.

1. In Solution Explorer, open Program.cs and note that it is similar to a console
app with a Main entry point method, and that it instantiates a Form1 class
and runs it, as shown in the following code with comments removed to save
space:
static class Program
{
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
}

2. In Solution Explorer, expand Form1.cs, open the Form1 class, and note it
is a partial class and the call to InitializeComponent in its constructor, as
shown in the following code:
public partial class Form1 : Form
{
 public Form1()
 {
 InitializeComponent();
 }
}

3. In Solution Explorer, expand Form1.cs, open Form1.Designer.cs, expand
the Windows Form Designer generated code section, and note that the
code would be messy to understand and modify manually, as shown in the
following code, which defines the button:
private void InitializeComponent()
{
 this.components = new System.ComponentModel.Container();
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(800, 450);
 this.Text = "Form1";
}

4. Close any edit windows.

Building Windows Desktop Apps | 20

[687]

Migrating a legacy Windows Forms application
In this task, you will add a Windows Forms application for .NET Framework to the
solution so that you can use the Windows Forms visual designer, and then migrate it
to .NET Core 3.0.

1. In Visual Studio 2019, navigate to File | Add | New Project…
2. In the search box, enter windows forms and select Windows Forms App

(.NET Framework), as shown in the following screenshot:

3. Click Next.
4. For Project name, enter LegacyWinForms and click Create.
5. Navigate to View | Toolbox or press Ctrl + W, X and then pin the Toolbox.

Note that you might have different key bindings. If so, then you can navigate
to Tools | Import and Export Settings and reset your settings to Visual C#
to use the same key bindings as the ones I have used in this chapter.

6. In Toolbox, expand Common Controls.
7. Drag and drop some controls, like Button, MonthCalendar, Label, and

TextBox onto Form1, as shown in the following screenshot:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[688]

8. Navigate to View | Properties Window or press Ctrl + W, P or F4.
9. Select the button, change its (Name) property to btnGoToChristmas, and

change its Text property to Go to Christmas.
10. Double-click the button, note that an event handler method is written for

you, and enter statements to set the calendar to select Christmas Day 2019, as
shown highlighted in the following code:
private void BtnGoToChristmas_Click(object sender, EventArgs e)
{
 DateTime christmas = new DateTime(2019, 12, 25);
 monthCalendar1.SelectionStart = christmas;
 monthCalendar1.SelectionEnd = christmas;
}

11. In Solution Explorer, right-click the solution and select Set StartUp
Projects…

12. In the Solution 'WindowsDesktopApps' Properties Pages dialog box, for
Startup Project, select Current selection, and then click OK.

13. In Solution Explorer, select the LegacyWinForms project and note its name
becomes bold to indicate that it is the current selection.

14. Navigate to Debug | Start Without Debugging or press Ctrl + F5, click the
button, and note the month calendar animates to select Christmas Day, and
then click the close button in the top-right corner to exit the app.

Migrating a Windows Forms app
Now, we can migrate this to the .NET Core 3.0 project. Remember that we only need
to do this as a temporary measure. Once the Windows Forms designer is ported to
.NET Core 3.0 and is available in a future release of Visual Studio 2019, migrating
won't be necessary.

1. Drag and drop Form1 from the LegacyWinForms folder into the
BasicWinForms folder, which will prompt you to overwrite the
following files:

 ° Form1.cs

 ° Form1.Designer.cs

 ° Form1.resx

2. In the BasicWinForms project, modify Program.cs to specific the legacy
namespace when instantiating and running Form1, as shown in the following
code:
Application.Run(new LegacyWinForms.Form1());

Building Windows Desktop Apps | 20

[689]

3. In Solution Explorer, select the BasicWinForms project.
4. Navigate to Debug | Start Without Debugging or press Ctrl + F5, click the

button, note the month calendar animates to select Christmas Day, and then
close the app.

5. Close the project and solution.

Migrating WPF apps to .NET Core 3.0
If you have existing WPF apps that need to move from .NET Framework to .NET
Core 3.0, then like migrating Windows Forms, it is possible today, but tricky. This
will improve over the next year or so, especially with future releases of Visual Studio
2019 and the release of .NET 5.0 in November 2020.

Migrating legacy apps using the Windows
Compatibility Pack
Windows Compatibility Pack provides access to APIs that were previously available
only for .NET Framework. It can be used from both .NET Core as well as .NET
Standard.

Understanding the modern Windows
platform
Microsoft continues to improve their Windows platform, which includes
technologies like Universal Windows Platform and Fluent Design System for
building modern apps.

More Information: You can read more about migrating
WPF apps to .NET Core 3.0 at the following link: https://
devblogs.microsoft.com/dotnet/migrating-a-sample-
wpf-app-to-net-core-3-part-1/

More Information: You can read more about the Windows
Compatibility Pack at the following link: https://devblogs.
microsoft.com/dotnet/announcing-the-windows-
compatibility-pack-for-net-core/

https://devblogs.microsoft.com/dotnet/migrating-a-sample-wpf-app-to-net-core-3-part-1/
https://devblogs.microsoft.com/dotnet/migrating-a-sample-wpf-app-to-net-core-3-part-1/
https://devblogs.microsoft.com/dotnet/migrating-a-sample-wpf-app-to-net-core-3-part-1/
https://devblogs.microsoft.com/dotnet/announcing-the-windows-compatibility-pack-for-net-core/
https://devblogs.microsoft.com/dotnet/announcing-the-windows-compatibility-pack-for-net-core/
https://devblogs.microsoft.com/dotnet/announcing-the-windows-compatibility-pack-for-net-core/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[690]

Understanding Universal Windows Platform
UWP is Microsoft's latest technology solution to build applications for its Windows
suite of operating systems. It provides a guaranteed API layer across multiple device
types. You can create a single app package that can be uploaded to a single store
to be distributed to reach all the device types your app can run on. These devices
include Windows 10 desktops, laptops, and tablets, the Xbox One and later video
game systems, and Mixed Reality Headsets like Microsoft HoloLens.

UWP provides standard mechanisms to detect the capabilities of the current device
and then activate additional features of your app to fully take advantage of them.

UWP with XAML provides layout panels that adapt how they display their child
controls to make the most of the device they are currently running on. It is the
Windows app equivalent of web page responsive design. They also provide visual
state triggers to alter the layout based on dynamic changes, such as the horizontal or
vertical orientation of a tablet.

Understanding Fluent Design System
Microsoft's Fluent Design System will be delivered in multiple waves, rather than as
a "Big Bang" all in one go, to help developers slowly migrate from traditional styles
of user interface to more modern ones.

Wave 1, available in Windows 10 Fall Creators Update, released in October 2017 and
refined in the subsequent waves as part of biannual Windows 10 updates, included
the following features:

• Acrylic material
• Connected animations
• Parallax views
• Reveal lighting

Filling user interface elements with acrylic brushes
Acrylic material is a semi-transparent blur-effect brush that can be used to fill user
interface elements to add depth and perspective to your apps. Acrylic can show
through what is in the background behind the app, or elements within the app that
are behind a pane. Acrylic material can be customized with varying colors and
transparencies.

Building Windows Desktop Apps | 20

[691]

Connecting user interface elements with animations
When navigating around a user interface, animating elements to draw connections
between screens helps users to understand where they are and how to interact with
your app.

Parallax views and Reveal lighting
Parallax views are backgrounds, often images, that move at a slower rate than the
foreground during scrolling to provide a feeling of depth and give your apps a
modern feel.

Reveal lighting helps the user understand which of the visual elements in the user
interface is an interactive element by lighting up as the user moves their mouse cursor
over that element to draw their focus.

Understanding XAML Standard
In 2006, Microsoft released WPF, which was the first technology to use XAML.
Silverlight, for web and mobile apps, quickly followed, but it is no longer supported
by Microsoft. WPF is still used today to create Windows desktop applications; for
example, Microsoft Visual Studio 2019 is partially built using WPF.

More Information: You can read more about how and when to use
Acrylic material at the following link: https://docs.microsoft.
com/en-us/windows/uwp/design/style/acrylic

More Information: You can read more about how and when to
use connected animations at the following link: https://docs.
microsoft.com/en-us/windows/uwp/design/motion/
connected-animation

More Information: You can read more about Parallax at the
following link: https://docs.microsoft.com/en-us/
windows/uwp/design/motion/parallax

More Information: You can read more about how and when
to use Reveal to bring focus to user interface elements at the
following link: https://docs.microsoft.com/en-us/
windows/uwp/design/style/reveal

https://docs.microsoft.com/en-us/windows/uwp/design/style/acrylic
https://docs.microsoft.com/en-us/windows/uwp/design/style/acrylic
https://docs.microsoft.com/en-us/windows/uwp/design/motion/connected-animation
https://docs.microsoft.com/en-us/windows/uwp/design/motion/connected-animation
https://docs.microsoft.com/en-us/windows/uwp/design/motion/parallax
https://docs.microsoft.com/en-us/windows/uwp/design/motion/parallax
https://docs.microsoft.com/en-us/windows/uwp/design/style/reveal
https://docs.microsoft.com/en-us/windows/uwp/design/style/reveal

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[692]

XAML can be used to build parts of the following apps:

• UWP apps for Windows 10 devices, Xbox One, and Mixed Reality Headsets.
• WPF apps for the Windows desktop, including Windows 7 and later.
• Xamarin apps for mobile and desktop devices including Android, iOS, and

macOS.

Like .NET, XAML has fragmented, with slight variations in capabilities between
XAML for different platforms. So, just as .NET Standard is an initiative to bring
various platforms of .NET together, XAML Standard was an initiative to do the same
for XAML. Now that .NET will be unified in 2020, I expect the same to happen with
XAML since Microsoft has not been active in the XAML Standard public GitHub
repository.

Simplifying code using XAML
XAML simplifies C# code, especially when building a user interface.

Imagine that you need two or more buttons laid out horizontally to create a toolbar.
In C#, you might write this code:

var toolbar = new StackPanel();
toolbar.Orientation = Orientation.Horizontal;
var newButton = new Button();
newButton.Content = "New";
newButton.Background = new SolidColorBrush(Colors.Pink);
toolbar.Children.Add(newButton);
var openButton = new Button();
openButton.Content = "Open";
openButton.Background = new SolidColorBrush(Colors.Pink);
toolbar.Children.Add(openButton);

In XAML, this could be simplified to the following lines of code. When this XAML
is processed, the equivalent properties are set, and methods are called to achieve the
same goal as the preceding C# code:

<StackPanel Name="toolbar" Orientation="Horizontal">
 <Button Name="newButton" Background="Pink">New</Button>
 <Button Name="openButton" Background="Pink">Open</Button>
</StackPanel>

More Information: You can read more about XAML Standard:
a set of principles that drive XAML dialect alignment at the
following link: https://github.com/Microsoft/xaml-
standard

https://github.com/Microsoft/xaml-standard
https://github.com/Microsoft/xaml-standard
https://github.com/Microsoft/xaml-standard
https://github.com/Microsoft/xaml-standard

Building Windows Desktop Apps | 20

[693]

XAML is an alternative and better way of declaring and instantiating .NET types for
use in a user interface.

Choosing common controls
There are lots of predefined controls that you can choose from for common user
interface scenarios. Almost all versions of XAML support these controls:

Controls Description

Button, Menu, Toolbar Executing actions

CheckBox, RadioButton Choosing options

Calendar, DatePicker Choosing dates

ComboBox, ListBox, ListView,
TreeView

Choosing items from lists and hierarchical trees

Canvas, DockPanel, Grid,
StackPanel, WrapPanel

Layout containers that affect their children in
different ways

Label, TextBlock Displaying read-only text

RichTextBox, TextBox Editing text

Image, MediaElement Embedding images, videos, and audio files

DataGrid Viewing and editing data as quickly and easily
as possible

Scrollbar, Slider, StatusBar Miscellaneous user interface elements

Understanding markup extensions
To support some advanced features, XAML uses markup extensions. Some of the
most important enable element and data binding and reuse of resources, as shown in
the following list:

• {Binding} links an element to a value from another element or a data source.
• {StaticResource} links an element to a shared resource.
• {ThemeResource} links an element to a shared resource defined in a theme.

You will see some practical examples of markup extensions throughout this chapter.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[694]

Creating a modern Windows app
We will start by creating a simple UWP app, with some common controls and
modern features of Fluent Design like acrylic material.

Enabling developer mode
To be able to create apps for UWP, you must enable developer mode in Windows 10.

1. Navigate to Start | Settings | Update & Security | For developers, and then
click on Developer mode.

2. Accept the warning about how it "could expose your device and personal
data to security risk or harm your device," and then close the Settings app.

Creating a UWP project
Now you will add a new UWP app project to your solution.

1. In Visual Studio 2019, open the WindowsDesktopApps solution.
2. Navigate to File | Add | New Project....
3. In the Add a new project dialog, enter uwp in search box, select the Blank

App (Universal Windows) template for C#, and then click Next.
4. For the Project name, enter FluentUwpApp and then click on Create.
5. In the New Universal Windows Platform Project dialog, choose the latest

version of Windows 10 for Target Version and Minimum Version and click
on OK.

Good Practice: Since the Fluent Design System was first released
with Window 10 Fall Creators Update (10.0; Build 16299) then you
should be able to select that to support the features that we will
cover in this chapter, but while you're learning, it's best to use the
latest to avoid unexpected incompatibilities. Developers writing
UWP apps for a general audience should choose one of the latest
builds of Windows 10 for Minimum Version. Developers writing
enterprise apps should choose an older Minimum Version. Build
10240 was released in July 2015 and is a good choice for maximum
compatibility, but you will not have access to modern features such
as Fluent Design System.

Building Windows Desktop Apps | 20

[695]

6. In Solution Explorer, double-click on the MainPage.xaml file to open it for
editing. You will see the XAML design window showing a graphical view
and a XAML view. You will be able to make the following observations:

 ° The XAML designer is split horizontally, but you can toggle to a
vertical split and collapse one side by clicking on the buttons on the
right edge of the divider.

 ° You can swap views by clicking on the double-arrow button in the
divider.

 ° You can scroll and zoom in both views.

7. For Design view, change the device to 13.3" Desktop (1280 x 720) 100% scale
and zoom to 100%.

8. Navigate to View | Toolbox or press Ctrl + W, X. Note that the toolbox has
sections for Common XAML Controls, All XAML Controls, and General.

9. At the top of the toolbox is a search box. Enter the letters bu, and then note
that the list of controls is filtered.

10. Drag and drop the Button control from the toolbox onto the Design view.
11. Resize it by clicking, holding, and dragging any of the eight square-shape

resize handles on each edge and in each corner.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[696]

Note that the button is given a fixed width and height, and fixed left (30 units)
and top (40 units) margins, to position and size it absolutely inside the grid, as
shown in the following screenshot:

Although you can drag and drop controls, it is better to use the XAML view
for layout so that you can position items relatively and implement more of a
responsive design.

12. In the XAML view, find the Button element and delete it.
13. In the XAML view, inside the Grid element, enter the following markup:

<Button Margin="6" Padding="6" Name="ClickMeButton">
 Click Me
</Button>

14. Change the zoom to 50% and note that the button is automatically sized to its
content, Click Me, aligned vertically in the center and aligned horizontally to
the left, even if you toggle between vertical and horizontal phone layouts.

Building Windows Desktop Apps | 20

[697]

15. In the XAML view, delete the Grid element, and modify the XAML to wrap
the Button element inside a horizontally-orientated StackPanel with a
light gray background that is inside a vertically orientated (by default)
StackPanel, and note the change in its layout to be in the top-left of the
available space, as shown in the following code:
<StackPanel>
 <StackPanel Orientation="Horizontal" Padding="4"
 Background="LightGray" Name="toolbar">
 <Button Margin="6" Padding="6" Name="ClickMeButton">
 Click Me
 </Button>
 </StackPanel>
</StackPanel>

16. Modify the Button element to give it a new event handler for its Click event,
as shown in the following screenshot:

17. Right-click the event handler name and select Go To Definition or press F12.
18. Add a statement to the event handler method that sets the content of the

button to the current time, as shown highlighted in the following code:
private void ClickMeButton_Click(object sender, RoutedEventArgs e)
{
 ClickMeButton.Content = DateTime.Now.ToString("hh:mm:ss");
}

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[698]

19. Navigate to Build | Configuration Manager... for the FluentUwpApp
project, select the Build and Deploy checkboxes, select Platform of x64,
and then select Close, as shown in the following screenshot:

20. Run the application by navigating to Debug | Start Without Debugging or
pressing Ctrl + F5.

21. Click on the Click Me button and note that every time you click on the
button, the button's content changes to show the current time.

Exploring common controls and acrylic
brushes
Now you will explore some common controls and painting with acrylic brushes.

1. Open MainPage.xaml, set the stack panel's background to use the acrylic
system window brush, and add some elements to the stack panel after the
button for the user to enter their name, as shown highlighted in the following
markup:
<StackPanel
 Background="{ThemeResource SystemControlAcrylicWindowBrush}">
 <StackPanel Orientation="Horizontal" Padding="4"
 Background="LightGray" Name="toolbar">
 <Button Margin="6" Padding="6" Name="ClickMeButton"
 Click="ClickMeButton_Click">
 Click Me
 </Button>
 <TextBlock Text="First name:"

Building Windows Desktop Apps | 20

[699]

 VerticalAlignment="Center" Margin="4" />
 <TextBox PlaceholderText="Enter your name"
 VerticalAlignment="Center" Width="200" />
 </StackPanel>
</StackPanel>

2. Run the application by navigating to Debug | Start Without Debugging,
and note the tinted acrylic material showing the green tent and orange sunset
over the mountains of one of the standard Windows 10 wallpapers through
the app window background, as shown in the following screenshot:

Acrylic uses a lot of system resources, so if an app loses the focus, or your device is
low on battery, then acrylic is disabled automatically.

Exploring Reveal
Reveal is built-in for some controls, such as ListView and NavigationView, that you
will see later. For other controls, you can enable it by applying a theme style. First,
we will add some XAML to define a calculator user interface made up of a grid of
buttons. Then, we will add an event handler for the page's Loaded event so that we
can apply the Reveal theme style and other properties by enumerating the buttons
instead of having to manually set attributes for each one in XAML.

1. Open MainPage.xaml, add a new horizontal stack panel under the one used
as a toolbar, and add a grid with buttons to define a calculator, as shown
highlighted in the following markup:
<StackPanel
 Background="{ThemeResource SystemControlAcrylicWindowBrush}">
 <StackPanel Orientation="Horizontal" Padding="4"

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[700]

 Background="LightGray" Name="toolbar">
 <Button Margin="6" Padding="6" Name="ClickMeButton"
 Click="ClickMeButton_Click">
 Click Me
 </Button>
 <TextBlock Text="First name:"
 VerticalAlignment="Center" Margin="4" />
 <TextBox PlaceholderText="Enter your name"
 VerticalAlignment="Center" Width="200" />
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <Grid Background="DarkGray" Margin="10"
 Padding="5" Name="gridCalculator">
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Button Grid.Row="0" Grid.Column="0" Content="X" />
 <Button Grid.Row="0" Grid.Column="1" Content="/" />
 <Button Grid.Row="0" Grid.Column="2" Content="+" />
 <Button Grid.Row="0" Grid.Column="3" Content="-" />
 <Button Grid.Row="1" Grid.Column="0" Content="7" />
 <Button Grid.Row="1" Grid.Column="1" Content="8" />
 <Button Grid.Row="1" Grid.Column="2" Content="9" />
 <Button Grid.Row="1" Grid.Column="3" Content="0" />
 <Button Grid.Row="2" Grid.Column="0" Content="4" />
 <Button Grid.Row="2" Grid.Column="1" Content="5" />
 <Button Grid.Row="2" Grid.Column="2" Content="6" />
 <Button Grid.Row="2" Grid.Column="3" Content="." />
 <Button Grid.Row="3" Grid.Column="0" Content="1" />
 <Button Grid.Row="3" Grid.Column="1" Content="2" />
 <Button Grid.Row="3" Grid.Column="2" Content="3" />
 <Button Grid.Row="3" Grid.Column="3" Content="=" />
 </Grid>
 </StackPanel>
</StackPanel>

2. In the Page element, add a new event handler for Loaded, as shown
highlighted in the following markup:
<Page
 ...

Building Windows Desktop Apps | 20

[701]

 Background="{ThemeResource ApplicationPageBackgroundThemeBrush}"
 Loaded="Page_Loaded">

3. Right-click Page_Loaded and select Go To Definition or press F12.
4. Add statements to the Page_Loaded method to loop through all of the

calculator buttons, setting them to be the same size, and apply the Reveal
style, as shown in the following code:
private void Page_Loaded(object sender, RoutedEventArgs e)
{
 Style reveal = Resources.ThemeDictionaries[
 "ButtonRevealStyle"] as Style;

 foreach (Button b in gridCalculator.Children.OfType<Button>())
 {
 b.FontSize = 24;
 b.Width = 54;
 b.Height = 54;
 b.Style = reveal;
 }
}

5. Run the application by navigating to Debug | Start Without Debugging,
and note the calculator buttons start with a flat gray user interface.

6. When the user moves their mouse pointer over the bottom-right corner of
the 8 button, we see that Reveal lights it up, and parts of the surrounding
buttons light up too, as shown in the following screenshot:

7. Close the app.

The implementation of the Reveal effect has subtlety changed over the recent
biannual updates to Windows 10, so the effect in your app may look slightly
different.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[702]

Installing more controls
In addition to dozens of built-in controls, you can install additional ones as NuGet
packages and one of the best is the UWP Community Toolkit.

One of the toolkit controls is an editor for Markdown.

Let's install the UWP Community Toolkit now and explore some of its controls.

1. In the FluentUwpApp project, right-click on References, and select Manage
NuGet Packages....

2. Click Browse, search for Microsoft.Toolkit.Uwp.UI.Controls, and click
on Install, as shown in the following screenshot:

3. Review the changes and accept the license agreement.
4. Navigate to Build | Build FluentUwpApp. This will restore packages.

More Information: You can read more about the UWP
Community Toolkit at the following link: http://www.
uwpcommunitytoolkit.com/

More Information: You can read about the Markdown project
at the following link: https://daringfireball.net/
projects/markdown/

http://www.uwpcommunitytoolkit.com/
http://www.uwpcommunitytoolkit.com/
http://www.uwpcommunitytoolkit.com/
http://www.uwpcommunitytoolkit.com/
http://www.uwpcommunitytoolkit.com/
http://www.uwpcommunitytoolkit.com/
https://daringfireball.net/projects/markdown/

Building Windows Desktop Apps | 20

[703]

5. Open MainPage.xaml, and in the Page element, import the toolkit
namespace as a prefix named kit, as shown highlighted in the following
markup:
<Page
 ...
 xmlns:kit="using:Microsoft.Toolkit.Uwp.UI.Controls"
 mc:Ignorable="d"
 Background="{ThemeResource ApplicationPageBackgroundThemeBrush}"
 Loaded="Page_Loaded">

6. Inside the second horizontal stack panel and after the calculator grid, add a
textbox and a markdown text block that are data bound together so that the
text in the textbox becomes the source of the markdown control, as shown
highlighted in the following markup:
<StackPanel Orientation="Horizontal">
 <Grid Background="DarkGray" Margin="10"
 Padding="5" Name="gridCalculator">
 ...
 </Grid>
 <TextBox Name="markdownSource" Text="# Welcome"
 Header="Enter some Markdown text:"
 VerticalAlignment="Stretch" Margin="5"
 AcceptsReturn="True" />
 <kit:MarkdownTextBlock Margin="5"
 Text="{Binding ElementName=markdownSource, Path=Text}"
 VerticalAlignment="Stretch" HorizontalAlignment="Stretch" />
</StackPanel>

7. Run the application by navigating to Debug | Start Without Debugging
and note that the user can enter Markdown syntax in the textbox, and it is
rendered in the Markdown text block, as shown in the following screenshot:

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[704]

Using resources and templates
When building graphical user interfaces, you will often want to use a resource, such
as a brush to paint the background of controls or an instance of a class to perform
custom conversions. These resources can be defined in a single place and shared
throughout the app.

Sharing resources
A good place to define shared resources is at the app level, so let's see how to do that.

1. In Solution Explorer, open the App.xaml file.
2. Add the following markup inside the existing Application element to

define a linear gradient brush with a key of rainbow, as shown highlighted
in the following markup:
<Application
 x:Class="FluentUwpApp.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:FluentUwpApp">

 <Application.Resources>
 <LinearGradientBrush x:Key="rainbow">
 <GradientStop Color="Red" Offset="0" />
 <GradientStop Color="Orange" Offset="0.1" />
 <GradientStop Color="Yellow" Offset="0.3" />
 <GradientStop Color="Green" Offset="0.5" />
 <GradientStop Color="Blue" Offset="0.7" />
 <GradientStop Color="Indigo" Offset="0.9" />
 <GradientStop Color="Violet" Offset="1" />
 </LinearGradientBrush>
 </Application.Resources>

</Application>

3. Navigate to Build | Build FluentUwpApp.
4. In MainPage.xaml, modify the StackPanel element named toolbar to

change its background from LightGray to the static resource rainbow brush,
as shown in the following markup:
<StackPanel Orientation="Horizontal" Padding="4"
 Background="{StaticResource rainbow}" Name="toolbar">

Building Windows Desktop Apps | 20

[705]

5. As you enter the reference to a static resource, IntelliSense will show your
rainbow resource and the built-in resources, as shown in the following
screenshot:

Resources can be defined and stored inside any element of XAML, not just at the app
level. For example, if a resource is only needed on MainPage, then it can be defined
there. You can also dynamically load XAML files at runtime.

Replacing a control template
You can redefine how a control looks by replacing its default template. The default
control template for a button is flat and transparent.

Good Practice: A resource can be an instance of any object. To share
it within an application, define it in the App.xaml file and give
it a unique key. To set an element's property with a resource, use
{StaticResource key}.

More Information: You can read more about the Resource
Management System at the following link: https://docs.
microsoft.com/en-us/windows/uwp/app-resources/

https://docs.microsoft.com/en-us/windows/uwp/app-resources/
https://docs.microsoft.com/en-us/windows/uwp/app-resources/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[706]

One of the most common resources is a style that can set multiple properties at once.
If a style has a unique key then it must be explicitly set, like we did earlier with the
linear gradient. If it doesn't have a key, then it will be automatically applied based on
the TargetType property.

1. In App.xaml, define a control template inside the Application.Resources
element and note that the Style element will automatically set the Template
property of all controls that are TargetType, that is, buttons, to use the
defined control template, as shown highlighted in the following markup:
<Application.Resources>

 <LinearGradientBrush x:Key="rainbow">
 ...
 </LinearGradientBrush>

 <ControlTemplate x:Key="DarkGlassButton"
 TargetType="Button">
 <Border BorderBrush="#FFFFFFFF"
 BorderThickness="1,1,1,1" CornerRadius="4,4,4,4">
 <Border x:Name="border" Background="#7F000000"
 BorderBrush="#FF000000"
 BorderThickness="1,1,1,1"
 CornerRadius="4,4,4,4">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Border Opacity="0"
 HorizontalAlignment="Stretch" x:Name="glow"
 Width="Auto" Grid.RowSpan="2"
 CornerRadius="4,4,4,4">
 </Border>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Width="Auto"
 Grid.RowSpan="2" Padding="4"/>
 <Border HorizontalAlignment="Stretch" Margin="0,0,0,0"
 x:Name="shine" Width="Auto"
 CornerRadius="4,4,0,0">
 <Border.Background>
 <LinearGradientBrush EndPoint="0.5,0.9"
 StartPoint="0.5,0.03">
 <GradientStop Color="#99FFFFFF" Offset="0"/>
 <GradientStop Color="#33FFFFFF" Offset="1"/>
 </LinearGradientBrush>
 </Border.Background>
 </Border>

Building Windows Desktop Apps | 20

[707]

 </Grid>
 </Border>
 </Border>
 </ControlTemplate>

 <Style TargetType="Button">
 <Setter Property="Template"
 Value="{StaticResource DarkGlassButton}" />
 <Setter Property="Foreground" Value="White" />
 </Style>

</Application.Resources>

2. Run the application and note the black glass effect on the button in the
toolbar.

The calculator buttons are not affected at runtime by this black glass effect because
we replace their styles using code after the page has loaded.

Using data binding
When building graphical user interfaces, you will often want to bind a property of
one control to another, or to some data.

Binding to elements
The simplest type of binding is between elements.

1. In MainPage.xaml, after the second horizontal stack panel and inside the
outer vertical stack panel, add a text block for instructions, a slider for
selecting a rotation, a grid containing stack panel and text blocks to show
the selected rotation in degrees, a radial gauge from the UWP Community
Toolkit, and a red square to rotate, as shown highlighted in the following
markup:
 <kit:MarkdownTextBlock Margin="5"
 Text="{Binding ElementName=markdownSource, Path=Text}"
 VerticalAlignment="Stretch"
 HorizontalAlignment="Stretch" />
 </StackPanel>

 <TextBlock Grid.ColumnSpan="2" Margin="10">
 Use the slider to rotate the square:
 </TextBlock>

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[708]

 <Slider Value="180" Minimum="0" Maximum="360"
 Name="sliderRotation" Margin="10,0" />

 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <StackPanel Orientation="Horizontal"
 VerticalAlignment="Center"
 HorizontalAlignment="Center">
 <TextBlock FontSize="30"
 Text="{Binding ElementName=sliderRotation, Path=Value}"
/>
 <TextBlock Text="degrees" FontSize="30" Margin="10,0" />
 </StackPanel>
 <kit:RadialGauge Grid.Column="1" Minimum="0" Maximum="360"
 Value="{Binding ElementName=sliderRotation, Path=Value}"
 Height="200" Width="200" />
 <Rectangle Grid.Column="2" Height="100" Width="100"
Fill="Red">
 <Rectangle.RenderTransform>
 <RotateTransform
 Angle="{Binding ElementName=sliderRotation,
Path=Value}" />
 </Rectangle.RenderTransform>
 </Rectangle>
 </Grid>

 </StackPanel>
</Page>

2. Note that the text of the text block, the value of the radial gauge, and the
angle of the rotation transform are all bound to the slider's value using the
{Binding} markup extension that's specific the name of the element and the
name, also known as the path, of a property to bind to.

3. Run the app and then click, hold, and drag the slider to rotate the red square,
as shown in the following screenshot:

Building Windows Desktop Apps | 20

[709]

Creating an HTTP service to bind to
To illustrate binding to data sources, we will create an app for the Northwind
database that shows categories and products. We will start by adding two controllers
to the NorthwindService that you created in Chapter 18, Building and Consuming Web
Services.

1. In Visual Studio Code, open the PracticalApps workspace.
2. In the NorthwindService project, in the Controllers folder, add a file,

and name it CategoriesController.cs.
3. Write statements to define a Web API controller class with two action

methods that respond to HTTP GET requests that use the Northwind
database context to retrieve all categories, or a single category using its ID,
as shown in the following code:
using Microsoft.AspNetCore.Mvc;
using Packt.Shared;
using System.Collections.Generic;
using System.Linq;

namespace NorthwindService.Controllers
{
 [Route("api/[controller]")]

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[710]

 [ApiController]
 public class CategoriesController : ControllerBase
 {
 private readonly Northwind db;

 public CategoriesController(Northwind db)
 {
 this.db = db;
 }

 // GET: api/categories
 [HttpGet]
 [ProducesResponseType(200, Type =
typeof(IEnumerable<Category>))]
 public IEnumerable<Category> Get()
 {
 var categories = db.Categories.ToArray();
 return categories;
 }

 // GET api/categories/5
 [HttpGet("{id}" , Name = nameof(GetCategory))]
 [ProducesResponseType(200, Type = typeof(Category))]
 [ProducesResponseType(404)]
 public Category GetCategory(int id)
 {
 var category = db.Categories.Find(id);
 return category;
 }
 }
}

4. In the Controllers folder, add a file, and name it ProductsController.cs.
5. Write statements to define a Web API controller class with two action

methods that respond to HTTP GET requests that use the Northwind
database context to retrieve all products, or a list of products for a category
ID, as shown in the following code:
using Microsoft.AspNetCore.Mvc;
using Packt.Shared;
using System.Collections.Generic;
using System.Linq;

namespace NorthwindService.Controllers
{
 [Route("api/[controller]")]
 [ApiController]

Building Windows Desktop Apps | 20

[711]

 public class ProductsController : ControllerBase
 {
 private readonly Northwind db;

 public ProductsController(Northwind db)
 {
 this.db = db;
 }

 // GET: api/products
 [HttpGet]
 [ProducesResponseType(200,
 Type = typeof(IEnumerable<Product>))]
 public IEnumerable<Product> Get()
 {
 var products = db.Products.ToArray();
 return products;
 }

 // GET api/products/5
 [HttpGet("{id}", Name = nameof(GetProductsByCategoryID))]
 [ProducesResponseType(200,
 Type = typeof(IEnumerable<Product>))]
 public IEnumerable<Product> GetProductsByCategoryID(int id)
 {
 var products = db.Products.Where(
 product => product.CategoryID == id)
 .ToArray();

 return products;
 }
 }
}

6. Navigate to Terminal | New Terminal and select NorthwindService.
7. In Terminal, restore packages and compile by entering the following

command: dotnet build.
8. Test NorthwindService by starting the Web API service using dotnet run.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[712]

9. Start Chrome, navigate to https://localhost:5001/api/products/1 and
ensure the service returns only products in category 1, that is, beverages, as
shown in the following screenshot:

Downloading the web service's certificate
To call this web service from a Windows app, we need the SSL certificate that it uses
to encrypt communication over HTTPS. We will use Chrome to do this.

1. In Chrome, click the padlock to the left of the https in the address bar, and
then click Certificate (Valid).

2. Click the Details tab, and then click Copy To File….

3. In the Export Certificate Wizard, click Next.

4. In the Export File Format step, select DER encoded binary X.509 (.CER) and
click Next, as shown in the following screenshot:

https://localhost:5001/api/products/1

Building Windows Desktop Apps | 20

[713]

5. Click Browse, navigate to the
C:\Code\PracticalApps\WindowsDesktopApps folder, and then create a
new Certificates folder.

6. Open the Certificates folder, enter the filename selfcertlocalhost.cer,
and click Save.

7. Click Next, review the summary, and then click Finish.
8. Close the browser.

We exported the localhost self-signed certificate so that we can import it into the
UWP app that you will now create so that it can call the HTTP service securely.

Binding to data from a secure HTTP service
We will now create a UWP app to consume categories and products from
NorthwindService that uses that certificate to securely communicate with the web
service.

1. If necessary, start Visual Studio 2019 and open the WindowsDesktopApps
solution.

Good Practice: When deploying a web service and its UWP app into
production, you should register an appropriate certificate for your
organization and use it for web services and any apps that call them.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[714]

2. Navigate to File | Add | New Project....
3. In the Add a new project dialog, in the Recent project templates list, select

Blank App (Universal Windows), and then click Next.
4. For the Project name, enter NorthwindFluent, and then click Create.
5. Select the latest Windows 10 build for both Target Version and Minimum

Version.
6. In the NorthwindFluent project, open Package.appxmanifest.
7. Navigate to the Declarations tab.
8. In Available Declarations, select Certificates and then click Add.
9. In Certificates, click Add New.
10. For Store name, select Trusted Root Certificate Authorities, and for Content,

select the path to the selfcertlocalhost.cer file, as shown in the following
screenshot:

11. Save the changes to the Package.appxmanifest file.

Building Windows Desktop Apps | 20

[715]

Creating the user interface to call the HTTP
service
Now we can create a user interface to call the web service.

1. In the NorthwindFluent project, navigate to Project | Add New Item, and
add a Blank Page project item named NotImplementedPage. This will be
used for parts of the app that we will not implement yet.

2. Inside the existing Grid element, add a text block saying, "Not yet
implemented.", centered on the page, as shown in the following markup:
<TextBlock Text="Not yet implemented."
 VerticalAlignment="Center" HorizontalAlignment="Center"
 FontSize="20" />

3. Navigate to File | Add | Existing Project….
4. Navigate to the C:\Code\PracticalApps\NorthwindEntityLib folder and

select NorthwindEntityLib.csproj.
5. In the NorthwindFluent project, right-click References and select Add

Reference….
6. In Projects, select the check box for the NorthwindEntitiesLib project, and

then click OK. Note that we do not need to reference the data context library.
7. In the NorthwindFluent project, add default and small size images for

each of the eight categories to the Assets folder, named category1.jpeg,
category1-small.jpeg, category2.jpeg, category2-small.jpeg, and so
on.

8. If you drag and drop the images into the Assets folder then they will
be included in the project automatically. If you just copy the files in the
filesystem then the project does not know to include them. In Solution
Explorer, toggle Show All Files, select the images, right-click, and select
Include In Project.

9. In the NorthwindFluent project, add a class named CategoriesViewModel
and import the Packt.Shared, System.Collections.ObjectModel,
System.Net.Http, and System.Runtime.Serialization.Json namespaces.

More Information: You can download suitable images at
the following link: https://github.com/markjprice/
cs8dotnetcore3/tree/master/Assets

https://github.com/markjprice/cs8dotnetcore3/tree/master/Assets
https://github.com/markjprice/cs8dotnetcore3/tree/master/Assets

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[716]

10. Define a property to store an observable collection of categories and populate
its Categories property by calling the HTTP service and deserializing the
response, as shown in the following code:
using Packt.Shared;
using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using System.Net.Http;
using System.Runtime.Serialization.Json;

namespace NorthwindFluent
{
 public class CategoriesViewModel
 {
 public class CategoryJson
 {
 public int categoryID;
 public string categoryName;
 public string description;
 }

 public ObservableCollection<Category> Categories { get; set; }

 public CategoriesViewModel()
 {
 using (var http = new HttpClient())
 {
 http.BaseAddress = new Uri("https://localhost:5001/");

 var serializer = new DataContractJsonSerializer(
 typeof(List<CategoryJson>));

 var stream = http.GetStreamAsync("api/categories").Result;

 var cats = serializer.ReadObject(stream)
 as List<CategoryJson>;

 var categories = cats.Select(c =>
 new Category
 {
 CategoryID = c.categoryID,
 CategoryName = c.categoryName,
 Description = c.description
 });

 Categories = new ObservableCollection

Building Windows Desktop Apps | 20

[717]

 <Category>(categories);
 }
 }
 }
}

We had to define a class named CategoryJson because the
DataContractJsonSerializer class is not smart enough to understand the camel
casing used in JSON and convert automatically to the title casing used in C#. The
simplest solution is to do the conversion manually using LINQ projection.

An alternative would be to use a class like JsonObject, but it is fairly low-level to
work with and would also require mapping between types, or a third-party library,
but I wanted to use built-in types.

Converting numbers to images
Each category has an ID, 1 to 8. We have images that include the category ID in
their filename. To make it easy to map category ID values to category images, we
will create a custom converter by implementing the IValueConverter interface.
IValueConverter implementations do not have to implement two-way conversions
if the app will only convert one way as ours will, from an int to a BitmapImage.

1. In the NorthwindFluent project, add a class named
CategoryIDToImageConverter.

2. Implement the IValueConverter interface, and convert the integer value for
the category ID into a valid path to the appropriate image file, as shown in
the following code:
using System;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Media.Imaging;

namespace NorthwindFluent
{
 public class CategoryIDToImageConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, string language)
 {
 int number = (int)value;

More Information: You can read about JsonObject at the
following link: https://docs.microsoft.com/en-us/uwp/
api/windows.data.json.jsonobject

https://docs.microsoft.com/en-us/uwp/api/windows.data.json.jsonobject
https://docs.microsoft.com/en-us/uwp/api/windows.data.json.jsonobject

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[718]

 string path = string.Format(
 format: "{0}/Assets/category{1}-small.jpeg",
 arg0: Environment.CurrentDirectory,
 arg1: number);

 var image = new BitmapImage(new Uri(path));

 return image;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, string language)
 {
 throw new NotImplementedException();
 }
 }
}

3. Navigate to Build | Build NorthwindFluent.
4. In the NorthwindFluent project, add a Blank Page item named

CategoriesPage.
5. Open CategoriesPage.xaml.cs, and add statements to define a ViewModel

property, and then set it in the constructor, as shown highlighted in the
following code:
public sealed partial class CategoriesPage : Page
{
 public CategoriesViewModel ViewModel { get; set; }

 public CategoriesPage()
 {
 this.InitializeComponent();
 ViewModel = new CategoriesViewModel();
 }
}

6. Open CategoriesPage.xaml, import the Packt.Shared namespace as nw,
define a page resource to instantiate a CategoryIDToImageConverter, and
add elements to make a user interface for categories, as shown highlighted in
the following markup:
<Page
 x:Class="NorthwindFluent.CategoriesPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:NorthwindFluent"
 xmlns:nw="using:Packt.Shared"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

Building Windows Desktop Apps | 20

[719]

 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 mc:Ignorable="d"
 Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Page.Resources>
 <local:CategoryIDToImageConverter x:Key="id2image" />
 </Page.Resources>
 <Grid>
 <ParallaxView Source="{x:Bind ForegroundElement}"
VerticalShift="50">
 <Image x:Name="BackgroundImage"
 Source="Assets/categories.jpeg"
 Stretch="UniformToFill"/>
 </ParallaxView>

 <ListView x:Name="ForegroundElement"
 ItemsSource="{x:Bind ViewModel.Categories}">
 <ListView.Header>
 <Grid Padding="20"
 Background="{ThemeResource
SystemControlAcrylicElementBrush}">
 <TextBlock Style="{StaticResource TitleTextBlockStyle}"
 FontSize="24" VerticalAlignment="Center"
 Margin="12,0" Text="Categories"/>
 </Grid>
 </ListView.Header>

 <ListView.ItemTemplate>
 <DataTemplate x:DataType="nw:Category">
 <Grid Margin="4">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Image
Source="{x:Bind CategoryID, Converter={StaticResource id2image}}"
 Stretch="UniformToFill" Height="200" Width="300" />

 <StackPanel Padding="10" Grid.Column="1" Background=
 "{ThemeResource SystemControlAcrylicElementMediumHighBrush}">
 <TextBlock Text="{x:Bind CategoryName}" FontSize="20"
/>
 <TextBlock Text="{x:Bind Description}" FontSize="16"
/>
 </StackPanel>
 </Grid>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </Grid>
</Page>

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[720]

Note that the code does the following:
 ° Imports the Packt.Shared namespace using nw as the element prefix.
 ° Defines a page resource that instantiates a converter from category

IDs to images.
 ° Uses a ParallaxView to provide a large image as a scrolling

background for the foreground element, which is the list view of
categories, so when the list scrolls, the large background image
moves slightly too.

 ° Binds the list view to the view model's Categories collection.
 ° Gives the list view an in-app acrylic header.
 ° Gives the list view an item template for rendering each category

using its name, description, and an image by converting its ID into an
image asset path.

7. Open MainPage.xaml and replace the Grid with elements to define a
navigation view that automatically uses Acrylic material and Reveal
highlight in its pane, as shown in the following markup:
<Page
 x:Class="NorthwindFluent.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:NorthwindFluent"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 mc:Ignorable="d"
 Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

 <NavigationView x:Name="NavView"
 ItemInvoked="NavView_ItemInvoked"
 Loaded="NavView_Loaded">

 <NavigationView.AutoSuggestBox>
 <AutoSuggestBox x:Name="ASB" QueryIcon="Find"/>
 </NavigationView.AutoSuggestBox>

 <NavigationView.HeaderTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <TextBlock Style="{StaticResource TitleTextBlockStyle}"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.microsoft.com/expression/blend/2008
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.openxmlformats.org/markup-compatibility/2006

Building Windows Desktop Apps | 20

[721]

 FontSize="28"
 VerticalAlignment="Center" Margin="12,0"
 Text="Northwind Fluent"/>
 <CommandBar Grid.Column="1"
 HorizontalAlignment="Right"
 DefaultLabelPosition="Right"
 Background="{ThemeResource
SystemControlBackgroundAltHighBrush}">
 <AppBarButton Label="Refresh" Icon="Refresh"
 Name="RefreshButton"
 Click="RefreshButton_Click"/>
 </CommandBar>
 </Grid>
 </DataTemplate>
 </NavigationView.HeaderTemplate>

 <Frame x:Name="ContentFrame">
 <Frame.ContentTransitions>
 <TransitionCollection>
 <NavigationThemeTransition/>
 </TransitionCollection>
 </Frame.ContentTransitions>
 </Frame>
 </NavigationView>
</Page>

8. Open MainPage.xaml.cs and modify its contents, as shown in the following
code:
using System;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;

namespace NorthwindFluent
{
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();
 }

 private void NavView_Loaded(object sender, RoutedEventArgs e)
 {
 NavView.MenuItems.Add(new NavigationViewItem
 {
 Content = "Categories",
 Icon = new SymbolIcon(Symbol.BrowsePhotos),

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[722]

 Tag = "categories"
 });

 NavView.MenuItems.Add(new NavigationViewItem
 {
 Content = "Products",
 Icon = new SymbolIcon(Symbol.AllApps),
 Tag = "products"
 });

 NavView.MenuItems.Add(new NavigationViewItem
 {
 Content = "Suppliers",
 Icon = new SymbolIcon(Symbol.Contact2),
 Tag = "suppliers"
 });

 NavView.MenuItems.Add(new NavigationViewItemSeparator());

 NavView.MenuItems.Add(new NavigationViewItem
 {
 Content = "Customers",
 Icon = new SymbolIcon(Symbol.People),
 Tag = "customers"
 });

 NavView.MenuItems.Add(new NavigationViewItem
 {
 Content = "Orders",
 Icon = new SymbolIcon(Symbol.PhoneBook),
 Tag = "orders"
 });

 NavView.MenuItems.Add(new NavigationViewItem
 {
 Content = "Shippers",
 Icon = new SymbolIcon(Symbol.PostUpdate),
 Tag = "shippers"
 });
 }

 private void NavView_ItemInvoked(NavigationView sender,
 NavigationViewItemInvokedEventArgs args)
 {
 switch (args.InvokedItem.ToString())
 {
 case "Categories":
 ContentFrame.Navigate(typeof(CategoriesPage));
 break;
 default:

Building Windows Desktop Apps | 20

[723]

 ContentFrame.Navigate(typeof(NotImplementedPage));
 break;
 }
 }

 private async void RefreshButton_Click(
 object sender, RoutedEventArgs e)
 {
 var notImplementedDialog = new ContentDialog
 {
 Title = "Not implemented",
 Content =
"The Refresh functionality has not yet been implemented.",
 CloseButtonText = "OK"
 };

 ContentDialogResult result =
 await notImplementedDialog.ShowAsync();
 }
 }
}

Note that the code does the following:
 ° When the NavView loads, we add menu items to it to show lists of:

Categories, Products, Suppliers, Customers, Orders, and Shippers.
 ° Only Categories will be implemented at first, so in the event handler

for clicking a NavView menu item, we navigate to its page. For all
other menu items, we show NotImplementedPage.

 ° The Refresh button has not yet been implemented, so we show a
pop-up dialog box instead. Like most APIs in UWP, the method
to show a dialog is asynchronous. We can use the await keyword
for any Task. This means that the main thread will not be blocked
while we wait, but it will remember its current position within the
statements so that, once the Task has completed, the main thread
continues executing from that same point. To use the await keyword,
we must mark the method with the async keyword. They always
work as a pair. This allows us to write code that looks as simple as
synchronous, but underneath it is much more complex. Internally,
await creates a state machine to manage the complexity of passing
state between any worker threads and the user interface thread.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[724]

Testing the HTTP service data binding
Now we can test the UWP app calling the HTTP service.

1. In Visual Studio Code, make sure that the NorthwindService project is
running.

2. In Visual Studio 2019, navigate to Build | Configuration Manager, and then
set the NorthwindFluent app to build and deploy for the x64 platform.

3. Navigate to Debug | Start Without Debugging or press Ctrl + F5.
4. Resize the window to show its responsive design, as explained in the

following bullets:
 ° When wide, as on a laptop-size device, the full navigation shows

with icons and text.
 ° When half-width, as when put side-by-side on a tablet, the navigation

is thin and only shows the icons.
 ° When narrow, as on a phone-size device, the navigation hides and

the user must click on the hamburger menu to show the navigation
pane.

5. As you move your mouse over the navigation, note the Reveal lighting, and
when you click on a menu item, such as Orders, the highlight bar stretches
and animates as it moves, and the Not yet implemented message appears, as
shown in the following screenshot:

Building Windows Desktop Apps | 20

[725]

NavView adds the search box at the top and the Settings menu item at the bottom.

6. Click Categories and note the in-app acrylic of the Categories header and
the Parallax effect on the background image when scrolling up and down
the list of categories, and then click on the hamburger menu to collapse the
navigation view and give more space for the categories list, as shown in the
following screenshot:

7. Close the app.

I will leave it as an optional exercise for the reader to implement a page for products
that is shown when a user clicks on each category that only shows products in that
category, or on the Products menu item that shows all 77 products.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with deeper research.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[726]

Exercise 20.1 – Test your knowledge
Answer the following questions:

1. .NET Core 3.0 is cross-platform. Windows Forms and WPF apps can run on
.NET Core 3.0. Can those apps therefore run on macOS and Linux?

2. How does a Windows Forms app define its user interface and why is this
a problem?

3. How can a WPF or UWP app define its user interface and why is this good
for developers?

4. List five layout containers and how their child elements are positioned within
them.

5. What is the difference between Margin and Padding for an element like
a Button?

6. How are event handlers attached to an object using XAML?
7. What do XAML styles do?
8. Where can you define resources?
9. How can you bind the property of one element to a property on another

element?
10. Why might you implement IValueConverter?

Exercise 20.2 – Explore topics
Use the following links to read more about this chapter's topics.

• Enable your device for development: https://docs.microsoft.com/en-
us/windows/uwp/get-started/enable-your-device-for-development

• Get started with Windows 10 apps: https://docs.microsoft.com/en-us/
windows/uwp/get-started/

• Getting Started with the Windows Community Toolkit: https://docs.
microsoft.com/en-us/windows/communitytoolkit/getting-started

• Design and code Windows apps: https://docs.microsoft.com/en-us/
windows/uwp/design/

• Develop UWP apps: https://docs.microsoft.com/en-us/windows/uwp/
develop/

https://docs.microsoft.com/en-us/windows/uwp/get-started/enable-your-device-for-development
https://docs.microsoft.com/en-us/windows/uwp/get-started/enable-your-device-for-development
https://docs.microsoft.com/en-us/windows/uwp/get-started/enable-your-device-for-development
https://docs.microsoft.com/en-us/windows/uwp/get-started/
https://docs.microsoft.com/en-us/windows/uwp/get-started/
https://docs.microsoft.com/en-us/windows/communitytoolkit/getting-started
https://docs.microsoft.com/en-us/windows/communitytoolkit/getting-started
https://docs.microsoft.com/en-us/windows/communitytoolkit/getting-started
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/design/
https://docs.microsoft.com/en-us/windows/uwp/develop/
https://docs.microsoft.com/en-us/windows/uwp/develop/
https://docs.microsoft.com/en-us/windows/uwp/develop/
https://docs.microsoft.com/en-us/windows/uwp/develop/
https://docs.microsoft.com/en-us/windows/uwp/develop/

Building Windows Desktop Apps | 20

[727]

Summary
In this chapter, you learned that .NET Core 3.0 supports older technologies for
building Windows desktop applications including Windows Forms and WPF.

You learned how to build a graphical user interface using XAML and the new Fluent
Design System, including features such as Acrylic material, Reveal lighting, and
Parallax view.

You also learned how to share resources in an app, how to replace a control's
template, how to bind to data and controls, and how to prevent thread blocking with
multitasking and the C# async and await keywords.

In the next chapter, you will learn how to build mobile apps using Xamarin.Forms.

[729]

Chapter 21
Building Cross-Platform

Mobile Apps Using
Xamarin.Forms

This chapter is about learning how to take C# mobile by building a cross-platform
mobile app for iOS and Android. The mobile app will allow the listing and
management of customers in the Northwind database.

Apart from UWP apps in Chapter 20, Building Windows Desktop Apps, this is the only
chapter that does not use .NET Core 3.0. But by 2020, with the release of .NET 5.0,
all app models, including mobile, will share the same unified .NET platform.

Mobile development cannot be learned in a single chapter, but like web
development, mobile development is so important these days that I wanted to
introduce you to some of what is possible. Think of this chapter as a bonus. This
chapter will give you a taste to inspire you, and then you can learn more from
a book dedicated to mobile development.

The mobile app that you create will call the Northwind service that you built using
ASP.NET Core Web API in Chapter 18, Building and Consuming Web Services. If you
have not built the Northwind service, please go back and build it now or download
it from the GitHub repository for this book at the following link:

https://github.com/markjprice/cs8dotnetcore3

You will need a computer with macOS, Xcode, and Visual Studio for Mac to
complete this chapter. The client-side Xamarin.Forms mobile app will be written
using Visual Studio for Mac.

More Information: For examples of mobile projects that you
could build, you could read Xamarin.Forms Projects, available
at the following link: https://www.packtpub.com/
application-development/xamarinforms-projects

https://github.com/markjprice/cs8dotnetcore3
https://github.com/markjprice/cs8dotnetcore3
https://www.packtpub.com/application-development/xamarinforms-projects
https://www.packtpub.com/application-development/xamarinforms-projects

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[730]

In this chapter, we will cover the following topics:

• Understanding Xamarin and Xamarin.Forms
• Building mobile apps using Xamarin.Forms
• Consuming a web service from a mobile app

Understanding Xamarin and
Xamarin.Forms
To create a mobile app that only needs to run on iPhones, you might choose to build
it with Objective-C or Swift and UIKit using Xcode.

To create a mobile app that only needs to run on Android phones, you might choose
to build it with Java or Kotlin and Android SDK using Android Studio.

But what if you need to create a mobile app that can run on iPhones and Android
phones? And what if you only want to create that mobile app once using a
programming language and development platform that you are already familiar
with? Xamarin enables developers to build cross-platform mobile apps for Apple iOS
(iPhone and iPad), macOS, and Google Android using C# and .NET, which are then
compiled to native APIs and run on native phone platforms. It is based on the open
source implementation of .NET known as Mono.

Business logic layer code can be written once and shared between all mobile
platforms. User interface interactions and APIs are different on various mobile
platforms, so the user interface layer is often custom for each platform. But even
here, there is a technology that can ease development.

How Xamarin.Forms extends Xamarin
Xamarin.Forms extends Xamarin to make cross-platform mobile development even
easier by sharing most of the user interface layer, as well as the business logic layer.

More Information: In 2019, iPhone and Android have a
combined global smartphone market share of 99.6%. What
about the other 0.4%? Xamarin supports creating Tizen mobile
apps for Samsung devices. You can read about Tizen .NET at
the following link: https://docs.microsoft.com/en-us/
xamarin/xamarin-forms/platform/other/tizen

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/platform/other/tizen
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/platform/other/tizen

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[731]

Like WPF and UWP apps, Xamarin.Forms uses XAML to define the user interface
once for all platforms using abstractions of platform-specific user interface
components. Applications built with Xamarin.Forms draw the user interface using
native platform widgets, so the app's look-and-feel fits naturally with the target
mobile platform.

A user experience built using Xamarin.Forms will never perfectly fit a specific
platform like one custom built with Xamarin, but for enterprise mobile apps,
it is more than good enough.

Mobile first, cloud first
Mobile apps are often supported by services in the cloud. Satya Nadella, CEO
of Microsoft, famously said this:

To me, when we say mobile first, it's not the mobility of the device, it's
actually the mobility of the individual experience. [...] The only way you are
going to be able to orchestrate the mobility of these applications and data is
through the cloud.

As you have seen earlier in this book, to create an ASP.NET Core Web API service
to support a mobile app, we can use Visual Studio Code. To create Xamarin.
Forms apps, developers can use either Visual Studio 2019 or Visual Studio for Mac.
To compile iOS apps, you will require a Mac and Xcode.

Market share numbers should be taken in the context that iOS users engage far more
with their devices, which is important for monetizing mobile apps, either through
up-front sales, in-app purchases, or advertising. Recent analyst reports show that
iPhone apps tend to generate at least 60% more revenue than Android apps, but do
your own research here as the mobile world moves fast.

A summary of which coding tool can be used on its own to build which type of app
is shown in the following table:

More Information: If you want to use Visual Studio 2019 to
create a mobile app, then you can read how to connect to a Mac
build host at the following link: https://docs.microsoft.
com/en-us/xamarin/ios/get-started/installation/
windows/connecting-to-mac/

https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[732]

iOS Android ASP.NET Core Web API
Visual Studio Code No No Yes
Visual Studio for Mac Yes Yes Yes
Visual Studio 2019 No Yes Yes

Understanding additional functionality
We will build a mobile app that uses a lot of the skills and knowledge that you learned
in previous chapters. We will also use some functionality that you have not seen before.

Understanding the INotificationPropertyChanged
interface
The INotifyPropertyChanged interface enables a model class to support
two-way data binding. It works by forcing the class to have an event named
PropertyChanged, as shown in the following code:

using System.ComponentModel;

public interface INotifyPropertyChanged
{
 event PropertyChangedEventHandler PropertyChanged;
}

Inside each property in the class, when setting a new value, you must raise the
event (if it is not null) with an instance of PropertyChangedEventArgs containing
the name of the property as a string value, as shown in the following code:

private string companyName;

public string CompanyName
{
 get => companyName;
 set
 {
 companyName = value; // store the new value being set

 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(nameof(CompanyName)));
 }
}

More Information: You can read about the pros and cons of the
two major mobile platforms based on aspects such as revenue
generation and user engagement at the following link: https://
fueled.com/blog/app-store-vs-google-play/

https://fueled.com/blog/app-store-vs-google-play/
https://fueled.com/blog/app-store-vs-google-play/

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[733]

When a user interface control is data-bound to the property, it will automatically
update to show the new value when it changes.

This interface is not just for mobile apps. It can also be used in other graphical user
interfaces such as Windows desktop apps.

Understanding dependency services
Mobile platforms such as iOS and Android implement common features in
different ways, so we need a way to get a platform-native implementation of
common features. We can do that using dependency services. It works like this:

• Define an interface for the common feature, for example, IDialer for
a phone number dialer.

• Implement the interface for all the mobile platforms that you need to
support, for example, iOS and Android, and register the implementations
with an attribute, as shown in the following code:
[assembly: Dependency(typeof(PhoneDialer))]
namespace NorthwindMobile.iOS
{
 public class PhoneDialer : IDialer

• In the common mobile project, get the platform-native implementation of an
interface by using the dependency service, as shown in the following code:

var dialer = DependencyService.Get<IDialer>();

Understanding Xamarin.Forms user interface
components
Xamarin.Forms includes some specialized controls for building mobile user
interfaces. They are divided into four categories:

• Pages: represent cross-platform mobile application screens, for example,
ContentPage, NavigationPage, and CarouselPage.

• Layouts: represent the structure of a combination of other user interface
components, for example, StackLayout, RelativeLayout, and FlexLayout.

More Information: You can read more about Xamarin
dependency services at the following link: https://docs.
microsoft.com/en-us/xamarin/xamarin-forms/app-
fundamentals/dependency-service/introduction

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-service/introduction
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-service/introduction
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-service/introduction

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[734]

• Views: represent a single user interface component, for example, Label,
Entry, Editor, and Button.

• Cells: represent a single item in a list or table view, for example, TextCell,
ImageCell, SwitchCell, and EntryCell.

Understanding the ContentPage view
The ContentPage view is for simple user interfaces.

It has a ToolbarItems property that shows actions the user can perform
in a platform-native way. Each ToolbarItem can have an icon and text.

<ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" Activated="Add_Activated"
 Order="Primary" Priority="0" />
</ContentPage.ToolbarItems>

Understanding the Entry and Editor controls
The Entry and Editor controls are used for editing text values and are often
data-bound to an entity model property, as shown in the following markup:

<Editor Text="{Binding CompanyName, Mode=TwoWay}" />

Use Entry for a single line of text.

Use Editor for multiple lines of text.

More Information: You can read more about Xamarin.Forms
Pages at the following link: https://docs.microsoft.
com/en-us/xamarin/xamarin-forms/user-interface/
controls/pages

More Information: You can read about the Entry control at
the following link: https://docs.microsoft.com/en-us/
xamarin/xamarin-forms/user-interface/text/entry

More Information: You can read about the Editor control at
the following link: https://docs.microsoft.com/en-us/
xamarin/xamarin-forms/user-interface/text/editor

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/controls/pages
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/controls/pages
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/text/entry
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/text/entry
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/text/editor
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/text/editor

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[735]

Understanding the ListView control
The ListView control is used for long lists of data-bound values of the same type.
It can have headers and footers and its list items can be grouped.

It has cells to contain each list item. There are two built-in cell types: text and image.
Developers can define custom cell types.

Cells can have context actions that appear when the cell is swiped on iPhone or
long pressed on Android. A context action that is destructive can be shown in red,
as shown in the following markup:

<TextCell Text="{Binding CompanyName}"
 Detail="{Binding Location}">
 <TextCell.ContextActions>
 <MenuItem Clicked="Customer_Phoned" Text="Phone" />
 <MenuItem Clicked="Customer_Deleted" Text="Delete"
 IsDestructive="True" />
 </TextCell.ContextActions>
</TextCell>

Building mobile apps using
Xamarin.Forms
We will build a mobile app that runs on either iOS or Android for managing
customers in Northwind.

Adding Android SDKs
To target Android, you must install at least one Android SDK. A default installation
of Visual Studio for Mac already includes one Android SDK, but it is often an older
version to support as many Android devices as possible.

More Information: You can read more about the ListView
control at the following link: https://docs.microsoft.
com/en-us/xamarin/xamarin-forms/user-interface/
listview/

Good Practice: If you have never run Xcode, run it now to see the
Start window to ensure that all its required components are installed
and registered. If you do not run Xcode, then you might get errors
with your projects later in Visual Studio for Mac.

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/listview/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/listview/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[736]

To use the latest features of Xamarin.Forms, you must install a more recent Android
SDK:

1. Start Visual Studio for Mac and navigate to Visual Studio | Preferences.
2. In Preferences, navigate to Projects | SDK Locations | Android, and select

the Android Platform SDK and System Image that you want, for example,
Android 10.0 - Q. When installing an Android SDK, you must select at least
one System Image to use as a virtual machine emulator for testing.

3. Select or clear checkboxes to decide what to install or remove, or click the
Updates Available button to update existing selections and then click Install
Updates, as shown in the following screenshot:

You might also have to set the paths on the Locations tab.

Creating a Xamarin.Forms solution
We will now create a solution with projects for a cross-platform mobile app:

1. Either click New in the Start window, navigate to File | New Solution...
or press Shift + Command + N.

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[737]

2. In the New Project dialog, select Multiplatform | App in the left-hand
column, and select Xamarin.Forms | Blank Forms App using C# in the
middle column, and then click on Next.

3. Enter App Name as NorthwindMobile, Organization Identifier as
com.packt, and select Shared Code to Use Shared Library, as shown in
the following screenshot:

4. Click on Next.
5. Change Location to /Users/[user_folder]/Code/PracticalApps, and

then click Create. After a few moments, the solution and three projects will
be created, as shown in the following list:

1. NorthwindMobile: Components shared cross-device, including
XAML files defining the user interface.

2. NorthwindMobile.Android: Components specific to Android.
3. NorthwindMobile.iOS: Components specific to iOS.

6. NuGet packages should be automatically restored, but if not, then right-click
on the NorthwindMobile solution, choose Update NuGet Packages, and
accept any license agreements.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[738]

7. Navigate to Build | Build All and wait for the solution to build the projects,
as shown in the following screenshot:

Creating an entity model with two-way data
binding
Although we could reuse the .NET Standard entity data model library that you
created in Chapter 14, Practical Applications of C# and .NET, we need the entities to
implement two-way data binding, so we will create a new Customer entity class
and it can be put in the project shared by both iOS and Android:

1. Right-click on the project named NorthwindMobile, go to Add | New
Folder, and name it Models.

2. Right-click on the Models folder and go to Add | New File...
3. In the New File dialog, go to General | Empty Class, enter the name

Customer, and click New.
4. Modify the statements to define a Customer class that implements the

INotifyPropertyChanged interface and has six properties, as shown in
the following code:
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.ComponentModel;

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[739]

using System.Runtime.CompilerServices;

namespace NorthwindMobile.Models
{
 public class Customer : INotifyPropertyChanged
 {
 public static IList<Customer> Customers;

 static Customer()
 {
 Customers = new ObservableCollection<Customer>();
 }

 public event PropertyChangedEventHandler
 PropertyChanged;

 private string customerID;
 private string companyName;
 private string contactName;
 private string city;
 private string country;
 private string phone;

 // this attribute sets the propertyName parameter
 // using the context in which this method is called
 private void NotifyPropertyChanged(
 [CallerMemberName] string propertyName = "")
 {
 // if an event handler has been set then invoke
 // the delegate and pass the name of the property
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }

 public string CustomerID
 {
 get => customerID;
 set
 {
 customerID = value;
 NotifyPropertyChanged();
 }
 }

 public string CompanyName
 {
 get => companyName;
 set
 {
 companyName = value;
 NotifyPropertyChanged();
 }

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[740]

 }

 public string ContactName
 {
 get => contactName;
 set
 {
 contactName = value;
 NotifyPropertyChanged();
 }
 }

 public string City
 {
 get => city;
 set
 {
 city = value;
 NotifyPropertyChanged();
 }
 }

 public string Country
 {
 get => country;
 set
 {
 country = value;
 NotifyPropertyChanged();
 }
 }

 public string Phone
 {
 get => phone;
 set
 {
 phone = value;
 NotifyPropertyChanged();
 }
 }

 public string Location
 {
 get => $"{City}, {Country}";
 }

 // for testing before calling web service
 public static void AddSampleData()
 {
 Customers.Add(new Customer
 {

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[741]

 CustomerID = "ALFKI",
 CompanyName = "Alfreds Futterkiste",
 ContactName = "Maria Anders",
 City = "Berlin",
 Country = "Germany",
 Phone = "030-0074321"
 });

 Customers.Add(new Customer
 {
 CustomerID = "FRANK",
 CompanyName = "Frankenversand",
 ContactName = "Peter Franken",
 City = "München",
 Country = "Germany",
 Phone = "089-0877310"
 });

 Customers.Add(new Customer
 {
 CustomerID = "SEVES",
 CompanyName = "Seven Seas Imports",
 ContactName = "Hari Kumar",
 City = "London",
 Country = "UK",
 Phone = "(171) 555-1717"
 });
 }
 }
}

Note the following:

• The class implements INotifyPropertyChanged, so a two-way bound
user interface component such as Editor will update the property and vice
versa. There is a PropertyChanged event that is raised whenever one of the
properties is modified using a NotifyPropertyChanged private method to
simplify the implementation.

• After loading from the service, which will be implemented later in this
chapter, the customers are cached locally using ObservableCollection.
This supports notifications to any bound user interface components, such
as ListView so that the user interface can redraw itself when the underlying
data adds or removes items from the collection.

• In addition to properties for storing values retrieved from the HTTP service,
the class defines a read-only Location property. This will be bound to a
summary list of customers to show the location of each one.

• For testing purposes, when the HTTP service is not available, there
is a method to populate three sample customers.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[742]

Creating a component for dialing phone
numbers
To show an example of a component that is specific to Android and iOS, you will
define and then implement a phone dialer component:

1. Right-click on the NorthwindMobile folder and choose Add | New File....
2. Go to General | Empty Interface, name the file IDialer, and click New.
3. Modify the IDialer contents, as shown in the following code:

namespace NorthwindMobile
{
 public interface IDialer
 {
 bool Dial(string number);
 }
}

4. Right-click on the NorthwindMobile.iOS folder and choose Add | New
File....

5. Go to General | Empty Class, name the file PhoneDialer, and click New.
6. Modify its contents, as shown in the following code:

using Foundation;
using NorthwindMobile.iOS;
using UIKit;
using Xamarin.Forms;

[assembly: Dependency(typeof(PhoneDialer))]
namespace NorthwindMobile.iOS
{
 public class PhoneDialer : IDialer
 {
 public bool Dial(string number)
 {
 return UIApplication.SharedApplication.OpenUrl(
 new NSUrl("tel:" + number));
 }
 }
}

7. Right-click the Packages folder in the NorthwindMobile.Android project
and choose Add NuGet Packages….

8. Search for Plugin.CurrentActivity and click Add Package.
9. Open MainActivity.cs and import the Plugin.CurrentActivity

namespace.

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[743]

10. In the OnCreate method, add a statement to initialize the current activity,
as shown in the following code:
CrossCurrentActivity.Current.Init(
 this, savedInstanceState);

11. Right-click the NorthwindMobile.Android folder and choose Add | New
File....

12. Choose General | Empty Class, name the file PhoneDialer, and click New.
13. Modify its contents, as shown in the following code:

using Android.Content;
using Android.Telephony;
using NorthwindMobile.Droid;
using Plugin.CurrentActivity;
using System.Linq;
using Xamarin.Forms;
using Uri = Android.Net.Uri;

[assembly: Dependency(typeof(PhoneDialer))]
namespace NorthwindMobile.Droid
{
 public class PhoneDialer : IDialer
 {
 public bool Dial(string number)
 {
 var context = CrossCurrentActivity.Current.Activity;

 if (context == null) return false;

 var intent = new Intent(Intent.ActionCall);
 intent.SetData(Uri.Parse("tel:" + number));

 if (IsIntentAvailable(context, intent))
 {
 context.StartActivity(intent); return true;
 }

 return false;
 }

 public static bool IsIntentAvailable(
 Context context, Intent intent)
 {
 var packageManager = context.PackageManager;

 var list = packageManager
 .QueryIntentServices(intent, 0)
 .Union(packageManager

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[744]

 .QueryIntentActivities(intent, 0));

 if (list.Any()) return true;

 var manager = TelephonyManager.FromContext(context);
 return manager.PhoneType != PhoneType.None;
 }
 }
}

14. In the NorthwindMobile.Android project, expand Properties, and open
AndroidManifest.xml.

15. In Required permissions, check the CallPhone permission, as shown in the
following screenshot:

Creating views for the customers list and
customer details
You will now replace the existing MainPage with a view to show a list of customers
and a view to show the details for a customer:

1. In the NorthwindMobile project, right-click MainPage.xaml, select Remove,
and then click Remove from Project.

2. Right-click the NorthwindMobile project, select Add | New Folder, and
name the new folder Views.

3. Right-click the Views folder, choose Add | New File..., and then select Forms
| Forms ContentPage XAML.

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[745]

4. Name the file CustomersList and click New.
5. Right-click the Views folder, choose Add | New File..., and then select Forms

| Forms ContentPage XAML.
6. Name the file CustomerDetails and click New.

Implementing the customer list view
First, we will implement the list of customers:

1. Open CustomersList.xaml and modify its contents, as shown highlighted in
the following markup:
<?xml version="1.0" encoding="UTF-8"?>
<ContentPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="NorthwindMobile.Views.CustomersList"
 Title="List">

 <ContentPage.Content>
 <ListView ItemsSource="{Binding .}"
 VerticalOptions="Center"
 HorizontalOptions="Center"
 IsPullToRefreshEnabled="True"
 ItemTapped="Customer_Tapped"
 Refreshing="Customers_Refreshing">
 <ListView.Header>
 <Label Text="Northwind Customers"
 BackgroundColor="Silver" />
 </ListView.Header>
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextCell Text="{Binding CompanyName}"
 Detail="{Binding Location}">
 <TextCell.ContextActions>
 <MenuItem Clicked="Customer_Phoned"
 Text="Phone" />
 <MenuItem Clicked="Customer_Deleted"
 Text="Delete"
 IsDestructive="True" />
 </TextCell.ContextActions>
 </TextCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </ContentPage.Content>

 <ContentPage.ToolbarItems>

http://xamarin.com/schemas/2014/forms
http://xamarin.com/schemas/2014/forms
http://xamarin.com/schemas/2014/forms
http://schemas.microsoft.com/winfx/2009/xaml
http://schemas.microsoft.com/winfx/2009/xaml

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[746]

 <ToolbarItem Text="Add" Activated="Add_Activated"
 Order="Primary" Priority="0" />
 </ContentPage.ToolbarItems>

</ContentPage>

Note the following:
 ° ContentPage has had its Title attribute set to List.
 ° ListView has its IsPullToRefreshEnabled set to true.
 ° Handlers have been written for the following events:

Customer_Tapped: A customer being tapped to show their details.
Customers_Refreshing: The list being pulled down to refresh its
items.
Customer_Phoned: A cell being swiped left on iPhone or long pressed
on Android and then tapping Phone.
Customer_Deleted: A cell being swiped left on iPhone or long
pressed on Android and then tapping Delete.
Add_Activated: The Add button being tapped.

 ° A data template defines how to display each customer: large text for
the company name and smaller text for the location underneath.

 ° An Add button is displayed so that users can navigate to a detail
view to add a new customer.

2. Open CustomersList.xaml.cs and modify the contents, as shown
highlighted in the following code:
using System;
using System.Threading.Tasks;
using NorthwindMobile.Models;
using Xamarin.Forms;

namespace NorthwindMobile.Views
{
 public partial class CustomersList : ContentPage
 {
 public CustomersList()
 {
 InitializeComponent();
 Customer.Customers.Clear();
 Customer.AddSampleData();
 BindingContext = Customer.Customers;
 }

 async void Customer_Tapped(
 object sender, ItemTappedEventArgs e)

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[747]

 {
 var c = e.Item as Customer;
 if (c == null) return;

 // navigate to the detail view and show the tapped customer
 await Navigation.PushAsync(new CustomerDetails(c));
 }

 async void Customers_Refreshing(object sender, EventArgs e)
 {
 var listView = sender as ListView;
 listView.IsRefreshing = true;

 // simulate a refresh
 await Task.Delay(1500);

 listView.IsRefreshing = false;
 }

 void Customer_Deleted(object sender, EventArgs e)
 {
 var menuItem = sender as MenuItem;
 Customer c = menuItem.BindingContext as Customer;
 Customer.Customers.Remove(c);
 }

 async void Customer_Phoned(object sender, EventArgs e)
 {
 var menuItem = sender as MenuItem;
 var c = menuItem.BindingContext as Customer;

 if (await this.DisplayAlert("Dial a Number",
 "Would you like to call " + c.Phone + "?",
 "Yes", "No"))
 {
 var dialer = DependencyService.Get<IDialer>();
 if (dialer != null) dialer.Dial(c.Phone);
 }
 }

 async void Add_Activated(object sender, EventArgs e)
 {
 await Navigation.PushAsync(new CustomerDetails());
 }
 }
}

Note the following:
 ° BindingContext is set to the sample list of Customers in the

constructor of the page.
 ° When a customer in the list view is tapped, the user is taken to

a details view (which you will create in the next step).

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[748]

 ° When the list view is pulled down, it triggers a simulated refresh that
takes 1.5 seconds.

 ° When a customer is deleted in the list view, they are removed from
the bound collection of customers.

 ° When a customer in the list view is swiped, and the Phone button
is tapped, a dialog prompts the user as to whether they want to dial
the number, and if so, the platform-native implementation will be
retrieved using the dependency resolver and then used to dial the
number.

 ° When the Add button is tapped, the user is taken to the customer
detail page to enter details for a new customer.

Implementing the customer detail view
Next, we will implement the customer detail view:

1. Open CustomerDetails.xaml and modify its contents, as shown highlighted
in the following markup, and note the following:

 ° Title of ContentPage has been set to Edit.
 ° A customer Grid with two columns and six rows is used for the

layout. This is the same Grid element that was introduced in Chapter
20, Building Windows Desktop Apps.

 ° Entry views are two-way data bound to properties of the Customer
class.

 ° InsertButton has an event handler to execute code to add a new
customer.

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="NorthwindMobile.Views.CustomerDetails"
 Title="Edit">

 <ContentPage.Content>
 <StackLayout VerticalOptions="Fill"
 HorizontalOptions="Fill">
 <Grid BackgroundColor="Silver">
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition/>

http://xamarin.com/schemas/2014/forms
http://xamarin.com/schemas/2014/forms
http://xamarin.com/schemas/2014/forms
http://schemas.microsoft.com/winfx/2009/xaml
http://schemas.microsoft.com/winfx/2009/xaml

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[749]

 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Label Text="Customer ID" VerticalOptions="Center"
 Margin="6" />
 <Entry Text="{Binding CustomerID, Mode=TwoWay}"
 Grid.Column="1" />
 <Label Text="Company Name" Grid.Row="1"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding CompanyName, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="1" />
 <Label Text="Contact Name" Grid.Row="2"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding ContactName, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="2" />
 <Label Text="City" Grid.Row="3"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding City, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="3" />
 <Label Text="Country" Grid.Row="4"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding Country, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="4" />
 <Label Text="Phone" Grid.Row="5"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding Phone, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="5" />
 </Grid>
 <Button x:Name="InsertButton" Text="Insert Customer"
 Clicked="InsertButton_Clicked" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

2. Open CustomerDetails.xaml.cs and modify its contents, as shown in the
following code:
using System;
using NorthwindMobile.Models;
using Xamarin.Forms;

namespace NorthwindMobile.Views
{
 public partial class CustomerDetails : ContentPage
 {
 public CustomerDetails()
 {
 InitializeComponent();
 BindingContext = new Customer();
 Title = "Add Customer";
 }

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[750]

 public CustomerDetails(Customer customer)
 {
 InitializeComponent();
 BindingContext = customer;
 InsertButton.IsVisible = false;
 }

 async void InsertButton_Clicked(object sender, EventArgs e)
 {
 Customer.Customers.Add((Customer)BindingContext);
 await Navigation.PopAsync(animated: true);
 }
 }
}

Note the following:

• The default constructor sets the binding context to a new customer instance
and the view title is changed to Add Customer.

• The constructor with a customer parameter sets the binding context to that
instance and hides the Insert button because it is not needed when editing an
existing customer due to two-way data binding.

• When Insert is tapped, the new customer is added to the collection and the
navigation is moved back to the previous view asynchronously.

Setting the main page for the mobile app
Finally, we need to modify the mobile app to use our customer list wrapped in a
navigation page as the main page instead of the old one that we deleted, which was
created by the project template:

1. Open App.xaml.cs.
2. Import the NorthwindMobile.Views namespace.
3. Modify the statement that sets MainPage to create an instance of

CustomersList wrapped in an instance of NavigationPage, as shown in the
following code:
MainPage = new NavigationPage(new CustomersList());

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[751]

Testing the mobile app
We will now test the mobile app using an iPhone emulator:

1. In Visual Studio for Mac, to the right of the Run button in the toolbar, select
the NorthwindMobile.iOS project, select Debug, and select iPhone XR iOS
12.4 (or later), as shown in the following screenshot:

2. Click on the Run button in the toolbar or navigate to Run | Start
Debugging. The project will build, and then after a few moments, Simulator
will appear, your running mobile app, as shown in the following screenshot:

3. Click Seven Seas Imports and modify its Company Name, as shown in the
following screenshot of the customer details page:

4. Click List to return to the list of customers and note that the company name
has been updated due to the two-way data binding.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[752]

5. Click Add, and then fill in the fields for a new customer, as shown in the
following screenshot:

6. Click Insert Customer and note that the new customer has been added to the
bottom of the list.

7. Slide one of the customers to the left to reveal two action buttons, Phone and
Delete, as shown in the following screenshot:

8. Click Phone and note the pop-up prompt to the user to dial the number of
that customer with Yes and No buttons.

9. Click No.
10. Slide one of the customers to the left to reveal two action buttons, Phone and

Delete, and then click on Delete, and note that the customer is removed.
11. Click, hold, and drag the list down and then release, and note the animation

effect for refreshing the list, but remember that we did not implement this
feature, so the list does not change.

12. Navigate to Simulator | Quit Simulator or press Cmd + Q.
We will now make the mobile app call NorthwindService to get the list of
customers.

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[753]

Consuming a web service from a mobile
app
Apple's App Transport Security (ATS) forces developers to use good practice,
including secure connections between an app and a web service. ATS is enabled by
default and your mobile apps will throw an exception if they do not connect securely.

If you need to call a web service that is secured with a self-signed certificate like our
NorthwindService is, it is possible but complicated.

For simplicity, we will allow insecure connections to the web service and disable the
security checks in the mobile app.

Configuring the web service to allow insecure
requests
First, we will enable the web service to handle insecure connections at a new URL:

1. Start Visual Studio Code and open the NorthwindService project.
2. Open Startup.cs, and in the Configure method, comment out the HTTPS

redirection, as shown highlighted in the following code:
public void Configure(IApplicationBuilder app,
 IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 // app.UseHttpsRedirection();

 app.UseRouting();

More Information: You can read more about ATS at the
following link: https://docs.microsoft.com/en-us/
xamarin/ios/app-fundamentals/ats

More Information: You can read more about handling
self-signed certificates at the following link: https://
docs.remotingsdk.com/Clients/Tasks/
HandlingSelfSignedCertificates/NET/

https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/ats
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/ats
https://docs.remotingsdk.com/Clients/Tasks/HandlingSelfSignedCertificates/NET/
https://docs.remotingsdk.com/Clients/Tasks/HandlingSelfSignedCertificates/NET/
https://docs.remotingsdk.com/Clients/Tasks/HandlingSelfSignedCertificates/NET/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[754]

3. Open Program.cs, and in the CreateHostBuilder method, add the insecure
URL, as shown highlighted in the following code:
public static IHostBuilder CreateHostBuilder(
 string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 webBuilder.UseUrls(
 "https://localhost:5001", // for MVC
 "http://localhost:5003" // for iOS
);
 });

4. Navigate to Terminal | New Terminal and select NorthwindService.
5. In Terminal, start the web service by entering the following command:

dotnet run

6. Start Chrome and test that the web service is returning customers as JSON
by navigating to the following URL: http://localhost:5003/api/
customers/

7. Close Chrome.

Configuring the iOS app to allow insecure
connections
Now you will configure the NorthwindMobile.iOS project to disable ATS to allow
insecure HTTP requests to the web service:

1. In the NorthwindMobile.iOS project, open Info.plist.
2. Click the Source tab, add a new entry named NSAppTransportSecurity,

and set its Type to Dictionary.
3. In the dictionary, add a new entry named NSAllowsArbitraryLoads and

set its Type to Boolean with a value of Yes, as shown in the following
screenshot:

http://localhost:5003/api/customers/
http://localhost:5003/api/customers/
http://localhost:5003/api/customers/
http://localhost:5003/api/customers/

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[755]

Adding NuGet packages for consuming a web
service
Next, we must add some NuGet packages to each of the platform-specific projects to
enable HTTP requests and process the JSON responses:

1. In the NorthwindMobile.iOS project, right-click on the folder named
Packages and choose Add NuGet Packages....

2. In the Add Packages dialog, in the Search box, enter System.Net.Http.
3. Select the package named System.Net.Http and then click Add Package.
4. In the License Acceptance dialog, click Accept.
5. In the NorthwindMobile.iOS, right-click on the folder named Packages and

choose Add NuGet Packages....
6. In the Add Packages dialog, in the Search box, enter Newtonsoft.Json.
7. Select the package named Newtonsoft.Json and then click Add Package.
8. Repeat the previous steps, 1 to 7, to add the same two NuGet packages to the

project named NorthwindMobile.Android.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[756]

Getting customers from the web service
Now, we can modify the customers list page to get its list of customers from the web
service instead of using sample data:

1. In the NorthwindMobile project, open Views\CustomersList.xaml.cs.
2. Import the following namespaces:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Threading.Tasks;
using Newtonsoft.Json;
using NorthwindMobile.Models;
using Xamarin.Forms;

3. Modify the CustomersList constructor to load the list of customers using
the service proxy instead of the AddSampleData method, as shown in the
following code:
public CustomersList()
{
 InitializeComponent();

 Customer.Customers.Clear();
 // Customer.AddSampleData();

 var client = new HttpClient
 {
 BaseAddress = new Uri("http://localhost:5003/")
 };

 client.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 "application/json"));

 HttpResponseMessage response = client
 .GetAsync("api/customers").Result;

 response.EnsureSuccessStatusCode();

 string content = response.Content
 .ReadAsStringAsync().Result;

 var customersFromService = JsonConvert
 .DeserializeObject<IEnumerable<Customer>>(content);

 foreach (Customer c in customersFromService
 .OrderBy(customer => customer.CompanyName))
 {
 Customer.Customers.Add(c);

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[757]

 }

 BindingContext = Customer.Customers;
}

4. Navigate to Build | Clean All. Changes to Info.plist like allowing
insecure connections sometimes requires a clean build.

5. Navigate to Build | Build All.
6. Run the NorthwindMobile project and note that 91 customers are loaded

from the web service, as shown in the following screenshot:

7. Navigate to Simulator | Quit Simulator or press Cmd + Q.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with more in-depth research.

Exercise 21.1 – Test your knowledge
Answer the following questions:

1. What is the difference between Xamarin and Xamarin.Forms?
2. What are the four categories of Xamarin.Forms user interface components

and what do they represent?
3. List four types of cell.
4. How can you enable a user to perform an action on a cell in a list view?
5. How do you define a dependency service to implement platform-specific

functionality?

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[758]

6. When would you use an Entry instead of an Editor?
7. What is the effect of setting IsDestructive to true for a menu item in

a cell's context actions?
8. When would you call the methods PushAsync and PopAsync in a Xamarin.

Forms mobile app?
9. How do you show a pop-up modal message with simple button choices like

Yes or No?
10. What is Apple's ATS and why is it important?

Exercise 21.2 - Explore topics
Use the following links to read more about this chapter's topics:

• Xamarin.Forms documentation: https://docs.microsoft.com/en-us/
xamarin/xamarin-forms/

• Xamarin.Essentials provides developers with cross-platform APIs for their
mobile applications: https://docs.microsoft.com/en-us/xamarin/
essentials/

• Self Signed iOS Certifcates and Certificate Pinning in a Xamarin.
Forms application: https://nicksnettravels.builttoroam.com/ios-
certificate/

• Protecting your users with certificate pinning: https://basdecort.
com/2018/07/18/protecting-your-users-with-certificate-pinning/

• HttpClient and SSL/TLS implementation selector for iOS/macOS:
https://docs.microsoft.com/en-gb/xamarin/cross-platform/macios/
http-stack

Summary
In this chapter, you learned how to build a mobile app using Xamarin.Forms,
which is cross-platform for iOS and Android (and potentially other platforms)
and consumes data from a web service using the System.Net.Http and
Newtonsoft.Json NuGet packages.

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
https://docs.microsoft.com/en-us/xamarin/essentials/
https://docs.microsoft.com/en-us/xamarin/essentials/
https://docs.microsoft.com/en-us/xamarin/essentials/
https://docs.microsoft.com/en-us/xamarin/essentials/
https://nicksnettravels.builttoroam.com/ios-certificate/
https://nicksnettravels.builttoroam.com/ios-certificate/
https://basdecort.com/2018/07/18/protecting-your-users-with-certificate-pinning/
https://basdecort.com/2018/07/18/protecting-your-users-with-certificate-pinning/
https://basdecort.com/2018/07/18/protecting-your-users-with-certificate-pinning/
https://docs.microsoft.com/en-gb/xamarin/cross-platform/macios/http-stack
https://docs.microsoft.com/en-gb/xamarin/cross-platform/macios/http-stack

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[759]

Epilogue
I wanted this book to be different from the others on the market. I hope that you
found it to be a brisk, fun read, packed with practical hands-on walk-throughs of
each subject.

For subjects that you wanted to learn more about, I hope that the More Information
notes and links that I provided pointed you in the right direction.

I have already started work on the fifth edition, which we plan to publish soon after
the release of .NET 5.0 in November 2020. If you have suggestions for subjects that
you would like to see covered, or you spot mistakes that need fixing in the book or
code, please let me know via my GitHub account at the following link:

https://github.com/markjprice/

I wish you the best of luck with all your C# and .NET projects!

https://github.com/markjprice/
https://github.com/markjprice/

[761]

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Extreme C

Kamran Amini

ISBN: 978-1-78934-362-5

 ● Build advanced C knowledge on strong foundations, rooted in first principles
 ● Memory structures, compiler pipelines. This book will help you understand how

they work, and how to make the most of them
 ● Apply object-oriented design principles to your procedural C code
 ● Write low-level code that’s close to the hardware and squeezes maximum

performance out of a computer system
 ● Master concurrency, multithreading, multiprocessing, and integration with other

languages
 ● Testing and debugging, packaging and delivery, inter-process communication,

and enterprise architecture for C program

https://www.packtpub.com/in/mobile/c-8-0-and-net-core-3-0-modern-cross-platform-development-fourth-edition

[762]

Other Books You May Enjoy

Developer, Advocate!

Geertjan Wielenga

ISBN: 978-1-78913-874-0

Expert opinions on:
 ● Discover how developer advocates are putting developer interests at the

heart of the software industry in companies including Microsoft and Google
 ● Gain the confidence to use your voice in the tech community
 ● Immerse yourself in developer advocacy techniques
 ● Understand and overcome the challenges and obstacles facing developer

advocates today
 ● Hear predictions from the people at the cutting edge of tech
 ● Explore your career options in developer advocacy

https://www.packtpub.com/in/business-other/developer-advocate

[763]

Other Books You May Enjoy

Leave a review - let other readers know what you
think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book’s Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

[765]

Index
Symbols
.NET

about 7
future versions 9, 10

.NET APIs
reference link 224

.NET Architecture
reference link 457

.NET Core
about 8
reference link 9
versus .NET Framework 249

.NET Core application
deploying 235
publishing 235
self-contained app, publishing 238

.NET Core components
assemblies 227
Base Class Libraries (BCL), of assemblies in

NuGet packages (CoreFX) 227
C# keywords, relating to .NET types 231-233
language compilers 227
namespace, importing to type 231

.NET Core versions
.NET Core 1.0 224
.NET Core 1.1 224
.NET Core 2.0 225
.NET Core 2.1 225
.NET Core 2.2 226
.NET Core 3.0 226

.NET Fiddle
URL 24

.NET Framework
about 7
.NET Portability Analyzer 249

non-.NET Standard libraries, using 250, 251
porting, to .NET Core 247
versus .NET Core 249

.NET Native 14

.NET platforms
for book editions 13

.NET Portability Analyzer 249

.NET Standard
reference link 13, 234

.NET technologies
comparing 14

.NET types
C# keywords, relating 232, 233
inheriting 215

<script> elements
reference link 526

A
abstraction 144
access modifiers

about 150
internal 151
internal protected 151
private 151
private protected 151
protected 151
public 151

acrylic material 690
Advanced Encryption Standard (AES)

used, for encrypting
symmetrically 333-337

aggregation 144
Android SDKs

adding 735, 736
app models

intelligent apps, building 460

[766]

web applications 459
websites, building with ASP.NET Core 458
websites, building with web content

management system 458
App Transport Security (ATS) 753
arguments

naming 168, 169
obtaining 63-65
options, setting with 65, 66

ASP.NET Core, features
about 460
ASP.NET Core 1.0 460
ASP.NET Core 1.1 461
ASP.NET Core 2.0 461
ASP.NET Core 2.1 461
ASP.NET Core 2.2 462
ASP.NET Core 3.0 462

ASP.NET Core Middleware
reference link 517

ASP.NET Core MVC website
actions 518-520
controllers 518-520
controllers, responsibilities 519
Core Identity database, reviewing 514
creating 510, 511
customizing 527
default MVC route 517, 518
entity 522-524
exploring 510-515
filters 520
filters, applying to levels 520
reviewing 512-514
setting up 509, 510
startup 515-517
view models 522-524
views 524-526

ASP.NET Core MVC website customization
about 527
category images, setting up 528
controller action methods, making

asynchronous 546, 547
customized home page, testing 532
custom style, defining 528
database, querying 543
display templates, using 543-545
model binders 535-539
model, validating 539-541

parameters, passing with route
value 533, 534

Razor syntax 528
scalability, improving with asynchronous

tasks 545, 546
typed view, defining 529-531
view helper methods 542

ASP.NET Core project
creating 484-486

ASP.NET Core SignalR 464
ASP.NET Core Web API

about 248, 460
customers repository, configuring 620
data repositories, creating for entities 615
problem details, specifying 625
used, for building web services 607
Web API controller, configuring 620-624
Web API controller, implementing 618-620
web service, acronyms 607, 608
web service, creating from Northwind

database 613, 614
web service's functionality,

reviewing 611, 612
ASP.NET Core Web API project

creating 608-610
assemblies

about 227
decompiling 238-242
versioning 280
versus namespaces 228

assembly metadata
reading 280-282

assignment operators 74
async 451
async streams

working with 454, 455
attributes

working with 279
authentication

about 330
implementing 351-354

authorization
about 330, 349
implementing 351-354
reference link 521

await keyword
about 451
using, in catch blocks 454

[767]

B
bags

working with, LINQ used 404-406
Base Class Library (BCL) 7
big integers

working with 254
binary arithmetic operators 73, 74
binary classification 654
binary number system 42
binary object

converting, to string 95, 96
binary shift operators 77, 78
bitwise operators 77, 78
Blazor

about 464
reference link 466

blog archive page type
reviewing 585

book solution code repository
cloning 18

Booleans
storing 47

Bootstrap
URL 490

Bootstrap grid system
reference link 582

braces
using, with if statements 81

breakpoint
customizing 125, 126
setting 121, 122

Brotli algorithm
used, for compressing 310, 312

byte arrays
strings, encoding as 314, 315, 316

C
C# 1.0 to C# 8.0 26-28
cache busting, via params

reference link 527
casting

between, types 89
within inheritance hierarchies 213

casting exceptions
avoiding 214, 215

catch blocks

await keyword, using 454
C# basics 31
C# compiler versions

discovering 29, 30
enabling 30
reference link 29

C# grammar
about 32
blocks 33
comments 32
statements 32

checked statement
overflow exceptions, throwing with 102, 103

child task 444
circular reference, solving

reference link 228
C# keywords

relating, to .NET types 231-233
classes

extending 208
inheritance, preventing 211
inheriting from 207
members, hiding 209, 210
members, overriding 210
overriding, preventing 211
splitting, with partial 171, 172

classic ASP.NET
versus modern ASP.NET Core 483, 484

class, instantiating
about 147
assembly, referencing 147
namespace, importing 147, 148

class libraries
building 144
class, defining 145, 146
class, initiating 147
creating 145
creating, for Northwind database

context 473, 476
creating, for Northwind entity models 468-472
creating, that needs testing 136, 137
inheriting, from System.Object 149
members 146
multiple files, managing 148
objects 148
setting up 179-181

[768]

CMS
benefits 553, 554
enterprise features 554, 555
features 554
platforms 555

code-behind files
using, with Razor Pages 496, 497

collections
features 266, 267
objects, storing 265
reference link 266
sorting 271
used, for storing multiple values 155, 156

collections, choices
about 267
dictionaries 268, 269
list 268
queues 269
sets 269
stacks 269

Common Language Runtime (CLR) 7
compiler overflow checks

disabling, with unchecked statement 104
complex comma-separated string

splitting 264, 265
complex numbers

defining 583
working with 255

component types, Piranha CMS
blocks 576
custom content templates,

defining 591-593
defining 583
fields 576
regions 576

composition 144
conditional logical operators 76, 77
console application

about 248
building, with Visual Studio Code 15
creating, for publication 235, 236
exploring 58
output, displaying to user 59
responsiveness, improving 451, 452
setting up 179-181
usage, simplifying 62, 63

constructors
used, for initializing fields 159, 160

Content Management System (CMS) 458
content negotiation 613
content types, Piranha CMS

about 575-580
component types 576
pages 575
posts 575
sites 575
standard fields 576

continuation tasks 442
control template

replacing 705-707
conventions

implementing 644
converting

between, types 89
with System.Convert type 92

Core WCF repository
reference link 648

Cross-Origin Resource Sharing (CORS)
enabling 641, 643

cross-platform environments
handling 291-293

cryptography
enhancements 348
random numbers, generating 347, 348

custom attributes
creating 283--285

custom content
custom page types, creating 589
custom regions, creating 587
custom view models, creating 590
defining 586
entity data model, creating 588

custom content templates
defining, for content types 591-593

C# vocabulary
about 33, 34
correct code, writing 34, 35
extent, revealing 36-38
fields 36
methods 35
nouns 36
variables 36
verbs 35

[769]

D
data binding

between elements 707, 708
HTTP service, creating 709
HTTP service data binding, testing 724, 725
numbers, converting to images 717-723
to data, from secure HTTP service 713, 714
user interface, creating to call

HTTP service 715-717
using 707

data manipulation, with EF Core
about 387
entities, deleting 390, 391
entities, inserting 387-389
entities, updating 389, 390

data protection
block sizes 331
IVs 331
IVs, generating 332
keys, generating 332
key sizes 330
keys, using 330
salts 331
techniques 329

data protection, techniques
authentication 330
authorization 330
encryption and decryption 329
hashes 329
signatures 330

data science 651
data seeding

about 368
reference link 368

dates
strings, parsing to 96, 97

deadlocks
avoiding 448, 449

Debug
instrumenting with 129
reference link 129

debugging
during, development 120

decimal number system
using 42

decimal types
versus double types 45-47

deconstruct method
about 205
reference link 166

deep learning 655
default implementations

interfaces, defining with 195-198
default rounding rules 93
default trace listener

writing 130
default values

obtaining, for types 51, 52
delegates

defining 188, 189
handling 188, 189
used, for calling methods 186, 187

dependency injection (DI) design pattern
reference link 516

dependency services 733
dependent assemblies 228
destructor 205
development environment

setting up 2
tools, recommendation 3

dictionaries
about 268, 269
working with 271

Dictionary Attacks
reference link 331

Digital Signature Algorithm (DSA)
about 333
versus RSA 342

directories
managing 294-296

Dispose method 207
DNS

working with 277, 278
Document Database Providers, for Entity

Framework Core
reference link 360

do statement
looping with 87

dotnet CLI
used, for compiling code 17
used, for running code 17

dotnet command
about 236
project, creating 236
project, managing 237

[770]

dotnet templates
installation link 237

dotnet tool
help 19

double- precision floating point numbers 41
double types

versus decimal types 45-47
drives

managing 293, 294
dynamic types

storing 49, 50

E
Editor control

reference link 734
EF Core

annotation attributes 367
connection, to database 365, 366
Fluent API 367
logging 375-379
setting up 364

EF Core conventions
about 366
reference link 366

EF Core data provider
selecting 364

EF Core, loading patterns
about 382
eager loading 383
explicit loading 385, 386
lazy loading 384
reference link 387

EF Core models
building 368, 369
Category and Product entity classes,

defining 369-371
defining 366
Northwind database context class,

defining 371
products, filtering 374, 375
products, sorting 374, 375
querying 372, 373

EF Core, with LINQ
about 406
EF Core model, building 407, 408
sequences, aggregating 415, 416
sequences, filtering 409, 410

sequences, grouping 412-415
sequences, joining 412-415
sequences, projecting into new types 411
sequences, sorting 409, 410

efficiency of types
evaluating 431

encapsulation 144
encryption and decryption 329
endpoint routing

about 645
configuring 645-647
reference link 645, 647

entities
data repositories, creating 615
sorting 401
sorting, by single property with OrderBy

method 401
sorting, by subsequent property with ThenBy

method 402
entities, filtering with Where extension

method
about 397-399
explicit delegate instantiation, removing for

simplifying code 400
lambda expression, targeting 401
named method, targeting 399

entity data model
building, for Northwind database 468

Entity Framework 6.3
reference link 360

Entity Framework Core
about 11
configuring, as service 499, 500
using, with ASP.NET Core 498

entity models 522
Entry control

reference link 734
Enumerable class

used, for extending sequences 396, 397
enum type

used, for storing multiple values 154, 155
used, for storing values 152, 153

escape sequences
reference link 40

events
defining 190
handling 186, 190
raising 186

[771]

exceptions
avoiding, with TryParse method 97, 98
handling, on types conversion 98
inheriting 216
obtaining 100, 102

explicit casting 214
explicit interface

reference link 193
explicit transaction

defining 392, 393
eXtensible Application Markup Language

(XAML) 467, 681
eXtensible Markup Language (XML)

about 317
serializing as 317-319

extension methods
used, for reusing functionality 219

extensions
installing 7

F
factorials

calculating, with recursion 116, 118
fields

about 36
const keyword 158, 159
data, storing 150
defining 150
initializing, with constructors 159-161
marking, as field read-only 159
setting, with default literals 161, 162
static fields 156, 157
using 158, 159

fields, class libraries
constant 146
event 146
read-only 146

file resources
disposing 306-308

files
information, obtaining 299-301
managing 297, 298
text, decoding 316
text, encoding 316
working with 301

filesystem
cross-platform environments,

handling 291-293
directories, managing 294-296
drives, managing 293
file information, obtaining 299-301
files, managing 297, 298
files, working with 301
handling 291, 292
managing 291
paths, managing 299

filtering
by type 402-404

filters
reference link 520

filters, ASP.NET Core MVC website
applying 520
used, for caching response 521
used, for defining custom route 522
used, for securing action method 521

first-in, first-out (FIFO) 269
floating point

reference link 43
Fluent API 367
Fluent Design System

about 690
parallax views 691
Reveal lighting 691
user interface elements, connecting with

animations 691
user interface elements, filling with acrylic

brushes 690
foreach statement

looping with 88
working with 89

format codes
reference link 97

format strings 60
formatting types, in .NET

reference link 61
for statement

looping with 88
functionality

implementing, local functions used 185
implementing, methods used 182, 183
implementing, operators used 184, 185

function pointers 187
functions

documenting, with XML comments 118, 119
unit testing 135

[772]

writing 109, 110
writing, that returns value 112-114

G
General Data Protection Regulation

(GDPR) 461
generic methods

working with 201, 202
generics

about 198
used, for making types safely

reusable 198, 199
generic types

working with 199-201
GET requests

testing, with browser 626, 627
getters and setters

reference link 175
Git

download link 18
using, with Visual Studio Code 18

global filters
defining 382

globalization 286
gRPC

reference link 649
with ASP.NET Core, reference link 649

GUI apps
responsiveness, improving 452, 453
working, rules 452

H
hash algorithm, factors

collision resistance 337
preimage resistance 337

hashes 329
headless CMS 554
Health Check API

implementing 643
health check response

reference link 644
heap memory 202
HttpClientFactory

used, for configuring HTTP clients 638-641
HTTP clients

about 637
configuring, HttpClientFactory used 638-641

used, for consuming services 637
HTTP POST request

reference link 631
HTTP requests

reference link 638
testing, with REST Client extension 627-630

HTTP service
creating 709-711
web service's certificate,

downloading 712, 713
HTTP Strict Transport Security (HSTS) 488
Hypertext Transfer Protocol (HTTP) 477-481

I
IDataView interface

reference link 658
if statement

braces, using with 81
branching with 79, 80
pattern matching with 81

ILSpy tool 239
immutable collections

using 273
implicit casting 214
indexers

defining 175, 176
used, for controlling access 172

indexes
using 275
working with 273

Index type
positions, identifying with 274

inheritance 144
initialization vector (IV)

about 331
generating 332

inner functions 185
INotificationPropertyChanged

interface 732, 733
integers 41
interfaces

defining, with default
implementations 195-198

IComparable 191
IComparer 191
IDisposable 191
IFormatProvider 191

[773]

IFormattable 191
IFormatter 191
implementing 191

intermediate language (IL) 13, 227
internationalization 286
interpolated strings

used, for formatting 59
intersect 269
IP addresses

working with 277, 278
iteration statements 86

J
JavaScript Object Notation (JSON)

about 242, 317 613
future, reference link 324
serializing with 322

Json.NET 322

K
Kestrel

about 483
reference link 483

key 268
key input

obtaining, from user 63
keys

asymmetric key 330
generating 332
private key 330
public key 330
symmetric key 330

key types 659

L
labels 659
Language INtegrated Query (LINQ)

about 395
used, for working with bags 404-406
used, for working with sets 404-406
using, with EF Core 406

Language INtegrated Query (LINQ),
optional parts

lambda expressions 396
LINQ query comprehension syntax 396

Language INtegrated Query (LINQ),
required parts

extension methods 395
LINQ providers 395

last-in, first-out (LIFO) 269
layouts 494
legacy Windows Forms application

migrating 687, 688
legacy Windows platforms

.NET Core 3.0 support 683
libraries

packaging, for NuGet distribution 242
Like

for pattern matching 380, 381
LINQ extension methods

creating 421-424
LINQ queries

sequences, extending with Enumerable
class 396

writing 395
LINQ syntax

sweetening, with syntactic sugar 416
LINQ to XML

used, for generating XML 425
used, for reading XML 426
working with 425

lists
about 268
working with 270

ListView control
about 735
reference link 735

literal value 39
local functions

used, for implementing functionality 185
localization 286
local variable

declaring 50
type, inferring 50, 51
type, specifying 50, 51

lock statement 448, 449
logging

during, development 128
during, runtime 128

logical operators 75, 76
Long Term Support (LTS) 10

M
Mac build host, connecting

[774]

reference link 731
machine learning

about 651, 652
life cycle 652, 653
reference link 652
tasks 654, 655

Markdown
reference link 702

matrix factorization, in recommender systems
reference link 660

media types
reference link 608

members, class libraries
fields 146
methods 146

memory
managing, with reference type 203
managing, with value type 203

memory usage
monitoring 432

MessagePack
reference link 464

metapackages 227
method categories, class libraries

constructor 146
indexer 146
operator 146
property 146

methods
about 186
calling 162
calling, delegates used 186, 187
overloading 167
parameters, defining 166
parameters, passing 166
simplifying 181
used, for implementing

functionality 182, 183
values, returning from 162
writing 162

method signature 167
Microsoft.AspNetCore.Mvc.Api.Analyzers

reference link 644
Microsoft Azure Machine Learning 655
Microsoft Docs

URL 19
Microsoft documentation 19
Microsoft.NET.Test.Sdk

reference link 137
Microsoft's plans, for .NET 5.0

reference link 9
Microsoft Visual Studio 2019

installing, for Windows 683
Microsoft Visual Studio Code versions

about 4, 5
URL 4

miscellaneous operators
about 79
reference link 79

missing values 659
ML.NET

about 656
reference link 656

ML.NET learning pipelines
algorithms 657
data loading 657
model deployment 657
model evaluation 657
model training 657
transformations 657

mobile 731
mobile app

main page, setting 750
testing 751, 752
web service, consuming from 753

mobile platforms, pros and cons
reference link 732

model training
concepts 657, 658

modern ASP.NET Core
versus classic ASP.NET 483, 484

Mono 730
multi-class classification 654
multiple actions

running, synchronously 438
running synchronously, tasks used 439

multiple returned values
combining, with tuples 163, 165

multiple threads
app, creating from 418
resource, accessing 446, 447
using, with Parallel LINQ (PLINQ) 418

multiple values
storing 52, 53

multitasking
types 453

[775]

mutually exclusive lock
applying, to resource 447, 448

N
namespace

about 228
importing 62
importing, to type 231
versus assemblies 228

Naming Guidelines
reference link 39

natural language processing (NLP) 655
natural numbers 41
navbar, Bootstrap

reference link 572
nested functions 185
nested task 444
network resources

working with 276
non-.NET Standard libraries

using 250, 251
non-nullable parameters

declaring 55, 56, 57
non-nullable reference types

enabling 55
non-nullable variables

declaring 55, 56, 57
non-polymorphic inheritance 212
NoSQL data store 359
NuGet distribution

libraries, packaging 242
NuGet packages

about 230
adding, for consuming web service 755
benefits 230
dependencies, fixing 243
library, packaging 243-246
reference link 322
referencing 242
types 230

nullable reference types
about 54
enabling 55
reference link 54, 55

nullable value type
creating 53, 54

null-coalescing operator

reference link 58
null-conditional operator

reference link 58
null values

checking for 57, 58
working with 53

numbered positional arguments
used, for formatting 59

numbers
casting, explicitly 90-92
casting, implicitly 90-92
converting, from ordinal to cardinal 114-116
rounding 92
storing 41
strings, parsing to 96, 97
working with 253

number sizes
code, writing to explore 44

O
object graphs

compact XML, generating 320
high-performance JSON processing 323-325
serializing 317
serializing, as XML 317-319
serializing, with JSON 322, 323
XML files, deserializing 321

object-oriented programming (OOP)
about 143
abstraction 144
aggregation 144
composition 144
encapsulation 144
inheritance 144
polymorphism 144

object-relational mapping (ORM) 360
objects

comparing, separate class used 194, 195
comparing, when sorting 192, 193

object type
storing 48, 49

official .NET blog
subscribing 23

Open API analyzers
implementing 644

operating system, keyboard shortcuts
download link 5

[776]

operators
used, for implementing

functionality 184, 185
optional parameters

passing 168, 169
options

setting, with arguments 65, 66
OrderBy method

used, for sorting entities by single
property 401

outputting field values
setting 151, 152

overfitting
reference link 654

overflow
checking for 102

overflow exceptions
throwing, with checked statement 102, 103

P
PackageLicenseExpression

reference link 244
PackageReference format

reference link 246
packages 227
parallax views 691
Parallel LINQ (PLINQ)

used, for using multiple threads 418
parameters

passing, ways 170, 171
params keyword

reference link 168
partial

used, for splitting classes 171, 172
password-based key derivation function

(PBKDF2) 332
paths

managing 299
pattern matching

reference link 85
with if statement 81
with Like 380, 381
with switch statement 84, 85

patterns, and switch expressions
reference link 86

performance usage
monitoring 431, 432

pipelines
about 312
reference link 313
used, for high-performance streams 312

Piranha CMS
about 555, 556
application service 574
authentication, exploring 567-570
authorization, exploring 567-570
blog archive, reviewing 566, 567
child page, creating 564
component types, reviewing 581, 582
configuration, exploring 570, 571
content, testing 571
content types 575
design principles 555
media 574
open source libraries 556
page content, editing 559-563
reference link 556
routing 572, 573
site content, editing 559-563
standard blocks 580
standard blocks, reviewing 581, 582
top-level page, creating 563
website, creating 556-559
website, exploring 556-559

platforms
about 227
handling, that not support API 66

polymorphic inheritance 212
polymorphism 144, 212
pooling database contexts

about 391
reference 391

positions
identifying, with Index type 274

problem details, HTTP APIs
reference link 625

process 429, 430
Process type

VirtualMemorySize64 434
WorkingSet64 434

product recommendations, making
about 659
data gathering 661, 662
data processing 661-665
problem analysis 660

[777]

project templates
additional packs, installing 548
using 547, 548

properties
used, for controlling access 172

Q
query tags

logging with 380
reference link 380

queues 269

R
random numbers

generating 346
generating, for cryptography 347, 348
generating, for games 346

ranges
identifying, with Range type 275
using 275
working with 273

ranking 654
Razor class libraries

using 503-505
Razor pages

code-behind files, using with 496, 497
defining 493
enabling 492
exploring 492
shared layouts, using with 494, 496
used, for manipulating data 500

readonly properties
defining 172, 173

real numbers
storing 43

recommendations 654
recursion

factorials, converting with 116-118
reference link 116

reference type
about 203
used, for managing memory 203

reflection 285
regression 655
regular expression

examples 263, 264
pattern, matching with 260

reference link 263
syntax 262

Relational Database Management System
(RDBMS) 359

Representational State Transfer (REST) 608
resources

sharing 704, 705
using 704

resource usage
monitoring 431

response caching
reference link 521

REST Client extension
reference link 627
used, for testing HTTP requests 627-631

Reveal lighting
about 691
reference link 691

Roslyn
about 227
reference link 227

rounding rules
about 94
reference link 94

route constraints
reference link 611

route value
used, for passing parameters 533, 534

routing, ASP.NET Core
reference link 647

RSA algorithm
reference link 342
used, for signing data 342-345

Runtime IDentifier (RID)
about 236
reference link 236

S
salt 331
sample relational database

using 361
scaffold identity

reference link 516
sealed keyword 217
Secure Sockets Layer (SSL) 330
selection statements 79
self-contained app

[778]

publishing 238
self-signed certificates

handling, reference link 753
semantic versioning

rules 280
rules, URL 280

separate class
used, for comparing objects 194, 195

sequence 396
server

pinging 278, 279
sets

about 269, 404
working with, LINQ used 404-406

settable properties
defining 174, 175

SHA1 collision
reference 338

SHA256
used, for hashing data 338-341
used, for signing data 342-345

shared layouts
using, with Razor Pages 494, 496

shared resources
accessing, from multiple threads 446, 447
access synchronization, interlocked 446
access synchronization, monitor 446
access, synchronizing 445
mutually exclusive lock, applying 447, 448

SharpPad
used, for dumping variables 126-128

SignalR
about 463, 464
reference link 464

signatures 330
Silverlight applications 248
Simple Object Access Protocol (SOAP) 608
Single Page Applications (SPA) 613
single precision floating point numbers 41
Singular-Value Decomposition (SVD) 660
slots 451
solution code

downloading, from GitHub repository 17
spans

reference link 274
using, for memory efficiency 274
working with 273

specialized collections

using 272
SQLite

Northwind sample database, creating for 362
reference link 362
setting up, for macOS 362
setting up, for Windows 362

SQLiteStudio
Northwind sample database, managing

with 363, 364
SQL statements, SQLite

reference link 363
stack memory 202, 203
Stack Overflow

answers, looking on 21
stacks 269
standard blocks, Piranha CMS

columns 580
image 580
quote 580

standard page type
reviewing 583, 584

start up
configuring 594-596
importing, from database 594-596

static files
enabling 489-491

static methods
used, for reusing functionality 218

Stopwatch type
ElapsedMilliseconds property 434
Elapsed property 433
Restart method 433
Stop method 433

streams
about 301
compressing 309, 310
file resources, disposing 306-308
text streams, writing to 303, 304
used, for reading files 301, 302
used, for writing to files 301, 302
XML streams, writing to 305, 306

string
binary object, converting to 95, 96
characters, obtaining of 256
checking, for content 258
length, obtaining of 256
part, obtaining of 257, 258
splitting 257

[779]

types, converting to 94, 95
string formatting 259
strings

building efficiently 260
encodings, as byte arrays 314-316
parsing, to dates 96, 97
parsing, to number 96, 97
parsing, to times 96, 97

struct types
working with 203, 204

Structured Query Language (SQL) 396
supervised classification 654
supplier model

enabling, to insert entities 500, 501
Support Vector Machine (SVM) 657
Swagger

enabling 627, 631, 632
reference link 631, 632

Swagger UI
about 631
used, for testing requests 632-637

switch expressions
used, for simplifying switch statements 85
using 114

switch statement
branching with 82
pattern matching with 84, 85
using 114
simplifying, with switch expressions 85

symbols 262
synchronization types

applying 451
syntactic sugar

used, for Sweetening LINQ syntax 417
syntax

of regular expression 262
System.Convert type

converting with 92
System.IO.FileSystem

reference link 231
System.Text.Json APIs

reference link 323

T
tasks

about 429, 430
child tasks 444

nested tasks 444
pros and cons, reference link 441
running, asynchronously 437
used, for running multiple actions

asynchronously 439-441
waiting for 441, 442
working 444

Task.WaitAll(Task[]) method 441
Task.WaitAny(Task[]) method 441
templates

control template, replacing 705
defining 583
using 704

test controller logic
reference link 520

Test Driven Development (TDD)
about 135
reference link 135

testing dataset 653
text

decoding 313
decoding, in files 316
digits entered, checking as 261
encoding 313
encoding, in files 316
storing 40
working with 255

text encodings
ANSI/ISO encodings 314
ASCI 314
UTF-7 314
UTF-8 314
UTF-16 314
UTF-32 314

text input
obtaining, from user 61

text streams
writing to 303, 304

ThenBy method
used, for sorting entities by single

property 402
thread 429, 430
thread pool

reference link 430
Trace

instrumenting with 129
trace levels

switching 132-135

[780]

trace listeners
about 129
configuring 130, 131
reference link 129

training dataset 653
transactions

about 391
ACID properties 392
explicit transaction 392, 393

truth tables
reference link 75

try block
error-prone code, wrapping 99, 100

TryParse method
used, for avoiding exceptions 97, 98

tuple name inference 165
tuples

deconstructing 166
fields, naming 165
names, inferring 165
used, for combining multiple returned

values 163-165
two-way data binding

entity model, creating with 738, 741
types

about 36
casting 89
converting 89
converting, to string 94, 95
default values, obtaining 51, 52
definitions 19-21
extending 217
namespace, importing 231
working with 279

type-safe method pointer 187

U
unary operators 72, 73
unchecked statement

used, for disabling compiler overflow
checks 104, 105

underfitting
reference link 654

Uniform Resource Locator (URL) 477
unit tests

running 139
writing 137

Universal Windows Platform (UWP)
about 11, 467, 681
reference link 248

unmanaged resources
about 306
releasing 205-207

unsupervised classification 654
upgradeable read mode 451
uploaded package

testing 246, 247
URIs

working with 277, 278
user interface elements

connecting, with animations 691
filling, with acrylic brushes 690

user interface (UI) thread 452
users

authenticating 349, 350
authorizing 349, 350

UWP apps 682, 692
UWP Community Toolkit

reference link 702

V
values

assigning 39
storing, with enum type 152, 153

value type
used, for managing memory 203

variables
about 36
dumping, with SharpPad 126-128
operating on 71, 72
working with 38

verbatim strings
about 40
reference link 41

verbs 35
version compatibility, setting

benefits, reference link 614
view helper methods

ActionLink 542
AntiForgeryToken 542
Display 542
DisplayFor 542
DisplayForModel 542
Editor 542

[781]

EditorFor 542
EditorForModel 542
Encode 542
PartialAsync 542
Raw 542
RenderPartialAsync 542

views
creating, for customer details 744
creating, for customers list 744

Visual Studio 2019
reference link 2
using, for Windows app development 3

Visual Studio Code
downloading 6
download link 6
Git, using with 18
installing 6
reference link 2
used, for building console apps 15
used, for writing code 15-17
using, for cross-platform development 2

Visual Studio Code, default key bindings
reference link 5

Visual Studio Code, for C#
reference link 6

Visual Studio Code workspaces
using 47, 48

Visual Studio for Mac
about 729
using, for mobile development 3

W
Web API controller

implementing 618-620
web applications

about 459
scalability, improving 453

WebAssembly (Wasm)
about 465
reference link 465

web development 477
web services

about 608
building 460
building, with ASP.NET Core Web API 607
configuring, to allow insecure

requests 753, 754

consuming, from mobile app 753
customers, obtaining from 756, 757
documenting 626
GET requests, testing with browser 626
HTTP requests, testing with REST

Client extension 627
NuGet packages, adding for

consumption of 755
scalability, improving 453
Swagger, enabling 631
Swagger UI, used for testing

requests 632, 633
testing 626

website
building, with web content management

system 458
securing 486-489
testing 486-489

WebSocket
about 463
reference link 463

Where extension method
used, for filtering entities 397-399

while statement
looping with 86

whole numbers
about 41
storing 42, 43

Windows
debugging 123
Microsoft Visual Studio 2019, installing 683
SQLite, setting up for 362

Windows 10
used, for creating app from multiple

threads 419
Windows app, creating

about 694
acrylic brushes, exploring 698, 699
common controls, exploring 698, 699
more controls, installing 702, 703
Reveal, exploring 699-701
UWP project, creating 694-698

Windows app development
Visual Studio 2019, using for 3

Windows Communication Foundation
(WCF) 248, 482, 608

Windows Compatibility Pack
reference link 689

[782]

used, for migrating legacy apps 689
Windows desktop apps

building 467
Windows Forms

about 681
application, building 684, 685
application, reviewing 686
working with 684

Windows Forms app
migrating 688
migrating, to .NET Core 3.0 689
migration, reference link 689

Windows Forms designer
progress tracking, reference link 685

Windows platform
about 689
Fluent Design System 690
Universal Windows Platform 690
XAML Standard 691

Windows Presentation Foundation (WPF)
248, 467, 681

WPF apps 692
write mode 451

X
Xamarin

about 730
extending, with Xamarin.Forms 730

Xamarin apps 692
Xamarin dependency services

reference link 733
Xamarin.Forms

about 730
used, for building mobile apps 735
used, for extending Xamarin 730

Xamarin.Forms Pages
reference link 734

Xamarin.Forms Projects
reference link 729

Xamarin.Forms solution
creating 736, 737

Xamarin.Forms user interface components
about 733
categories 733
cells 734
layouts 733
pages 733

views 734
Xamarin projects 8
XAML

controls, selecting 693
markup extensions 693
used, for specifying code 692

XAML Standard
about 691
reference link 692

XML
generating, with LINQ to XML 425
reading, with LINQ to XML 426

XML comments
functions, documenting with 118, 119

XML files
deserializing 321, 322

XMLHttpRequest 463
XML streams

writing to 305, 306

	Cover
	Copyright
	packt page
	Contributors
	Table of Contents
	Preface
	Chapter 1: Hello, C#! Welcome, .NET!
	Setting up your development environment
	Using Visual Studio Code for cross-platform development
	Using Visual Studio 2019 for Windows app development
	Using Visual Studio for Mac for mobile development
	Recommended tools for chapters
	Deploying cross-platform
	Understanding Microsoft Visual Studio Code versions
	Downloading and installing Visual Studio Code
	Installing other extensions

	Understanding .NET
	Understanding the .NET Framework
	Understanding the Mono and Xamarin projects
	Understanding .NET Core
	Understanding future versions of .NET
	Understanding .NET Core support
	What is different about .NET Core?
	Understanding .NET Standard
	.NET platforms and tools used by the book editions
	Understanding intermediate language
	Understanding .NET Native
	Comparing .NET technologies

	Building console apps using Visual Studio Code
	Writing code using Visual Studio Code
	Compiling and running code using dotnet CLI

	Downloading solution code from a GitHub repository
	Using Git with Visual Studio Code
	Cloning the book solution code repository

	Looking for help
	Reading Microsoft documentation
	Getting help for the dotnet tool
	Getting definitions of types and their members
	Looking for answers on Stack Overflow
	Searching for answers using Google
	Subscribing to the official .NET blog

	Practicing and exploring
	Exercise 1.1 – Test your knowledge
	Exercise 1.2 – Practice C# anywhere
	Exercise 1.3 – Explore topics

	Summary

	Chapter 2: Speaking C#
	Introducing C#
	Understanding language versions and features
	C# 1.0
	C# 2.0
	C# 3.0
	C# 4.0
	C# 5.0
	C# 6.0
	C# 7.0
	C# 7.1
	C# 7.2
	C# 7.3
	C# 8.0

	Discovering your C# compiler versions
	Enabling a specific language version compiler

	Understanding C# basics
	Understanding C# grammar
	Statements
	Comments
	Blocks

	Understanding C# vocabulary
	Help for writing correct code
	Verbs are methods
	Nouns are types, fields, and variables
	Revealing the extent of the C# vocabulary

	Working with variables
	Naming things and assigning values
	Literal values

	Storing text
	Understanding verbatim strings

	Storing numbers
	Storing whole numbers
	Storing real numbers
	Writing code to explore number sizes
	Comparing double and decimal types

	Storing Booleans
	Using Visual Studio Code workspaces
	Storing any type of object
	Storing dynamic types
	Declaring local variables
	Specifying and inferring the type of a local variable

	Getting default values for types
	Storing multiple values

	Working with null values
	Making a value type nullable
	Understanding nullable reference types

	Enabling nullable and non-nullable reference types
	Declaring non-nullable variables and parameters
	Checking for null

	Exploring console applications further
	Displaying output to the user
	Formatting using numbered positional arguments
	Formatting using interpolated strings

	Understanding format strings
	Getting text input from the user
	Importing a namespace
	Simplifying the usage of the console
	Getting key input from the user
	Getting arguments
	Setting options with arguments
	Handling platforms that do not support an API

	Practicing and exploring
	Exercise 2.1 – Test your knowledge
	Exercise 2.2 – Practice number sizes and ranges
	Exercise 2.3 – Explore topics

	Summary

	Chapter 3: Controlling Flow and Converting Types
	Operating on variables
	Unary operators
	Binary arithmetic operators
	Assignment operators
	Logical operators
	Conditional logical operators
	Bitwise and binary shift operators
	Miscellaneous operators

	Understanding selection statements
	Branching with the if statement
	Why you should always use braces with if statements
	Pattern matching with the if statement
	Branching with the switch statement
	Pattern matching with the switch statement
	Simplifying switch statements with switch expressions

	Understanding iteration statements
	Looping with the while statement
	Looping with the do statement
	Looping with the for statement
	Looping with the foreach statement
	Understanding how foreach works internally

	Casting and converting between types
	Casting numbers implicitly and explicitly
	Converting with the System.Convert type
	Rounding numbers
	Understanding the default rounding rules
	Taking control of rounding rules

	Converting from any type to a string
	Converting from a binary object to a string
	Parsing from strings to numbers or dates and times
	Avoiding exceptions using the TryParse method

	Handling exceptions when converting types
	Wrapping error-prone code in a try block
	Catching all exceptions
	Catching specific exceptions

	Checking for overflow
	Throwing overflow exceptions with the checked statement
	Disabling compiler overflow checks with the unchecked statement

	Practicing and exploring
	Exercise 3.1 – Test your knowledge
	Exercise 3.2 – Explore loops and overflow
	Exercise 3.3 – Practice loops and operators
	Exercise 3.4 – Practice exception handling
	Exercise 3.5 – Test your knowledge of operators
	Exercise 3.6 – Explore topics

	Summary

	Chapter 4: Writing, Debugging, and Testing Functions
	Writing functions
	Writing a times table function
	Writing a function that returns a value
	Writing mathematical functions
	Converting numbers from ordinal to cardinal
	Calculating factorials with recursion

	Documenting functions with XML comments

	Debugging during development
	Creating code with a deliberate bug
	Setting a breakpoint
	Navigating with the debugging toolbar
	Debugging windows
	Stepping through code
	Customizing breakpoints

	Logging during development and runtime
	Instrumenting with Debug and Trace
	Writing to the default trace listener
	Configuring trace listeners
	Switching trace levels

	Unit testing functions
	Creating a class library that needs testing
	Writing unit tests
	Running unit tests

	Practicing and exploring
	Exercise 4.1 – Test your knowledge
	Exercise 4.2 – Practice writing functions with debugging and unit testing
	Exercise 4.3 – Explore topics

	Summary

	Chapter 5: Building Your Own Types with Object-Oriented Programming
	Talking about object-oriented programming
	Building class libraries
	Creating a class library
	Defining a class
	Understanding members

	Instantiating a class
	Referencing an assembly
	Importing a namespace to use a type

	Managing multiple files
	Understanding objects
	Inheriting from System.Object

	Storing data within fields
	Defining fields
	Understanding access modifiers
	Setting and outputting field values
	Storing a value using an enum type
	Storing multiple values using an enum type
	Storing multiple values using collections
	Making a field static
	Making a field constant
	Making a field read-only
	Initializing fields with constructors
	Setting fields with default literals

	Writing and calling methods
	Returning values from methods
	Combining multiple returned values using tuples
	Naming the fields of a tuple
	Inferring tuple names
	Deconstructing tuples

	Defining and passing parameters to methods
	Overloading methods
	Passing optional parameters and naming arguments
	Controlling how parameters are passed
	Splitting classes using partial

	Controlling access with properties and indexers
	Defining readonly properties
	Defining settable properties
	Defining indexers

	Practicing and exploring
	Exercise 5.1 – Test your knowledge
	Exercise 5.2 – Explore topics

	Summary

	Chapter 6: Implementing Interfaces and Inheriting Classes
	Setting up a class library and console application
	Simplifying methods
	Implementing functionality using methods
	Implementing functionality using operators
	Implementing functionality using local functions

	Raising and handling events
	Calling methods using delegates
	Defining and handling delegates
	Defining and handling events

	Implementing interfaces
	Common interfaces
	Comparing objects when sorting
	Comparing objects using a separate class
	Defining interfaces with default implementations

	Making types safely reusable with generics
	Working with generic types
	Working with generic methods

	Managing memory with reference and value types
	Working with struct types
	Releasing unmanaged resources
	Ensuring that Dispose is called

	Inheriting from classes
	Extending classes
	Hiding members
	Overriding members
	Preventing inheritance and overriding
	Understanding polymorphism

	Casting within inheritance hierarchies
	Implicit casting
	Explicit casting
	Avoiding casting exceptions

	Inheriting and extending .NET types
	Inheriting exceptions
	Extending types when you can't inherit
	Using static methods to reuse functionality
	Using extension methods to reuse functionality

	Practicing and exploring
	Exercise 6.1 – Test your knowledge
	Exercise 6.2 – Practice creating an inheritance hierarchy
	Exercise 6.3 – Explore topics

	Summary

	Chapter 7: Understanding and Packaging .NET Types
	Introducing .NET Core 3.0
	.NET Core 1.0
	.NET Core 1.1
	.NET Core 2.0
	.NET Core 2.1
	.NET Core 2.2
	.NET Core 3.0

	Understanding .NET Core components
	Understanding assemblies, packages, and namespaces
	Understanding dependent assemblies
	Understanding the Microsoft .NET Core App platform
	Understanding NuGet packages
	Understanding frameworks

	Importing a namespace to use a type
	Relating C# keywords to .NET types
	Sharing code cross-platform with .NET Standard class libraries

	Publishing your applications for deployment
	Creating a console application to publish
	Understanding dotnet commands
	Creating new projects
	Managing projects

	Publishing a self-contained app

	Decompiling assemblies
	Packaging your libraries for NuGet distribution
	Referencing a NuGet package
	Fixing dependencies

	Packaging a library for NuGet
	Testing your package

	Porting from .NET Framework to .NET Core
	Could you port?
	Should you port?
	Differences between .NET Framework and .NET Core
	Understanding the .NET Portability Analyzer
	Using non-.NET Standard libraries

	Practicing and exploring
	Exercise 7.1 – Test your knowledge
	Exercise 7.2 – Explore topics

	Summary

	Chapter 8: Working with Common .NET Types
	Working with numbers
	Working with big integers
	Working with complex numbers

	Working with text
	Getting the length of a string
	Getting the characters of a string
	Splitting a string
	Getting part of a string
	Checking a string for content
	Joining, formatting, and other string members
	Building strings efficiently

	Pattern matching with regular expressions
	Checking for digits entered as text
	Understanding the syntax of a regular expression
	Examples of regular expressions
	Splitting a complex comma-separated string

	Storing multiple objects in collections
	Common features of all collections
	Understanding collection choices
	Lists
	Dictionaries
	Stacks
	Queues
	Sets

	Working with lists
	Working with dictionaries
	Sorting collections
	Using specialized collections
	Using immutable collections

	Working with spans, indexes, and ranges
	Using memory efficiently using spans
	Identifying positions with the Index type
	Identifying ranges with the Range type
	Using indexes and ranges

	Working with network resources
	Working with URIs, DNS, and IP addresses
	Pinging a server

	Working with types and attributes
	Versioning of assemblies
	Reading assembly metadata
	Creating custom attributes
	Doing more with reflection

	Internationalizing your code
	Practicing and exploring
	Exercise 8.1 – Test your knowledge
	Exercise 8.2 – Practice regular expressions
	Exercise 8.3 – Practice writing extension methods
	Exercise 8.4 – Explore topics

	Summary

	Chapter 9: Working with Files, Streams, and Serialization
	Managing the filesystem
	Handling cross-platform environments and filesystems
	Managing drives
	Managing directories
	Managing files
	Managing paths
	Getting file information
	Controlling how you work with files

	Reading and writing with streams
	Writing to text streams
	Writing to XML streams
	Disposing of file resources
	Compressing streams
	Compressing with the Brotli algorithm
	High-performance streams using pipelines
	Asynchronous streams

	Encoding and decoding text
	Encoding strings as byte arrays
	Encoding and decoding text in files

	Serializing object graphs
	Serializing as XML
	Generating compact XML
	Deserializing XML files
	Serializing with JSON
	High-performance JSON processing

	Practicing and exploring
	Exercise 9.1 – Test your knowledge
	Exercise 9.2 – Practice serializing as XML
	Exercise 9.3 – Explore topics

	Summary

	Chapter 10: Protecting Your Data and Applications
	Understanding the vocabulary of protection
	Keys and key sizes
	IVs and block sizes
	Salts
	Generating keys and IVs

	Encrypting and decrypting data
	Encrypting symmetrically with AES

	Hashing data
	Hashing with the commonly used SHA256

	Signing data
	Signing with SHA256 and RSA

	Generating random numbers
	Generating random numbers for games
	Generating random numbers for cryptography

	What's new in cryptography
	Authenticating and authorizing users
	Implementing authentication and authorization
	Protecting application functionality

	Practicing and exploring
	Exercise 10.1 – Test your knowledge
	Exercise 10.2 – Practice protecting data with encryption and hashing
	Exercise 10.3 – Practice protecting data with decryption
	Exercise 10.4 – Explore topics

	Summary

	Chapter 11: Working with Databases Using Entity Framework Core
	Understanding modern databases
	Understanding Entity Framework
	Using a sample relational database
	Setting up SQLite for macOS
	Setting up SQLite for Windows

	Creating the Northwind sample database for SQLite
	Managing the Northwind sample database with SQLiteStudio

	Setting up EF Core
	Choosing an EF Core data provider
	Connecting to the database

	Defining EF Core models
	EF Core conventions
	EF Core annotation attributes
	EF Core Fluent API
	Understanding data seeding
	Building an EF Core model
	Defining the Category and Product entity classes
	Defining the Northwind database context class

	Querying EF Core models
	Filtering and sorting products
	Logging EF Core
	Logging with query tags
	Pattern matching with Like
	Defining global filters

	Loading patterns with EF Core
	Eager loading entities
	Enabling lazy loading
	Explicit loading entities

	Manipulating data with EF Core
	Inserting entities
	Updating entities
	Deleting entities
	Pooling database contexts
	Transactions
	Defining an explicit transaction

	Practicing and exploring
	Exercise 11.1 – Test your knowledge
	Exercise 11.2 – Practice exporting data using different serialization formats
	Exercise 11.3 – Explore the EF Core documentation

	Summary

	Chapter 12: Querying and Manipulating Data Using LINQ
	Writing LINQ queries
	Extending sequences with the Enumerable class
	Filtering entities with Where
	Targeting a named method
	Simplifying the code by removing the explicit delegate instantiation
	Targeting a lambda expression

	Sorting entities
	Sorting by a single property using OrderBy
	Sorting by a subsequent property using ThenBy

	Filtering by type

	Working with sets and bags using LINQ
	Using LINQ with EF Core
	Building an EF Core model
	Filtering and sorting sequences
	Projecting sequences into new types
	Joining and grouping sequences
	Aggregating sequences

	Sweetening LINQ syntax with syntactic sugar
	Using multiple threads with parallel LINQ
	Creating an app that benefits from multiple threads
	Using Windows 10
	Using macOS
	For all operating systems

	Creating your own LINQ extension methods
	Working with LINQ to XML
	Generating XML using LINQ to XML
	Reading XML using LINQ to XML

	Practicing and exploring
	Exercise 12.1 – Test your knowledge
	Exercise 12.2 – Practice querying with LINQ
	Exercise 12.3 – Explore topics

	Summary

	Chapter 13: Improving Performance and Scalability Using Multitasking
	Understanding processes, threads, and tasks
	Monitoring performance and resource usage
	Evaluating the efficiency of types
	Monitoring performance and memory use
	Implementing the Recorder class
	Measuring the efficiency of processing strings

	Running tasks asynchronously
	Running multiple actions synchronously
	Running multiple actions asynchronously using tasks
	Waiting for tasks
	Continuing with another task
	Nested and child tasks

	Synchronizing access to shared resources
	Accessing a resource from multiple threads
	Applying a mutually exclusive lock to a resource
	Understanding the lock statement and avoiding deadlocks
	Making CPU operations atomic
	Applying other types of synchronization

	Understanding async and await
	Improving responsiveness for console apps
	Improving responsiveness for GUI apps
	Improving scalability for web applications and web services
	Common types that support multitasking
	Using await in catch blocks
	Working with async streams

	Practicing and exploring
	Exercise 13.1 – Test your knowledge
	Exercise 13.2 – Explore topics

	Summary

	Chapter 14: Practical Applications
of C# and .NET
	Understanding app models for C# and .NET
	Building websites using ASP.NET Core
	Building websites using a web content management system
	Understanding web applications
	Building and consuming web services
	Building intelligent apps

	New features for ASP.NET Core
	ASP.NET Core 1.0
	ASP.NET Core 1.1
	ASP.NET Core 2.0
	ASP.NET Core 2.1
	ASP.NET Core 2.2
	ASP.NET Core 3.0

	Understanding SignalR
	Understanding Blazor
	JavaScript and friends
	Silverlight – C# and .NET using a plugin
	WebAssembly – a target for Blazor
	Blazor on the server-side or client-side

	Understanding the bonus chapters
	Building Windows desktop apps
	Building cross-platform mobile apps

	Building an entity data model for Northwind
	Creating a class library for Northwind entity models
	Creating a class library for a Northwind database context

	Summary

	Chapter 15: Building Websites Using
ASP.NET Core Razor Pages
	Understanding web development
	Understanding HTTP
	Client-side web development

	Understanding ASP.NET Core
	Classic ASP.NET versus modern ASP.NET Core
	Creating an ASP.NET Core project
	Testing and securing the website
	Enabling static and default files

	Exploring Razor Pages
	Enabling Razor Pages
	Defining a Razor Page
	Using shared layouts with Razor Pages
	Using code-behind files with Razor Pages

	Using Entity Framework Core with
ASP.NET Core
	Configure Entity Framework Core as a service
	Manipulating data using Razor pages
	Enabling a model to insert entities
	Defining a form to insert new suppliers

	Using Razor class libraries
	Using a Razor class library

	Practicing and exploring
	Exercise 15.1 – Test your knowledge
	Exercise 15.2 – Practice building a data-driven web page
	Exercise 15.3 – Explore topics

	Summary

	Chapter 16: Building Websites Using the Model-View-Controller Pattern
	Setting up an ASP.NET Core MVC website
	Creating and exploring an ASP.NET Core MVC website
	Reviewing the ASP.NET Core MVC website
	Reviewing the ASP.NET Core Identity database

	Exploring an ASP.NET Core MVC website
	Understanding ASP.NET Core MVC startup
	Understanding the default MVC route
	Understanding controllers and actions
	Understanding filters
	Using a filter to secure an action method
	Using a filter to cache a response
	Using a filter to define a custom route

	Understanding entity and view models
	Understanding views

	Customizing an ASP.NET Core MVC website
	Defining a custom style
	Setting up the category images
	Understanding Razor syntax
	Defining a typed view
	Testing the customized home page
	Passing parameters using a route value
	Understanding model binders
	Validating the model
	Understanding view helper methods
	Querying a database and using display templates
	Improving scalability using asynchronous tasks
	Making controller action methods asynchronous

	Using other project templates
	Installing additional template packs

	Practicing and exploring
	Exercise 16.1 – Test your knowledge
	Exercise 16.2 – Practice implementing MVC by implementing a category detail page
	Exercise 16.3 – Practice improving scalability by understanding and implementing async action methods
	Exercise 16.4 – Explore topics

	Summary

	Chapter 17: Building Websites Using a Content Management System
	Understanding the benefits of a CMS
	Understanding basic CMS features
	Understanding enterprise CMS features
	Understanding CMS platforms

	Understanding Piranha CMS
	Creating and exploring a Piranha CMS website
	Editing site and page content
	Creating a new top-level page
	Creating a new child page
	Reviewing the blog archive
	Exploring authentication and authorization
	Exploring configuration
	Testing the new content
	Understanding routing
	Understanding media
	Understanding the application service
	Understanding content types
	Understanding component types
	Understanding standard fields
	Reviewing some content types

	Understanding standard blocks
	Reviewing component types and standard blocks

	Defining components, content types, and templates
	Reviewing the standard page type
	Reviewing the blog archive page type
	Defining custom content and component types
	Creating custom regions
	Creating an entity data model
	Creating custom page types
	Creating custom view models

	Defining custom content templates for content types
	Configuring start up and importing from a database

	Testing the Northwind CMS website
	Uploading images and creating the catalog root
	Importing category and product content
	Managing catalog content
	Reviewing how Piranha stores content

	Practicing and exploring
	Exercise 17.1 – Test your knowledge
	Exercise 17.2 – Practice defining a block type for rendering YouTube videos
	Exercise 17.3 – Explore topics

	Summary

	Chapter 18: Building and Consuming Web Services
	Building web services using ASP.NET Core Web API
	Understanding web service acronyms
	Creating an ASP.NET Core Web API project
	Reviewing the web service's functionality
	Creating a web service for the Northwind database
	Creating data repositories for entities
	Implementing a Web API controller
	Configuring the customers repository and Web API controller
	Specifying problem details

	Documenting and testing web services
	Testing GET requests using a browser
	Testing HTTP requests with REST Client extension
	Enabling Swagger
	Testing requests with Swagger UI

	Consuming services using HTTP clients
	Understanding HttpClient
	Configuring HTTP clients using HttpClientFactory
	Enabling Cross-Origin Resource Sharing

	Implementing advanced features
	Implementing Health Check API
	Implementing Open API analyzers and conventions
	Understanding endpoint routing
	Configuring endpoint routing

	Understanding other communication technologies
	Understanding Windows Communication Foundation (WCF)
	Understanding gRPC

	Practicing and exploring
	Exercise 18.1 – Test your knowledge
	Exercise 18.2 – Practice creating and deleting customers with HttpClient
	Exercise 18.3 – Explore topics

	Summary

	Chapter 19: Building Intelligent Apps Using Machine Learning
	Understanding machine learning
	Understanding the machine learning life cycle
	Understanding datasets for training and testing
	Understanding machine learning tasks
	Understanding Microsoft Azure Machine Learning

	Understanding ML.NET
	Understanding Infer.NET
	Understanding ML.NET learning pipelines
	Understanding model training concepts
	Understanding missing values and key types
	Understanding features and labels

	Making product recommendations
	Problem analysis
	Data gathering and processing
	Creating the NorthwindML website project
	Creating the data and view models
	Implementing the controller
	Training the recommendation models
	Implementing a shopping cart with recommendations

	Testing the product recommendations website

	Practicing and exploring
	Exercise 19.1 – Test your knowledge
	Exercise 19.2 – Practice with samples
	Exercise 19.3 – Explore topics

	Summary

	Chapter 20: Building Windows Desktop Apps
	Understanding legacy Windows application platforms
	Understanding .NET Core 3.0 support for legacy Windows platforms
	Installing Microsoft Visual Studio 2019 for Windows
	Working with Windows Forms
	Building a new Windows Forms application
	Reviewing a new Windows Forms application
	Migrating a legacy Windows Forms application
	Migrating a Windows Forms app

	Migrating WPF apps to .NET Core 3.0
	Migrating legacy apps using the Windows Compatibility Pack

	Understanding the modern Windows platform
	Understanding Universal Windows Platform
	Understanding Fluent Design System
	Filling user interface elements with acrylic brushes
	Connecting user interface elements with animations
	Parallax views and Reveal lighting

	Understanding XAML Standard
	Simplifying code using XAML
	Choosing common controls
	Understanding markup extensions

	Creating a modern Windows app
	Enabling developer mode
	Creating a UWP project
	Exploring common controls and acrylic brushes
	Exploring Reveal
	Installing more controls

	Using resources and templates
	Sharing resources
	Replacing a control template

	Using data binding
	Binding to elements
	Creating an HTTP service to bind to
	Downloading the web service's certificate

	Binding to data from a secure HTTP service
	Creating the user interface to call the HTTP service
	Converting numbers to images
	Testing the HTTP service data binding

	Practicing and exploring
	Exercise 20.1 – Test your knowledge
	Exercise 20.2 – Explore topics

	Summary

	Chapter 21: Building Cross-Platform Mobile Apps Using
Xamarin.Forms
	Understanding Xamarin and
Xamarin.Forms
	How Xamarin.Forms extends Xamarin
	Mobile first, cloud first
	Understanding additional functionality
	Understanding the INotificationPropertyChanged interface
	Understanding dependency services

	Understanding Xamarin.Forms user interface components
	Understanding the ContentPage view
	Understanding the Entry and Editor controls
	Understanding the ListView control

	Building mobile apps using
Xamarin.Forms
	Adding Android SDKs
	Creating a Xamarin.Forms solution
	Creating an entity model with two-way data binding
	Creating a component for dialing phone numbers
	Creating views for the customers list and customer details
	Implementing the customer list view
	Implementing the customer detail view
	Setting the main page for the mobile app

	Testing the mobile app

	Consuming a web service from a mobile app
	Configuring the web service to allow insecure requests
	Configuring the iOS app to allow insecure connections
	Adding NuGet packages for consuming a web service
	Getting customers from the web service

	Practicing and exploring
	Exercise 21.1 – Test your knowledge
	Exercise 21.2 - Explore topics

	Summary
	Epilogue

	Other Books You
 May Enjoy
	Index

